1 | /* |
2 | * Copyright 2020 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/geometry/GrShape.h" |
9 | |
10 | #include "src/core/SkPathPriv.h" |
11 | |
12 | GrShape& GrShape::operator=(const GrShape& shape) { |
13 | switch(shape.type()) { |
14 | case Type::kEmpty: |
15 | this->reset(); |
16 | break; |
17 | case Type::kPoint: |
18 | this->setPoint(shape.fPoint); |
19 | break; |
20 | case Type::kRect: |
21 | this->setRect(shape.fRect); |
22 | break; |
23 | case Type::kRRect: |
24 | this->setRRect(shape.fRRect); |
25 | break; |
26 | case Type::kPath: |
27 | this->setPath(shape.fPath); |
28 | break; |
29 | case Type::kArc: |
30 | this->setArc(shape.fArc); |
31 | break; |
32 | case Type::kLine: |
33 | this->setLine(shape.fLine); |
34 | break; |
35 | default: |
36 | SkUNREACHABLE; |
37 | } |
38 | |
39 | fStart = shape.fStart; |
40 | fCW = shape.fCW; |
41 | fInverted = shape.fInverted; |
42 | |
43 | return *this; |
44 | } |
45 | |
46 | uint32_t GrShape::stateKey() const { |
47 | // Use the path's full fill type instead of just whether or not it's inverted. |
48 | uint32_t key = this->isPath() ? static_cast<uint32_t>(fPath.getFillType()) |
49 | : (fInverted ? 1 : 0); |
50 | key |= ((uint32_t) fType) << 2; // fill type was 2 bits |
51 | key |= fStart << 5; // type was 3 bits, total 5 bits so far |
52 | key |= (fCW ? 1 : 0) << 8; // start was 3 bits, total 8 bits so far |
53 | return key; |
54 | } |
55 | |
56 | bool GrShape::simplifyPath(unsigned flags) { |
57 | SkASSERT(this->isPath()); |
58 | |
59 | SkRect rect; |
60 | SkRRect rrect; |
61 | SkPoint pts[2]; |
62 | |
63 | SkPathDirection dir; |
64 | unsigned start; |
65 | |
66 | if (fPath.isEmpty()) { |
67 | this->setType(Type::kEmpty); |
68 | return false; |
69 | } else if (fPath.isLine(pts)) { |
70 | this->simplifyLine(pts[0], pts[1], flags); |
71 | return false; |
72 | } else if (SkPathPriv::IsRRect(fPath, &rrect, &dir, &start)) { |
73 | this->simplifyRRect(rrect, dir, start, flags); |
74 | return true; |
75 | } else if (SkPathPriv::IsOval(fPath, &rect, &dir, &start)) { |
76 | // Convert to rrect indexing since oval is not represented explicitly |
77 | this->simplifyRRect(SkRRect::MakeOval(rect), dir, start * 2, flags); |
78 | return true; |
79 | } else if (SkPathPriv::IsSimpleClosedRect(fPath, &rect, &dir, &start)) { |
80 | // When there is a path effect we restrict rect detection to the narrower API that |
81 | // gives us the starting position. Otherwise, we will retry with the more aggressive |
82 | // isRect(). |
83 | this->simplifyRect(rect, dir, start, flags); |
84 | return true; |
85 | } else if (flags & kIgnoreWinding_Flag) { |
86 | // Attempt isRect() since we don't have to preserve any winding info |
87 | bool closed; |
88 | if (fPath.isRect(&rect, &closed) && (closed || (flags & kSimpleFill_Flag))) { |
89 | this->simplifyRect(rect, kDefaultDir, kDefaultStart, flags); |
90 | return true; |
91 | } |
92 | } |
93 | // No further simplification for a path. For performance reasons, we don't query the path to |
94 | // determine it was closed, as whether or not it was closed when it remains a path type is not |
95 | // important for styling. |
96 | return false; |
97 | } |
98 | |
99 | bool GrShape::simplifyArc(unsigned flags) { |
