1// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "localintermediate.h"
16#include "SymbolTable.h"
17
18//
19// Two purposes:
20// 1. Show an example of how to iterate tree. Functions can
21// also directly call Traverse() on children themselves to
22// have finer grained control over the process than shown here.
23// See the last function for how to get started.
24// 2. Print out a text based description of the tree.
25//
26
27//
28// Use this class to carry along data from node to node in
29// the traversal
30//
31class TOutputTraverser : public TIntermTraverser {
32public:
33 TOutputTraverser(TInfoSinkBase& i) : sink(i) { }
34 TInfoSinkBase& sink;
35
36protected:
37 void visitSymbol(TIntermSymbol*);
38 void visitConstantUnion(TIntermConstantUnion*);
39 bool visitBinary(Visit visit, TIntermBinary*);
40 bool visitUnary(Visit visit, TIntermUnary*);
41 bool visitSelection(Visit visit, TIntermSelection*);
42 bool visitAggregate(Visit visit, TIntermAggregate*);
43 bool visitLoop(Visit visit, TIntermLoop*);
44 bool visitBranch(Visit visit, TIntermBranch*);
45};
46
47TString TType::getCompleteString() const
48{
49 TStringStream stream;
50
51 if (qualifier != EvqTemporary && qualifier != EvqGlobal)
52 stream << getQualifierString() << " " << getPrecisionString() << " ";
53 if (array)
54 stream << "array of ";
55 if (isMatrix())
56 stream << static_cast<int>(primarySize) << "X" << static_cast<int>(secondarySize) << " matrix of ";
57 else if(primarySize > 1)
58 stream << static_cast<int>(primarySize) << "-component vector of ";
59
60 stream << getBasicString();
61 return stream.str();
62}
63
64//
65// Helper functions for printing, not part of traversing.
66//
67
68void OutputTreeText(TInfoSinkBase& sink, TIntermNode* node, const int depth)
69{
70 int i;
71
72 sink.location(node->getLine());
73
74 for (i = 0; i < depth; ++i)
75 sink << " ";
76}
77
78//
79// The rest of the file are the traversal functions. The last one
80// is the one that starts the traversal.
81//
82// Return true from interior nodes to have the external traversal
83// continue on to children. If you process children yourself,
84// return false.
85//
86
87void TOutputTraverser::visitSymbol(TIntermSymbol* node)
88{
89 OutputTreeText(sink, node, mDepth);
90
91 sink << "'" << node->getSymbol() << "' ";
92 sink << "(" << node->getCompleteString() << ")\n";
93}
94
95bool TOutputTraverser::visitBinary(Visit visit, TIntermBinary* node)
96{
97 TInfoSinkBase& out = sink;
98
99 OutputTreeText(out, node, mDepth);
100
101 switch (node->getOp()) {
102 case EOpAssign: out << "move second child to first child"; break;
103 case EOpInitialize: out << "initialize first child with second child"; break;
104 case EOpAddAssign: out << "add second child into first child"; break;
105 case EOpSubAssign: out << "subtract second child into first child"; break;
106 case EOpMulAssign: out << "multiply second child into first child"; break;
107 case EOpVectorTimesMatrixAssign: out << "matrix mult second child into first child"; break;
108 case EOpVectorTimesScalarAssign: out << "vector scale second child into first child"; break;
109 case EOpMatrixTimesScalarAssign: out << "matrix scale second child into first child"; break;
110 case EOpMatrixTimesMatrixAssign: out << "matrix mult second child into first child"; break;
111 case EOpDivAssign: out << "divide second child into first child"; break;
112 case EOpIModAssign: out << "modulo second child into first child"; break;
113 case EOpBitShiftLeftAssign: out << "bit-wise shift first child left by second child"; break;
114 case EOpBitShiftRightAssign: out << "bit-wise shift first child right by second child"; break;
115 case EOpBitwiseAndAssign: out << "bit-wise and second child into first child"; break;
116 case EOpBitwiseXorAssign: out << "bit-wise xor second child into first child"; break;
117 case EOpBitwiseOrAssign: out << "bit-wise or second child into first child"; break;
118 case EOpIndexDirect: out << "direct index"; break;
119 case EOpIndexIndirect: out << "indirect index"; break;
120 case EOpIndexDirectStruct: out << "direct index for structure"; break;
121 case EOpVectorSwizzle: out << "vector swizzle"; break;
