| 1 | //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef LLVM_ADT_ARRAYREF_H |
| 11 | #define LLVM_ADT_ARRAYREF_H |
| 12 | |
| 13 | #include "llvm/ADT/Hashing.h" |
| 14 | #include "llvm/ADT/None.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include <array> |
| 18 | #include <vector> |
| 19 | |
| 20 | namespace llvm { |
| 21 | /// ArrayRef - Represent a constant reference to an array (0 or more elements |
| 22 | /// consecutively in memory), i.e. a start pointer and a length. It allows |
| 23 | /// various APIs to take consecutive elements easily and conveniently. |
| 24 | /// |
| 25 | /// This class does not own the underlying data, it is expected to be used in |
| 26 | /// situations where the data resides in some other buffer, whose lifetime |
| 27 | /// extends past that of the ArrayRef. For this reason, it is not in general |
| 28 | /// safe to store an ArrayRef. |
| 29 | /// |
| 30 | /// This is intended to be trivially copyable, so it should be passed by |
| 31 | /// value. |
| 32 | template<typename T> |
| 33 | class LLVM_NODISCARD ArrayRef { |
| 34 | public: |
| 35 | typedef const T *iterator; |
| 36 | typedef const T *const_iterator; |
| 37 | typedef size_t size_type; |
| 38 | |
| 39 | typedef std::reverse_iterator<iterator> reverse_iterator; |
| 40 | |
| 41 | private: |
| 42 | /// The start of the array, in an external buffer. |
| 43 | const T *Data; |
| 44 | |
| 45 | /// The number of elements. |
| 46 | size_type Length; |
| 47 | |
| 48 | public: |
| 49 | /// @name Constructors |
| 50 | /// @{ |
| 51 | |
| 52 | /// Construct an empty ArrayRef. |
| 53 | /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {} |
| 54 | |
| 55 | /// Construct an empty ArrayRef from None. |
| 56 | /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {} |
| 57 | |
| 58 | /// Construct an ArrayRef from a single element. |
| 59 | /*implicit*/ ArrayRef(const T &OneElt) |
| 60 | : Data(&OneElt), Length(1) {} |
| 61 | |
| 62 | /// Construct an ArrayRef from a pointer and length. |
| 63 | /*implicit*/ ArrayRef(const T *data, size_t length) |
| 64 | : Data(data), Length(length) {} |
| 65 | |
| 66 | /// Construct an ArrayRef from a range. |
| 67 | ArrayRef(const T *begin, const T *end) |
| 68 | : Data(begin), Length(end - begin) {} |
| 69 | |
| 70 | /// Construct an ArrayRef from a SmallVector. This is templated in order to |
| 71 | /// avoid instantiating SmallVectorTemplateCommon<T> whenever we |
| 72 | /// copy-construct an ArrayRef. |
| 73 | template<typename U> |
| 74 | /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) |
| 75 | : Data(Vec.data()), Length(Vec.size()) { |
| 76 | } |
| 77 | |
| 78 | /// Construct an ArrayRef from a std::vector. |
| 79 | template<typename A> |
| 80 | /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) |
| 81 | : Data(Vec.data()), Length(Vec.size()) {} |
| 82 | |
| 83 | /// Construct an ArrayRef from a std::array |
| 84 | template <size_t N> |
| 85 | /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) |
| 86 | : Data(Arr.data()), Length(N) {} |
| 87 | |
| 88 | /// Construct an ArrayRef from a C array. |
| 89 | template <size_t N> |
| 90 | /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} |
| 91 | |
| 92 | /// Construct an ArrayRef from a std::initializer_list. |
| 93 | /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) |
| 94 | : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), |
| 95 | Length(Vec.size()) {} |
| 96 | |
| 97 | /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to |
| 98 | /// ensure that only ArrayRefs of pointers can be converted. |
| 99 | template <typename U> |
| 100 | ArrayRef( |
| 101 | const ArrayRef<U *> &A, |
| 102 | typename std::enable_if< |
| 103 | std::is_convertible<U *const *, T const *>::value>::type * = nullptr) |
| 104 | : Data(A.data()), Length(A.size()) {} |
| 105 | |
| 106 | /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is |
| 107 | /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> |
| 108 | /// whenever we copy-construct an ArrayRef. |
| 109 | template<typename U, typename DummyT> |
| 110 | /*implicit*/ ArrayRef( |
