| 1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef sw_Half_hpp |
| 16 | #define sw_Half_hpp |
| 17 | |
| 18 | #include "Math.hpp" |
| 19 | |
| 20 | #include <algorithm> |
| 21 | #include <cmath> |
| 22 | |
| 23 | namespace sw |
| 24 | { |
| 25 | class half |
| 26 | { |
| 27 | public: |
| 28 | half() = default; |
| 29 | explicit half(float f); |
| 30 | |
| 31 | operator float() const; |
| 32 | |
| 33 | half &operator=(half h); |
| 34 | half &operator=(float f); |
| 35 | |
| 36 | private: |
| 37 | unsigned short fp16i; |
| 38 | }; |
| 39 | |
| 40 | inline half shortAsHalf(short s) |
| 41 | { |
| 42 | union |
| 43 | { |
| 44 | half h; |
| 45 | short s; |
| 46 | } hs; |
| 47 | |
| 48 | hs.s = s; |
| 49 | |
| 50 | return hs.h; |
| 51 | } |
| 52 | |
| 53 | class RGB9E5 |
| 54 | { |
| 55 | unsigned int R : 9; |
| 56 | unsigned int G : 9; |
| 57 | unsigned int B : 9; |
| 58 | unsigned int E : 5; |
| 59 | |
| 60 | public: |
| 61 | RGB9E5(float rgb[3]) : RGB9E5(rgb[0], rgb[1], rgb[2]) |
| 62 | { |
| 63 | } |
| 64 | |
| 65 | RGB9E5(float r, float g, float b) |
| 66 | { |
| 67 | // Vulkan 1.1.117 section 15.2.1 RGB to Shared Exponent Conversion |
| 68 | |
| 69 | // B is the exponent bias (15) |
| 70 | constexpr int g_sharedexp_bias = 15; |
| 71 | |
| 72 | // N is the number of mantissa bits per component (9) |
| 73 | constexpr int g_sharedexp_mantissabits = 9; |
| 74 | |
| 75 | // Emax is the maximum allowed biased exponent value (31) |
| 76 | constexpr int g_sharedexp_maxexponent = 31; |
| 77 | |
| 78 | constexpr float g_sharedexp_max = |
| 79 | ((static_cast<float>(1 << g_sharedexp_mantissabits) - 1) / |
| 80 | static_cast<float>(1 << g_sharedexp_mantissabits)) * |
| 81 | static_cast<float>(1 << (g_sharedexp_maxexponent - g_sharedexp_bias)); |
| 82 | |
| 83 | // Clamp components to valid range. NaN becomes 0. |
| 84 | const float red_c = std::min(!(r > 0) ? 0 : r, g_sharedexp_max); |
| 85 | const float green_c = std::min(!(g > 0) ? 0 : g, g_sharedexp_max); |
| 86 | const float blue_c = std::min(!(b > 0) ? 0 : b, g_sharedexp_max); |
| 87 | |
| 88 | // We're reducing the mantissa to 9 bits, so we must round up if the next |
| 89 | // bit is 1. In other words add 0.5 to the new mantissa's position and |
| 90 | // allow overflow into the exponent so we can scale correctly. |
| 91 | constexpr int half = 1 << (23 - g_sharedexp_mantissabits); |
| 92 | const float red_r = bit_cast<float>(bit_cast<int>(red_c) + half); |
| 93 | const float green_r = bit_cast<float>(bit_cast<int>(green_c) + half); |
| 94 | const float blue_r = bit_cast<float>(bit_cast<int>(blue_c) + half); |
| 95 | |
| 96 | // The largest component determines the shared exponent. It can't be lower |
| 97 | // than 0 (after bias subtraction) so also limit to the mimimum representable. |
| 98 | constexpr float min_s = 0.5f / (1 << g_sharedexp_bias); |
| 99 | float max_s = std::max(std::max(red_r, green_r), std::max(blue_r, min_s)); |
| 100 | |
| 101 | // Obtain the reciprocal of the shared exponent by inverting the bits, |
| 102 | // and scale by the new mantissa's size. Note that the IEEE-754 single-precision |
| 103 | // format has an implicit leading 1, but this shared component format does not. |
| 104 | float scale = bit_cast<float>((bit_cast<int>(max_s) & 0x7F800000) ^ 0x7F800000) * (1 << (g_sharedexp_mantissabits - 2)); |
| 105 | |
| 106 | R = static_cast<unsigned int>(round(red_c * scale)); |
| 107 | G = static_cast<unsigned int>(round(green_c * scale)); |