122
123 case EOpAdd: out << "add"; break;
124 case EOpSub: out << "subtract"; break;
125 case EOpMul: out << "component-wise multiply"; break;
126 case EOpDiv: out << "divide"; break;
127 case EOpIMod: out << "modulo"; break;
128 case EOpBitShiftLeft: out << "bit-wise shift left"; break;
129 case EOpBitShiftRight: out << "bit-wise shift right"; break;
130 case EOpBitwiseAnd: out << "bit-wise and"; break;
131 case EOpBitwiseXor: out << "bit-wise xor"; break;
132 case EOpBitwiseOr: out << "bit-wise or"; break;
133 case EOpEqual: out << "Compare Equal"; break;
134 case EOpNotEqual: out << "Compare Not Equal"; break;
135 case EOpLessThan: out << "Compare Less Than"; break;
136 case EOpGreaterThan: out << "Compare Greater Than"; break;
137 case EOpLessThanEqual: out << "Compare Less Than or Equal"; break;
138 case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break;
139
140 case EOpVectorTimesScalar: out << "vector-scale"; break;
141 case EOpVectorTimesMatrix: out << "vector-times-matrix"; break;
142 case EOpMatrixTimesVector: out << "matrix-times-vector"; break;
143 case EOpMatrixTimesScalar: out << "matrix-scale"; break;
144 case EOpMatrixTimesMatrix: out << "matrix-multiply"; break;
145
146 case EOpLogicalOr: out << "logical-or"; break;
147 case EOpLogicalXor: out << "logical-xor"; break;
148 case EOpLogicalAnd: out << "logical-and"; break;
149 default: out << "<unknown op>";
150 }
151
152 out << " (" << node->getCompleteString() << ")";
153
154 out << "\n";
155
156 return true;
157}
158
159bool TOutputTraverser::visitUnary(Visit visit, TIntermUnary* node)
160{
161 TInfoSinkBase& out = sink;
162
163 OutputTreeText(out, node, mDepth);
164
165 switch (node->getOp()) {
166 case EOpNegative: out << "Negate value"; break;
167 case EOpVectorLogicalNot:
168 case EOpLogicalNot: out << "Negate conditional"; break;
169 case EOpBitwiseNot: out << "bit-wise not"; break;
170
171 case EOpPostIncrement: out << "Post-Increment"; break;
172 case EOpPostDecrement: out << "Post-Decrement"; break;
173 case EOpPreIncrement: out << "Pre-Increment"; break;
174 case EOpPreDecrement: out << "Pre-Decrement"; break;
175
176 case EOpRadians: out << "radians"; break;
177 case EOpDegrees: out << "degrees"; break;
178 case EOpSin: out << "sine"; break;
179 case EOpCos: out << "cosine"; break;
180 case EOpTan: out << "tangent"; break;
181 case EOpAsin: out << "arc sine"; break;
182 case EOpAcos: out << "arc cosine"; break;
183 case EOpAtan: out << "arc tangent"; break;
184 case EOpSinh: out << "hyperbolic sine"; break;
185 case EOpCosh: out << "hyperbolic cosine"; break;
186 case EOpTanh: out << "hyperbolic tangent"; break;
187 case EOpAsinh: out << "arc hyperbolic sine"; break;
188 case EOpAcosh: out << "arc hyperbolic cosine"; break;
189 case EOpAtanh: out << "arc hyperbolic tangent"; break;
190
191 case EOpExp: out << "exp"; break;
192 case EOpLog: out << "log"; break;
193 case EOpExp2: out << "exp2"; break;
194 case EOpLog2: out << "log2"; break;
195 case EOpSqrt: out << "sqrt"; break;
196 case EOpInverseSqrt: out << "inverse sqrt"; break;
197
198 case EOpAbs: out << "Absolute value"; break;
199 case EOpSign: out << "Sign"; break;
200 case EOpFloor: out << "Floor"; break;
201 case EOpTrunc: out << "Trunc"; break;
202 case EOpRound: out << "Round"; break;
203 case EOpRoundEven: out << "RoundEven"; break;
204 case EOpCeil: out << "Ceiling"; break;
205 case EOpFract: out << "Fraction"; break;
206 case EOpIsNan: out << "Is not a number"; break;
207 case EOpIsInf: out << "Is infinity"; break;
208
209 case EOpFloatBitsToInt: out << "float bits to int"; break;
210 case EOpFloatBitsToUint: out << "float bits to uint"; break;
211 case EOpIntBitsToFloat: out << "int bits to float"; break;
212 case EOpUintBitsToFloat: out << "uint bits to float"; break;
213
214 case EOpPackSnorm2x16: out << "pack Snorm 2x16"; break;
215 case EOpPackUnorm2x16: out << "pack Unorm 2x16"; break;
216 case EOpPackHalf2x16: out << "pack half 2x16"; break;
217
218 case EOpUnpackSnorm2x16: out << "unpack Snorm 2x16"; break;
219 case EOpUnpackUnorm2x16: out << "unpack Unorm 2x16"; break;