| 111 | const SmallVectorTemplateCommon<U *, DummyT> &Vec, |
| 112 | typename std::enable_if< |
| 113 | std::is_convertible<U *const *, T const *>::value>::type * = nullptr) |
| 114 | : Data(Vec.data()), Length(Vec.size()) { |
| 115 | } |
| 116 | |
| 117 | /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE |
| 118 | /// to ensure that only vectors of pointers can be converted. |
| 119 | template<typename U, typename A> |
| 120 | ArrayRef(const std::vector<U *, A> &Vec, |
| 121 | typename std::enable_if< |
| 122 | std::is_convertible<U *const *, T const *>::value>::type* = 0) |
| 123 | : Data(Vec.data()), Length(Vec.size()) {} |
| 124 | |
| 125 | /// @} |
| 126 | /// @name Simple Operations |
| 127 | /// @{ |
| 128 | |
| 129 | iterator begin() const { return Data; } |
| 130 | iterator end() const { return Data + Length; } |
| 131 | |
| 132 | reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| 133 | reverse_iterator rend() const { return reverse_iterator(begin()); } |
| 134 | |
| 135 | /// empty - Check if the array is empty. |
| 136 | bool empty() const { return Length == 0; } |
| 137 | |
| 138 | const T *data() const { return Data; } |
| 139 | |
| 140 | /// size - Get the array size. |
| 141 | size_t size() const { return Length; } |
| 142 | |
| 143 | /// front - Get the first element. |
| 144 | const T &front() const { |
| 145 | assert(!empty()); |
| 146 | return Data[0]; |
| 147 | } |
| 148 | |
| 149 | /// back - Get the last element. |
| 150 | const T &back() const { |
| 151 | assert(!empty()); |
| 152 | return Data[Length-1]; |
| 153 | } |
| 154 | |
| 155 | // copy - Allocate copy in Allocator and return ArrayRef<T> to it. |
| 156 | template <typename Allocator> ArrayRef<T> copy(Allocator &A) { |
| 157 | T *Buff = A.template Allocate<T>(Length); |
| 158 | std::uninitialized_copy(begin(), end(), Buff); |
| 159 | return ArrayRef<T>(Buff, Length); |
| 160 | } |
| 161 | |
| 162 | /// equals - Check for element-wise equality. |
| 163 | bool equals(ArrayRef RHS) const { |
| 164 | if (Length != RHS.Length) |
| 165 | return false; |
| 166 | return std::equal(begin(), end(), RHS.begin()); |
| 167 | } |
| 168 | |
| 169 | /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| 170 | /// elements in the array. |
| 171 | ArrayRef<T> slice(size_t N, size_t M) const { |
| 172 | assert(N+M <= size() && "Invalid specifier" ); |
| 173 | return ArrayRef<T>(data()+N, M); |
| 174 | } |
| 175 | |
| 176 | /// slice(n) - Chop off the first N elements of the array. |
| 177 | ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } |
| 178 | |
| 179 | /// \brief Drop the first \p N elements of the array. |
| 180 | ArrayRef<T> drop_front(size_t N = 1) const { |
| 181 | assert(size() >= N && "Dropping more elements than exist" ); |
| 182 | return slice(N, size() - N); |
| 183 | } |
| 184 | |
| 185 | /// \brief Drop the last \p N elements of the array. |
| 186 | ArrayRef<T> drop_back(size_t N = 1) const { |
| 187 | assert(size() >= N && "Dropping more elements than exist" ); |
| 188 | return slice(0, size() - N); |
| 189 | } |
| 190 | |
| 191 | /// \brief Return a copy of *this with the first N elements satisfying the |
| 192 | /// given predicate removed. |
| 193 | template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { |
| 194 | return ArrayRef<T>(find_if_not(*this, Pred), end()); |
| 195 | } |
| 196 | |
| 197 | /// \brief Return a copy of *this with the first N elements not satisfying |
| 198 | /// the given predicate removed. |
| 199 | template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { |
| 200 | return ArrayRef<T>(find_if(*this, Pred), end()); |
| 201 | } |
| 202 | |
| 203 | /// \brief Return a copy of *this with only the first \p N elements. |
| 204 | ArrayRef<T> take_front(size_t N = 1) const { |
| 205 | if (N >= size()) |
| 206 | return *this; |
| 207 | return drop_back(size() - N); |
| 208 | } |
| 209 | |
| 210 | /// \brief Return a copy of *this with only the last \p N elements. |
| 211 | ArrayRef<T> take_back(size_t N = 1) const { |
| 212 | if (N >= size()) |
| 213 | return *this; |
| 214 | return drop_front(size() - N); |
| 215 | } |