| 108 | B = static_cast<unsigned int>(round(blue_c * scale)); |
| 109 | E = (bit_cast<unsigned int>(max_s) >> 23) - 127 + 15 + 1; |
| 110 | } |
| 111 | |
| 112 | operator unsigned int() const |
| 113 | { |
| 114 | return *reinterpret_cast<const unsigned int*>(this); |
| 115 | } |
| 116 | |
| 117 | void toRGB16F(half rgb[3]) const |
| 118 | { |
| 119 | constexpr int offset = 24; // Exponent bias (15) + number of mantissa bits per component (9) = 24 |
| 120 | |
| 121 | const float factor = (1u << E) * (1.0f / (1 << offset)); |
| 122 | rgb[0] = half(R * factor); |
| 123 | rgb[1] = half(G * factor); |
| 124 | rgb[2] = half(B * factor); |
| 125 | } |
| 126 | }; |
| 127 | |
| 128 | class R11G11B10F |
| 129 | { |
| 130 | unsigned int R : 11; |
| 131 | unsigned int G : 11; |
| 132 | unsigned int B : 10; |
| 133 | |
| 134 | static inline half float11ToFloat16(unsigned short fp11) |
| 135 | { |
| 136 | return shortAsHalf(fp11 << 4); // Sign bit 0 |
| 137 | } |
| 138 | |
| 139 | static inline half float10ToFloat16(unsigned short fp10) |
| 140 | { |
| 141 | return shortAsHalf(fp10 << 5); // Sign bit 0 |
| 142 | } |
| 143 | |
| 144 | inline unsigned short float32ToFloat11(float fp32) |
| 145 | { |
| 146 | const unsigned int float32MantissaMask = 0x7FFFFF; |
| 147 | const unsigned int float32ExponentMask = 0x7F800000; |
| 148 | const unsigned int float32SignMask = 0x80000000; |
| 149 | const unsigned int float32ValueMask = ~float32SignMask; |
| 150 | const unsigned int float32ExponentFirstBit = 23; |
| 151 | const unsigned int float32ExponentBias = 127; |
| 152 | |
| 153 | const unsigned short float11Max = 0x7BF; |
| 154 | const unsigned short float11MantissaMask = 0x3F; |
| 155 | const unsigned short float11ExponentMask = 0x7C0; |
| 156 | const unsigned short float11BitMask = 0x7FF; |
| 157 | const unsigned int float11ExponentBias = 14; |
| 158 | |
| 159 | const unsigned int float32Maxfloat11 = 0x477E0000; |
| 160 | const unsigned int float32Minfloat11 = 0x38800000; |
| 161 | |
| 162 | const unsigned int float32Bits = *reinterpret_cast<unsigned int*>(&fp32); |
| 163 | const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; |
| 164 | |
| 165 | unsigned int float32Val = float32Bits & float32ValueMask; |
| 166 | |
| 167 | if((float32Val & float32ExponentMask) == float32ExponentMask) |
| 168 | { |
| 169 | // INF or NAN |
| 170 | if((float32Val & float32MantissaMask) != 0) |
| 171 | { |
| 172 | return float11ExponentMask | |
| 173 | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & |
| 174 | float11MantissaMask); |
| 175 | } |
| 176 | else if(float32Sign) |
| 177 | { |
| 178 | // -INF is clamped to 0 since float11 is positive only |
| 179 | return 0; |
| 180 | } |
| 181 | else |
| 182 | { |
| 183 | return float11ExponentMask; |
| 184 | } |
| 185 | } |
| 186 | else if(float32Sign) |
| 187 | { |
| 188 | // float11 is positive only, so clamp to zero |
| 189 | return 0; |
| 190 | } |
| 191 | else if(float32Val > float32Maxfloat11) |
| 192 | { |
| 193 | // The number is too large to be represented as a float11, set to max |
| 194 | return float11Max; |
| 195 | } |
| 196 | else |
| 197 | { |
| 198 | if(float32Val < float32Minfloat11) |
| 199 | { |
| 200 | // The number is too small to be represented as a normalized float11 |
| 201 | // Convert it to a denormalized value. |
| 202 | const unsigned int shift = (float32ExponentBias - float11ExponentBias) - |
| 203 | (float32Val >> float32ExponentFirstBit); |
| 204 | float32Val = |