100 | SkASSERT(this->isArc()); |
101 | |
102 | // Arcs can simplify to rrects, lines, points, or empty; regardless of what it simplifies to |
103 | // it was closed if went through the center point. |
104 | bool wasClosed = fArc.fUseCenter; |
105 | if (fArc.fOval.isEmpty() || !fArc.fSweepAngle) { |
106 | if (flags & kSimpleFill_Flag) { |
107 | // Go straight to empty, since the other degenerate shapes all have 0 area anyway. |
108 | this->setType(Type::kEmpty); |
109 | } else if (!fArc.fSweepAngle) { |
110 | SkPoint center = {fArc.fOval.centerX(), fArc.fOval.centerY()}; |
111 | SkScalar startRad = SkDegreesToRadians(fArc.fStartAngle); |
112 | SkPoint start = {center.fX + 0.5f * fArc.fOval.width() * SkScalarCos(startRad), |
113 | center.fY + 0.5f * fArc.fOval.height() * SkScalarSin(startRad)}; |
114 | // Either just the starting point, or a line from the center to the start |
115 | if (fArc.fUseCenter) { |
116 | this->simplifyLine(center, start, flags); |
117 | } else { |
118 | this->simplifyPoint(start, flags); |
119 | } |
120 | } else { |
121 | // TODO: Theoretically, we could analyze the arc projected into the empty bounds to |
122 | // determine a line, but that is somewhat complex for little value (since the arc |
123 | // can backtrack on itself if the sweep angle is large enough). |
124 | this->setType(Type::kEmpty); |
125 | } |
126 | } else { |
127 | if ((flags & kSimpleFill_Flag) || ((flags & kIgnoreWinding_Flag) && !fArc.fUseCenter)) { |
128 | // Eligible to turn into an oval if it sweeps a full circle |
129 | if (fArc.fSweepAngle <= -360.f || fArc.fSweepAngle >= 360.f) { |
130 | this->simplifyRRect(SkRRect::MakeOval(fArc.fOval), |
131 | kDefaultDir, kDefaultStart, flags); |
132 | return true; |
133 | } |
134 | } |
135 | |
136 | if (flags & kMakeCanonical_Flag) { |
137 | // Map start to 0 to 360, sweep is always positive |
138 | if (fArc.fSweepAngle < 0) { |
139 | fArc.fStartAngle = fArc.fStartAngle + fArc.fSweepAngle; |
140 | fArc.fSweepAngle = -fArc.fSweepAngle; |
141 | } |
142 | |
143 | if (fArc.fStartAngle < 0 || fArc.fStartAngle >= 360.f) { |
144 | fArc.fStartAngle = SkScalarMod(fArc.fStartAngle, 360.f); |
145 | } |
146 | } |
147 | } |
148 | |
149 | return wasClosed; |
150 | } |
151 | |
152 | void GrShape::simplifyRRect(const SkRRect& rrect, SkPathDirection dir, unsigned start, |
153 | unsigned flags) { |
154 | if (rrect.isEmpty() || rrect.isRect()) { |
155 | // Change index from rrect to rect |
156 | start = ((start + 1) / 2) % 4; |
157 | this->simplifyRect(rrect.rect(), dir, start, flags); |
158 | } else if (!this->isRRect()) { |
159 | this->setType(Type::kRRect); |
160 | fRRect = rrect; |
161 | this->setPathWindingParams(dir, start); |
162 | // A round rect is already canonical, so there's nothing more to do |
163 | } else { |
164 | // If starting as a round rect, the provided rrect/winding params should be already set |
165 | SkASSERT(fRRect == rrect && this->dir() == dir && this->startIndex() == start); |
166 | } |
167 | } |
168 | |
169 | void GrShape::simplifyRect(const SkRect& rect, SkPathDirection dir, unsigned start, |
170 | unsigned flags) { |
171 | if (!rect.width() || !rect.height()) { |
172 | if (flags & kSimpleFill_Flag) { |
173 | // A zero area, filled shape so go straight to empty |