| 216 | |
| 217 | /// \brief Return the first N elements of this Array that satisfy the given |
| 218 | /// predicate. |
| 219 | template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { |
| 220 | return ArrayRef<T>(begin(), find_if_not(*this, Pred)); |
| 221 | } |
| 222 | |
| 223 | /// \brief Return the first N elements of this Array that don't satisfy the |
| 224 | /// given predicate. |
| 225 | template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { |
| 226 | return ArrayRef<T>(begin(), find_if(*this, Pred)); |
| 227 | } |
| 228 | |
| 229 | /// @} |
| 230 | /// @name Operator Overloads |
| 231 | /// @{ |
| 232 | const T &operator[](size_t Index) const { |
| 233 | assert(Index < Length && "Invalid index!" ); |
| 234 | return Data[Index]; |
| 235 | } |
| 236 | |
| 237 | /// Disallow accidental assignment from a temporary. |
| 238 | /// |
| 239 | /// The declaration here is extra complicated so that "arrayRef = {}" |
| 240 | /// continues to select the move assignment operator. |
| 241 | template <typename U> |
| 242 | typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & |
| 243 | operator=(U &&Temporary) = delete; |
| 244 | |
| 245 | /// Disallow accidental assignment from a temporary. |
| 246 | /// |
| 247 | /// The declaration here is extra complicated so that "arrayRef = {}" |
| 248 | /// continues to select the move assignment operator. |
| 249 | template <typename U> |
| 250 | typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & |
| 251 | operator=(std::initializer_list<U>) = delete; |
| 252 | |
| 253 | /// @} |
| 254 | /// @name Expensive Operations |
| 255 | /// @{ |
| 256 | std::vector<T> vec() const { |
| 257 | return std::vector<T>(Data, Data+Length); |
| 258 | } |
| 259 | |
| 260 | /// @} |
| 261 | /// @name Conversion operators |
| 262 | /// @{ |
| 263 | operator std::vector<T>() const { |
| 264 | return std::vector<T>(Data, Data+Length); |
| 265 | } |
| 266 | |
| 267 | /// @} |
| 268 | }; |
| 269 | |
| 270 | /// MutableArrayRef - Represent a mutable reference to an array (0 or more |
| 271 | /// elements consecutively in memory), i.e. a start pointer and a length. It |
| 272 | /// allows various APIs to take and modify consecutive elements easily and |
| 273 | /// conveniently. |
| 274 | /// |
| 275 | /// This class does not own the underlying data, it is expected to be used in |
| 276 | /// situations where the data resides in some other buffer, whose lifetime |
| 277 | /// extends past that of the MutableArrayRef. For this reason, it is not in |
| 278 | /// general safe to store a MutableArrayRef. |
| 279 | /// |
| 280 | /// This is intended to be trivially copyable, so it should be passed by |
| 281 | /// value. |
| 282 | template<typename T> |
| 283 | class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { |
| 284 | public: |
| 285 | typedef T *iterator; |
| 286 | |
| 287 | typedef std::reverse_iterator<iterator> reverse_iterator; |
| 288 | |
| 289 | /// Construct an empty MutableArrayRef. |
| 290 | /*implicit*/ MutableArrayRef() : ArrayRef<T>() {} |
| 291 | |
| 292 | /// Construct an empty MutableArrayRef from None. |
| 293 | /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} |
| 294 | |
| 295 | /// Construct an MutableArrayRef from a single element. |
| 296 | /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} |
| 297 | |
| 298 | /// Construct an MutableArrayRef from a pointer and length. |
| 299 | /*implicit*/ MutableArrayRef(T *data, size_t length) |
| 300 | : ArrayRef<T>(data, length) {} |
| 301 | |
| 302 | /// Construct an MutableArrayRef from a range. |
| 303 | MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} |
| 304 | |
| 305 | /// Construct an MutableArrayRef from a SmallVector. |
| 306 | /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) |
| 307 | : ArrayRef<T>(Vec) {} |
| 308 | |
| 309 | /// Construct a MutableArrayRef from a std::vector. |
| 310 | /*implicit*/ MutableArrayRef(std::vector<T> &Vec) |
| 311 | : ArrayRef<T>(Vec) {} |
| 312 | |
| 313 | /// Construct an ArrayRef from a std::array |
| 314 | template <size_t N> |
| 315 | /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) |