220 case EOpUnpackHalf2x16: out << "unpack half 2x16"; break;
221
222 case EOpLength: out << "length"; break;
223 case EOpNormalize: out << "normalize"; break;
224 // case EOpDPdx: out << "dPdx"; break;
225 // case EOpDPdy: out << "dPdy"; break;
226 // case EOpFwidth: out << "fwidth"; break;
227
228 case EOpDeterminant: out << "determinant"; break;
229 case EOpTranspose: out << "transpose"; break;
230 case EOpInverse: out << "inverse"; break;
231
232 case EOpAny: out << "any"; break;
233 case EOpAll: out << "all"; break;
234
235 default: out.message(EPrefixError, "Bad unary op");
236 }
237
238 out << " (" << node->getCompleteString() << ")";
239
240 out << "\n";
241
242 return true;
243}
244
245bool TOutputTraverser::visitAggregate(Visit visit, TIntermAggregate* node)
246{
247 TInfoSinkBase& out = sink;
248
249 if (node->getOp() == EOpNull) {
250 out.message(EPrefixError, "node is still EOpNull!");
251 return true;
252 }
253
254 OutputTreeText(out, node, mDepth);
255
256 switch (node->getOp()) {
257 case EOpSequence: out << "Sequence\n"; return true;
258 case EOpComma: out << "Comma\n"; return true;
259 case EOpFunction: out << "Function Definition: " << node->getName(); break;
260 case EOpFunctionCall: out << "Function Call: " << node->getName(); break;
261 case EOpParameters: out << "Function Parameters: "; break;
262
263 case EOpConstructFloat: out << "Construct float"; break;
264 case EOpConstructVec2: out << "Construct vec2"; break;
265 case EOpConstructVec3: out << "Construct vec3"; break;
266 case EOpConstructVec4: out << "Construct vec4"; break;
267 case EOpConstructBool: out << "Construct bool"; break;
268 case EOpConstructBVec2: out << "Construct bvec2"; break;
269 case EOpConstructBVec3: out << "Construct bvec3"; break;
270 case EOpConstructBVec4: out << "Construct bvec4"; break;
271 case EOpConstructInt: out << "Construct int"; break;
272 case EOpConstructIVec2: out << "Construct ivec2"; break;
273 case EOpConstructIVec3: out << "Construct ivec3"; break;
274 case EOpConstructIVec4: out << "Construct ivec4"; break;
275 case EOpConstructUInt: out << "Construct uint"; break;
276 case EOpConstructUVec2: out << "Construct uvec2"; break;
277 case EOpConstructUVec3: out << "Construct uvec3"; break;
278 case EOpConstructUVec4: out << "Construct uvec4"; break;
279 case EOpConstructMat2: out << "Construct mat2"; break;
280 case EOpConstructMat2x3: out << "Construct mat2x3"; break;
281 case EOpConstructMat2x4: out << "Construct mat2x4"; break;
282 case EOpConstructMat3x2: out << "Construct mat3x2"; break;
283 case EOpConstructMat3: out << "Construct mat3"; break;
284 case EOpConstructMat3x4: out << "Construct mat3x4"; break;
285 case EOpConstructMat4x2: out << "Construct mat4x2"; break;
286 case EOpConstructMat4x3: out << "Construct mat4x3"; break;
287 case EOpConstructMat4: out << "Construct mat4"; break;
288 case EOpConstructStruct: out << "Construct structure"; break;
289
290 case EOpLessThan: out << "Compare Less Than"; break;
291 case EOpGreaterThan: out << "Compare Greater Than"; break;
292 case EOpLessThanEqual: out << "Compare Less Than or Equal"; break;
293 case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break;
294 case EOpVectorEqual: out << "Equal"; break;
295 case EOpVectorNotEqual: out << "NotEqual"; break;
296
297 case EOpMod: out << "mod"; break;
298 case EOpModf: out << "modf"; break;
299 case EOpPow: out << "pow"; break;
300
301 case EOpAtan: out << "arc tangent"; break;
302
303 case EOpMin: out << "min"; break;
304 case EOpMax: out << "max"; break;
305 case EOpClamp: out << "clamp"; break;
306 case EOpMix: out << "mix"; break;
307 case EOpStep: out << "step"; break;
308 case EOpSmoothStep: out << "smoothstep"; break;
309
310 case EOpFloatBitsToInt: out << "floatBitsToInt"; break;
311 case EOpFloatBitsToUint: out << "floatBitsToUint"; break;
312 case EOpIntBitsToFloat: out << "intBitsToFloat"; break;
313 case EOpUintBitsToFloat: out << "uintBitsToFloat"; break;
314
315 case EOpDistance: out << "distance"; break;
316 case EOpDot: out << "dot-product"; break;
317 case EOpCross: out << "cross-product"; break;
318 case EOpFaceForward: out << "face-forward"; break;