| 205 | ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | // Rebias the exponent to represent the value as a normalized float11 |
| 210 | float32Val += 0xC8000000; |
| 211 | } |
| 212 | |
| 213 | return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | inline unsigned short float32ToFloat10(float fp32) |
| 218 | { |
| 219 | const unsigned int float32MantissaMask = 0x7FFFFF; |
| 220 | const unsigned int float32ExponentMask = 0x7F800000; |
| 221 | const unsigned int float32SignMask = 0x80000000; |
| 222 | const unsigned int float32ValueMask = ~float32SignMask; |
| 223 | const unsigned int float32ExponentFirstBit = 23; |
| 224 | const unsigned int float32ExponentBias = 127; |
| 225 | |
| 226 | const unsigned short float10Max = 0x3DF; |
| 227 | const unsigned short float10MantissaMask = 0x1F; |
| 228 | const unsigned short float10ExponentMask = 0x3E0; |
| 229 | const unsigned short float10BitMask = 0x3FF; |
| 230 | const unsigned int float10ExponentBias = 14; |
| 231 | |
| 232 | const unsigned int float32Maxfloat10 = 0x477C0000; |
| 233 | const unsigned int float32Minfloat10 = 0x38800000; |
| 234 | |
| 235 | const unsigned int float32Bits = *reinterpret_cast<unsigned int*>(&fp32); |
| 236 | const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; |
| 237 | |
| 238 | unsigned int float32Val = float32Bits & float32ValueMask; |
| 239 | |
| 240 | if((float32Val & float32ExponentMask) == float32ExponentMask) |
| 241 | { |
| 242 | // INF or NAN |
| 243 | if((float32Val & float32MantissaMask) != 0) |
| 244 | { |
| 245 | return float10ExponentMask | |
| 246 | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & |
| 247 | float10MantissaMask); |
| 248 | } |
| 249 | else if(float32Sign) |
| 250 | { |
| 251 | // -INF is clamped to 0 since float11 is positive only |
| 252 | return 0; |
| 253 | } |
| 254 | else |
| 255 | { |
| 256 | return float10ExponentMask; |
| 257 | } |
| 258 | } |
| 259 | else if(float32Sign) |
| 260 | { |
| 261 | // float10 is positive only, so clamp to zero |
| 262 | return 0; |
| 263 | } |
| 264 | else if(float32Val > float32Maxfloat10) |
| 265 | { |
| 266 | // The number is too large to be represented as a float11, set to max |
| 267 | return float10Max; |
| 268 | } |
| 269 | else |
| 270 | { |
| 271 | if(float32Val < float32Minfloat10) |
| 272 | { |
| 273 | // The number is too small to be represented as a normalized float11 |
| 274 | // Convert it to a denormalized value. |
| 275 | const unsigned int shift = (float32ExponentBias - float10ExponentBias) - |
| 276 | (float32Val >> float32ExponentFirstBit); |
| 277 | float32Val = |
| 278 | ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; |
| 279 | } |
| 280 | else |
| 281 | { |
| 282 | // Rebias the exponent to represent the value as a normalized float11 |
| 283 | float32Val += 0xC8000000; |
| 284 | } |
| 285 | |
| 286 | return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | public: |
| 291 | R11G11B10F(float rgb[3]) |
| 292 | { |
| 293 | R = float32ToFloat11(rgb[0]); |
| 294 | G = float32ToFloat11(rgb[1]); |
| 295 | B = float32ToFloat10(rgb[2]); |
| 296 | } |
| 297 | |
| 298 | operator unsigned int() const |
| 299 | { |
| 300 | return *reinterpret_cast<const unsigned int*>(this); |
| 301 | } |
| 302 | |
| 303 | void toRGB16F(half rgb[3]) const |
| 304 | { |
| 305 | rgb[0] = float11ToFloat16(R); |
| 306 | rgb[1] = float11ToFloat16(G); |
| 307 | rgb[2] = float10ToFloat16(B); |
| 308 | } |
| 309 | }; |
| 310 | } |
| 311 | |
| 312 | #endif // sw_Half_hpp |
| 313 | |