1 | /* |
2 | * Copyright 2020 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkCanvas.h" |
9 | #include "include/core/SkImageInfo.h" |
10 | #include "include/core/SkPaint.h" |
11 | #include "include/core/SkRect.h" |
12 | #include "include/core/SkSurface.h" |
13 | |
14 | #include <cmath> |
15 | |
16 | void SkRescaleAndReadPixels(SkBitmap bmp, |
17 | const SkImageInfo& resultInfo, |
18 | const SkIRect& srcRect, |
19 | SkImage::RescaleGamma rescaleGamma, |
20 | SkFilterQuality rescaleQuality, |
21 | SkImage::ReadPixelsCallback callback, |
22 | SkImage::ReadPixelsContext context) { |
23 | int srcW = srcRect.width(); |
24 | int srcH = srcRect.height(); |
25 | |
26 | float sx = (float)resultInfo.width() / srcW; |
27 | float sy = (float)resultInfo.height() / srcH; |
28 | // How many bilerp/bicubic steps to do in X and Y. + means upscaling, - means downscaling. |
29 | int stepsX; |
30 | int stepsY; |
31 | if (rescaleQuality > kNone_SkFilterQuality) { |
32 | stepsX = static_cast<int>((sx > 1.f) ? std::ceil(std::log2f(sx)) |
33 | : std::floor(std::log2f(sx))); |
34 | stepsY = static_cast<int>((sy > 1.f) ? std::ceil(std::log2f(sy)) |
35 | : std::floor(std::log2f(sy))); |
36 | } else { |
37 | stepsX = sx != 1.f; |
38 | stepsY = sy != 1.f; |
39 | } |
40 | |
41 | SkPaint paint; |
42 | paint.setBlendMode(SkBlendMode::kSrc); |
43 | if (stepsX < 0 || stepsY < 0) { |
44 | // Don't trigger MIP generation. We don't currently have a way to trigger bicubic for |
45 | // downscaling draws. |
46 | rescaleQuality = std::min(rescaleQuality, kLow_SkFilterQuality); |
47 | } |
48 | paint.setFilterQuality(rescaleQuality); |
49 | sk_sp<SkSurface> tempSurf; |
50 | sk_sp<SkImage> srcImage; |
51 | int srcX = srcRect.fLeft; |
52 | int srcY = srcRect.fTop; |
53 | SkCanvas::SrcRectConstraint constraint = SkCanvas::kStrict_SrcRectConstraint; |
54 | // Assume we should ignore the rescale linear request if the surface has no color space since |
55 | // it's unclear how we'd linearize from an unknown color space. |
56 | if (rescaleGamma == SkSurface::RescaleGamma::kLinear && bmp.info().colorSpace() && |
57 | !bmp.info().colorSpace()->gammaIsLinear()) { |
58 | auto cs = bmp.info().colorSpace()->makeLinearGamma(); |
59 | // Promote to F16 color type to preserve precision. |
60 | auto ii = SkImageInfo::Make(srcW, srcH, kRGBA_F16_SkColorType, bmp.info().alphaType(), |
61 | std::move(cs)); |
62 | auto linearSurf = SkSurface::MakeRaster(ii); |
63 | if (!linearSurf) { |
64 | callback(context, nullptr); |
65 | return; |
66 | } |
67 | linearSurf->getCanvas()->drawBitmap(bmp, -srcX, -srcY, &paint); |
68 | tempSurf = std::move(linearSurf); |
69 | srcImage = tempSurf->makeImageSnapshot(); |
70 | srcX = 0; |
71 | srcY = 0; |
72 | constraint = SkCanvas::kFast_SrcRectConstraint; |
73 | } else { |
74 | // MakeFromBitmap would trigger a copy if bmp is mutable. |
75 | srcImage = SkImage::MakeFromRaster(bmp.pixmap(), nullptr, nullptr); |
76 | } |
77 | while (stepsX || stepsY) { |
78 | int nextW = resultInfo.width(); |
79 | int nextH = resultInfo.height(); |
80 | if (stepsX < 0) { |
81 | nextW = resultInfo.width() << (-stepsX - 1); |
82 | stepsX++; |
83 | } else if (stepsX != 0) { |
84 | if (stepsX > 1) { |
85 | nextW = srcW * 2; |
86 | } |
87 | --stepsX; |
88 | } |
89 | if (stepsY < 0) { |
90 | nextH = resultInfo.height() << (-stepsY - 1); |
91 | stepsY++; |
92 | } else if (stepsY != 0) { |
93 | if (stepsY > 1) { |
94 | nextH = srcH * 2; |
95 | } |
96 | --stepsY; |
97 | } |
98 | auto ii = srcImage->imageInfo().makeWH(nextW, nextH); |
99 | if (!stepsX && !stepsY) { |
100 | // Might as well fold conversion to final info in the last step. |
101 | ii = resultInfo; |
102 | } |
103 | auto next = SkSurface::MakeRaster(ii); |
104 | if (!next) { |
105 | callback(context, nullptr); |
106 | return; |
107 | } |
108 | next->getCanvas()->drawImageRect( |
109 | std::move(srcImage), SkIRect::MakeXYWH(srcX, srcY, srcW, srcH), |
110 | SkRect::MakeWH((float)nextW, (float)nextH), &paint, constraint); |
111 | tempSurf = std::move(next); |
112 | srcImage = tempSurf->makeImageSnapshot(); |
113 | srcX = srcY = 0; |
114 | srcW = nextW; |
115 | srcH = nextH; |
116 | constraint = SkCanvas::kFast_SrcRectConstraint; |
117 | } |
118 | |
119 | size_t rowBytes = resultInfo.minRowBytes(); |
120 | std::unique_ptr<char[]> data(new char[resultInfo.height() * rowBytes]); |
121 | SkPixmap pm(resultInfo, data.get(), rowBytes); |
122 | if (srcImage->readPixels(pm, srcX, srcY)) { |
123 | class Result : public SkImage::AsyncReadResult { |
124 | public: |
125 | Result(std::unique_ptr<const char[]> data, size_t rowBytes) |
126 | : fData(std::move(data)), fRowBytes(rowBytes) {} |
127 | int count() const override { return 1; } |
128 | const void* data(int i) const override { return fData.get(); } |
129 | size_t rowBytes(int i) const override { return fRowBytes; } |
130 | |
131 | private: |
132 | std::unique_ptr<const char[]> fData; |
133 | size_t fRowBytes; |
134 | }; |
135 | callback(context, std::make_unique<Result>(std::move(data), rowBytes)); |
136 | } else { |
137 | callback(context, nullptr); |
138 | } |
139 | } |
140 | |