174 | this->setType(Type::kEmpty); |
175 | } else if (!rect.width() ^ !rect.height()) { |
176 | // A line, choose the first point that best matches the starting index |
177 | SkPoint p1 = {rect.fLeft, rect.fTop}; |
178 | SkPoint p2 = {rect.fRight, rect.fBottom}; |
179 | if (start >= 2 && !(flags & kIgnoreWinding_Flag)) { |
180 | using std::swap; |
181 | swap(p1, p2); |
182 | } |
183 | this->simplifyLine(p1, p2, flags); |
184 | } else { |
185 | // A point (all edges are equal, so start+dir doesn't affect choice) |
186 | this->simplifyPoint({rect.fLeft, rect.fTop}, flags); |
187 | } |
188 | } else { |
189 | if (!this->isRect()) { |
190 | this->setType(Type::kRect); |
191 | fRect = rect; |
192 | this->setPathWindingParams(dir, start); |
193 | } else { |
194 | // If starting as a rect, the provided rect/winding params should already be set |
195 | SkASSERT(fRect == rect && this->dir() == dir && this->startIndex() == start); |
196 | } |
197 | if (flags & kMakeCanonical_Flag) { |
198 | fRect.sort(); |
199 | } |
200 | } |
201 | } |
202 | |
203 | void GrShape::simplifyLine(const SkPoint& p1, const SkPoint& p2, unsigned flags) { |
204 | if (flags & kSimpleFill_Flag) { |
205 | this->setType(Type::kEmpty); |
206 | } else if (p1 == p2) { |
207 | this->simplifyPoint(p1, false); |
208 | } else { |
209 | if (!this->isLine()) { |
210 | this->setType(Type::kLine); |
211 | fLine.fP1 = p1; |
212 | fLine.fP2 = p2; |
213 | } else { |
214 | // If starting as a line, the provided points should already be set |
215 | SkASSERT(fLine.fP1 == p1 && fLine.fP2 == p2); |
216 | } |
217 | if (flags & kMakeCanonical_Flag) { |
218 | // Sort the end points |
219 | if (fLine.fP2.fY < fLine.fP1.fY || |
220 | (fLine.fP2.fY == fLine.fP1.fY && fLine.fP2.fX < fLine.fP1.fX)) { |
221 | using std::swap; |
222 | swap(fLine.fP1, fLine.fP2); |
223 | } |
224 | } |
225 | } |
226 | } |
227 | |
228 | void GrShape::simplifyPoint(const SkPoint& point, unsigned flags) { |
229 | if (flags & kSimpleFill_Flag) { |
230 | this->setType(Type::kEmpty); |
231 | } else if (!this->isPoint()) { |
232 | this->setType(Type::kPoint); |
233 | fPoint = point; |
234 | } else { |
235 | // If starting as a point, the provided position should already be set |
236 | SkASSERT(point == fPoint); |
237 | } |
238 | } |
239 | |
240 | bool GrShape::simplify(unsigned flags) { |
241 | // Verify that winding parameters are valid for the current type. |
242 | SkASSERT((fType == Type::kRect || fType == Type::kRRect) || |
243 | (this->dir() == kDefaultDir && this->startIndex() == kDefaultStart)); |
244 | |
245 | // The type specific functions automatically fall through to the simpler shapes, so |
246 | // we only need to start in the right place. |
247 | bool wasClosed = false; |
248 | switch(fType) { |
249 | case Type::kEmpty: |
250 | // do nothing |
251 | break; |
252 | case Type::kPoint: |
253 | this->simplifyPoint(fPoint, flags); |
254 | break; |
255 | case Type::kLine: |
256 | this->simplifyLine(fLine.fP1, fLine.fP2, flags); |
257 | break; |
258 | case Type::kRect: |
259 | this->simplifyRect(fRect, this->dir(), this->startIndex(), flags); |
260 | wasClosed = true; |
261 | break; |
262 | case Type::kRRect: |