319 case EOpReflect: out << "reflect"; break;
320 case EOpRefract: out << "refract"; break;
321 case EOpMul: out << "component-wise multiply"; break;
322 case EOpOuterProduct: out << "outer product"; break;
323
324 case EOpDeclaration: out << "Declaration"; break;
325
326 default: out.message(EPrefixError, "Bad aggregation op");
327 }
328
329 if (node->getOp() != EOpSequence && node->getOp() != EOpParameters)
330 out << " (" << node->getCompleteString() << ")";
331
332 out << "\n";
333
334 return true;
335}
336
337bool TOutputTraverser::visitSelection(Visit visit, TIntermSelection* node)
338{
339 TInfoSinkBase& out = sink;
340
341 OutputTreeText(out, node, mDepth);
342
343 out << "Test condition and select";
344 out << " (" << node->getCompleteString() << ")\n";
345
346 ++mDepth;
347
348 OutputTreeText(sink, node, mDepth);
349 out << "Condition\n";
350 node->getCondition()->traverse(this);
351
352 OutputTreeText(sink, node, mDepth);
353 if (node->getTrueBlock()) {
354 out << "true case\n";
355 node->getTrueBlock()->traverse(this);
356 } else
357 out << "true case is null\n";
358
359 if (node->getFalseBlock()) {
360 OutputTreeText(sink, node, mDepth);
361 out << "false case\n";
362 node->getFalseBlock()->traverse(this);
363 }
364
365 --mDepth;
366
367 return false;
368}
369
370void TOutputTraverser::visitConstantUnion(TIntermConstantUnion* node)
371{
372 TInfoSinkBase& out = sink;
373
374 size_t size = node->getType().getObjectSize();
375
376 for(size_t i = 0; i < size; i++) {
377 OutputTreeText(out, node, mDepth);
378 switch (node->getUnionArrayPointer()[i].getType()) {
379 case EbtBool:
380 if (node->getUnionArrayPointer()[i].getBConst())
381 out << "true";
382 else
383 out << "false";
384
385 out << " (" << "const bool" << ")";
386 out << "\n";
387 break;
388 case EbtFloat:
389 out << node->getUnionArrayPointer()[i].getFConst();
390 out << " (const float)\n";
391 break;
392 case EbtInt:
393 out << node->getUnionArrayPointer()[i].getIConst();
394 out << " (const int)\n";
395 break;
396 case EbtUInt:
397 out << node->getUnionArrayPointer()[i].getUConst();
398 out << " (const uint)\n";
399 break;
400 default:
401 out.message(EPrefixInternalError, "Unknown constant", node->getLine());
402 break;
403 }
404 }
405}
406
407bool TOutputTraverser::visitLoop(Visit visit, TIntermLoop* node)
408{
409 TInfoSinkBase& out = sink;
410
411 OutputTreeText(out, node, mDepth);
412
413 out << "Loop with condition ";
414 if (node->getType() == ELoopDoWhile)
415 out << "not ";
416 out << "tested first\n";
417
418 ++mDepth;
419
420 OutputTreeText(sink, node, mDepth);
421 if (node->getCondition()) {
422 out << "Loop Condition\n";
423 node->getCondition()->traverse(this);
424 } else
425 out << "No loop condition\n";
426
427 OutputTreeText(sink, node, mDepth);
428 if (node->getBody()) {
429 out << "Loop Body\n";
430 node->getBody()->traverse(this);
431 } else
432 out << "No loop body\n";
433
434 if (node->getExpression()) {
435 OutputTreeText(sink, node, mDepth);
436 out << "Loop Terminal Expression\n";
437 node->getExpression()->traverse(this);
438 }
439
440 --mDepth;
441
442 return false;
443}
444
445bool TOutputTraverser::visitBranch(Visit visit, TIntermBranch* node)
446{
447 TInfoSinkBase& out = sink;
448
449 OutputTreeText(out, node, mDepth);
450
451 switch (node->getFlowOp()) {
452 case EOpKill: out << "Branch: Kill"; break;
453 case EOpBreak: out << "Branch: Break"; break;
454 case EOpContinue: out << "Branch: Continue"; break;
455 case EOpReturn: out << "Branch: Return"; break;
456 default: out << "Branch: Unknown Branch"; break;
457 }
458
459 if (node->getExpression()) {
460 out << " with expression\n";
461 ++mDepth;
462 node->getExpression()->traverse(this);
463 --mDepth;
464 } else
465 out << "\n";
466
467 return false;
468}
469
470//
471// This function is the one to call externally to start the traversal.
472// Individual functions can be initialized to 0 to skip processing of that
473// type of node. It's children will still be processed.
474//
475void TIntermediate::outputTree(TIntermNode* root)
476{
477 if (root == 0)
478 return;
479
480 TOutputTraverser it(infoSink.info);
481
482 root->traverse(&it);
483}
484