263 | this->simplifyRRect(fRRect, this->dir(), this->startIndex(), flags); |
264 | wasClosed = true; |
265 | break; |
266 | case Type::kPath: |
267 | wasClosed = this->simplifyPath(flags); |
268 | break; |
269 | case Type::kArc: |
270 | wasClosed = this->simplifyArc(flags); |
271 | break; |
272 | |
273 | default: |
274 | SkUNREACHABLE; |
275 | } |
276 | |
277 | if (((flags & kIgnoreWinding_Flag) || (fType != Type::kRect && fType != Type::kRRect))) { |
278 | // Reset winding parameters if we don't need them anymore |
279 | this->setPathWindingParams(kDefaultDir, kDefaultStart); |
280 | } |
281 | |
282 | return wasClosed; |
283 | } |
284 | |
285 | bool GrShape::contains(const SkRect& rect) const { |
286 | switch(this->type()) { |
287 | case Type::kEmpty: |
288 | case Type::kPoint: // fall through since a point has 0 area |
289 | case Type::kLine: // fall through, "" (currently choosing not to test if 'rect' == line) |
290 | return false; |
291 | case Type::kRect: |
292 | return fRect.contains(rect); |
293 | case Type::kRRect: |
294 | return fRRect.contains(rect); |
295 | case Type::kPath: |
296 | return fPath.conservativelyContainsRect(rect); |
297 | case Type::kArc: |
298 | if (fArc.fUseCenter) { |
299 | SkPath arc; |
300 | this->asPath(&arc); |
301 | return arc.conservativelyContainsRect(rect); |
302 | } else { |
303 | return false; |
304 | } |
305 | default: |
306 | SkUNREACHABLE; |
307 | } |
308 | } |
309 | |
310 | bool GrShape::closed() const { |
311 | switch(this->type()) { |
312 | case Type::kEmpty: // fall through |
313 | case Type::kRect: // fall through |
314 | case Type::kRRect: |
315 | return true; |
316 | case Type::kPath: |
317 | // SkPath doesn't keep track of the closed status of each contour. |
318 | return SkPathPriv::IsClosedSingleContour(fPath); |
319 | case Type::kArc: |
320 | return fArc.fUseCenter; |
321 | case Type::kPoint: // fall through |
322 | case Type::kLine: |
323 | return false; |
324 | default: |
325 | SkUNREACHABLE; |
326 | } |
327 | } |
328 | |
329 | bool GrShape::convex(bool simpleFill) const { |
330 | switch(this->type()) { |
331 | case Type::kEmpty: // fall through |
332 | case Type::kRect: // fall through |
333 | case Type::kRRect: |
334 | return true; |
335 | case Type::kPath: |
336 | // SkPath.isConvex() really means "is this path convex were it to be closed". |
337 | // Convex paths may only have one contour hence isLastContourClosed() is sufficient. |
338 | return (simpleFill || fPath.isLastContourClosed()) && fPath.isConvex(); |
339 | case Type::kArc: |
340 | return SkPathPriv::DrawArcIsConvex(fArc.fSweepAngle, fArc.fUseCenter, simpleFill); |
341 | case Type::kPoint: // fall through |
342 | case Type::kLine: |
343 | return false; |
344 | default: |
345 | SkUNREACHABLE; |
346 | } |
347 | } |
348 | |
349 | SkRect GrShape::bounds() const { |
350 | // Bounds where left == bottom or top == right can indicate a line or point shape. We return |
351 | // inverted bounds for a truly empty shape. |
352 | static constexpr SkRect kInverted = SkRect::MakeLTRB(1, 1, -1, -1); |
353 | switch(this->type()) { |
354 | case Type::kEmpty: |
355 | return kInverted; |
356 | case Type::kPoint: |
357 | return {fPoint.fX, fPoint.fY, fPoint.fX, fPoint.fY}; |
358 | case Type::kRect: |
359 | return fRect.makeSorted(); |
360 | case Type::kRRect: |
361 | return fRRect.getBounds(); |
362 | case Type::kPath: |
363 | return fPath.getBounds(); |
364 | case Type::kArc: |
365 | return fArc.fOval; |
366 | case Type::kLine: { |
367 | SkRect b = SkRect::MakeLTRB(fLine.fP1.fX, fLine.fP1.fY, |
368 | fLine.fP2.fX, fLine.fP2.fY); |
369 | b.sort(); |
370 | return b; } |
371 | default: |
372 | SkUNREACHABLE; |
373 | } |
374 | } |
375 | |
376 | uint32_t GrShape::segmentMask() const { |
377 | // In order to match what a path would report, this has to inspect the shapes slightly |
378 | // to reflect what they might simplify to. |
379 | switch(this->type()) { |
380 | case Type::kEmpty: |
381 | return 0; |
382 | case Type::kRRect: |
383 | if (fRRect.isEmpty() || fRRect.isRect()) { |
384 | return SkPath::kLine_SegmentMask; |
385 | } else if (fRRect.isOval()) { |
386 | return SkPath::kConic_SegmentMask; |
387 | } else { |
388 | return SkPath::kConic_SegmentMask | SkPath::kLine_SegmentMask; |
389 | } |
390 | case Type::kPath: |
391 | return fPath.getSegmentMasks(); |
392 | case Type::kArc: |
393 | if (fArc.fUseCenter) { |
394 | return SkPath::kConic_SegmentMask | SkPath::kLine_SegmentMask; |
395 | } else { |
396 | return SkPath::kConic_SegmentMask; |
397 | } |
398 | case Type::kPoint: // fall through |
399 | case Type::kLine: // "" |
400 | case Type::kRect: |
401 | return SkPath::kLine_SegmentMask; |
402 | default: |
403 | SkUNREACHABLE; |
404 | } |
405 | } |
406 | |
407 | void GrShape::asPath(SkPath* out, bool simpleFill) const { |
408 | if (!this->isPath() && !this->isArc()) { |
409 | // When not a path, we need to set fill type on the path to match invertedness. |
410 | // All the non-path geometries produce equivalent shapes with either even-odd or winding |
411 | // so we can use the default fill type. |
412 | out->reset(); |
413 | out->setFillType(kDefaultFillType); |
414 | if (fInverted) { |
415 | out->toggleInverseFillType(); |
416 | } |
417 | } // Else when we're already a path, that will assign the fill type directly to 'out'. |
418 | |
419 | switch(this->type()) { |
420 | case Type::kEmpty: |
421 | return; |
422 | case Type::kPoint: |
423 | // A plain moveTo() or moveTo+close() does not match the expected path for a |
424 | // point that is being dashed (see SkDashPath's handling of zero-length segments). |
425 | out->moveTo(fPoint); |
426 | out->lineTo(fPoint); |
427 | return; |
428 | case Type::kRect: |
429 | out->addRect(fRect, this->dir(), this->startIndex()); |
430 | return; |
431 | case Type::kRRect: |
432 | out->addRRect(fRRect, this->dir(), this->startIndex()); |
433 | return; |
434 | case Type::kPath: |
435 | *out = fPath; |
436 | return; |
437 | case Type::kArc: |
438 | SkPathPriv::CreateDrawArcPath(out, fArc.fOval, fArc.fStartAngle, fArc.fSweepAngle, |
439 | fArc.fUseCenter, simpleFill); |
440 | // CreateDrawArcPath resets the output path and configures its fill type, so we just |
441 | // have to ensure invertedness is correct. |
442 | if (fInverted) { |
443 | out->toggleInverseFillType(); |
444 | } |
445 | return; |
446 | case Type::kLine: |
447 | out->moveTo(fLine.fP1); |
448 | out->lineTo(fLine.fP2); |
449 | return; |
450 | default: |
451 | SkUNREACHABLE; |
452 | } |
453 | } |
454 | |