| 316 | : ArrayRef<T>(Arr) {} |
| 317 | |
| 318 | /// Construct an MutableArrayRef from a C array. |
| 319 | template <size_t N> |
| 320 | /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} |
| 321 | |
| 322 | T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } |
| 323 | |
| 324 | iterator begin() const { return data(); } |
| 325 | iterator end() const { return data() + this->size(); } |
| 326 | |
| 327 | reverse_iterator rbegin() const { return reverse_iterator(end()); } |
| 328 | reverse_iterator rend() const { return reverse_iterator(begin()); } |
| 329 | |
| 330 | /// front - Get the first element. |
| 331 | T &front() const { |
| 332 | assert(!this->empty()); |
| 333 | return data()[0]; |
| 334 | } |
| 335 | |
| 336 | /// back - Get the last element. |
| 337 | T &back() const { |
| 338 | assert(!this->empty()); |
| 339 | return data()[this->size()-1]; |
| 340 | } |
| 341 | |
| 342 | /// slice(n, m) - Chop off the first N elements of the array, and keep M |
| 343 | /// elements in the array. |
| 344 | MutableArrayRef<T> slice(size_t N, size_t M) const { |
| 345 | assert(N + M <= this->size() && "Invalid specifier" ); |
| 346 | return MutableArrayRef<T>(this->data() + N, M); |
| 347 | } |
| 348 | |
| 349 | /// slice(n) - Chop off the first N elements of the array. |
| 350 | MutableArrayRef<T> slice(size_t N) const { |
| 351 | return slice(N, this->size() - N); |
| 352 | } |
| 353 | |
| 354 | /// \brief Drop the first \p N elements of the array. |
| 355 | MutableArrayRef<T> drop_front(size_t N = 1) const { |
| 356 | assert(this->size() >= N && "Dropping more elements than exist" ); |
| 357 | return slice(N, this->size() - N); |
| 358 | } |
| 359 | |
| 360 | MutableArrayRef<T> drop_back(size_t N = 1) const { |
| 361 | assert(this->size() >= N && "Dropping more elements than exist" ); |
| 362 | return slice(0, this->size() - N); |
| 363 | } |
| 364 | |
| 365 | /// \brief Return a copy of *this with the first N elements satisfying the |
| 366 | /// given predicate removed. |
| 367 | template <class PredicateT> |
| 368 | MutableArrayRef<T> drop_while(PredicateT Pred) const { |
| 369 | return MutableArrayRef<T>(find_if_not(*this, Pred), end()); |
| 370 | } |
| 371 | |
| 372 | /// \brief Return a copy of *this with the first N elements not satisfying |
| 373 | /// the given predicate removed. |
| 374 | template <class PredicateT> |
| 375 | MutableArrayRef<T> drop_until(PredicateT Pred) const { |
| 376 | return MutableArrayRef<T>(find_if(*this, Pred), end()); |
| 377 | } |
| 378 | |
| 379 | /// \brief Return a copy of *this with only the first \p N elements. |
| 380 | MutableArrayRef<T> take_front(size_t N = 1) const { |
| 381 | if (N >= this->size()) |
| 382 | return *this; |
| 383 | return drop_back(this->size() - N); |
| 384 | } |
| 385 | |
| 386 | /// \brief Return a copy of *this with only the last \p N elements. |
| 387 | MutableArrayRef<T> take_back(size_t N = 1) const { |
| 388 | if (N >= this->size()) |
| 389 | return *this; |
| 390 | return drop_front(this->size() - N); |
| 391 | } |
| 392 | |
| 393 | /// \brief Return the first N elements of this Array that satisfy the given |
| 394 | /// predicate. |
| 395 | template <class PredicateT> |
| 396 | MutableArrayRef<T> take_while(PredicateT Pred) const { |
| 397 | return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); |
| 398 | } |
| 399 | |
| 400 | /// \brief Return the first N elements of this Array that don't satisfy the |
| 401 | /// given predicate. |
| 402 | template <class PredicateT> |
| 403 | MutableArrayRef<T> take_until(PredicateT Pred) const { |
| 404 | return MutableArrayRef<T>(begin(), find_if(*this, Pred)); |
| 405 | } |
| 406 | |
| 407 | /// @} |
| 408 | /// @name Operator Overloads |
| 409 | /// @{ |
| 410 | T &operator[](size_t Index) const { |
| 411 | assert(Index < this->size() && "Invalid index!" ); |
| 412 | return data()[Index]; |
| 413 | } |
| 414 | }; |
| 415 | |
| 416 | /// This is a MutableArrayRef that owns its array. |
| 417 | template <typename T> class OwningArrayRef : public MutableArrayRef<T> { |
| 418 | public: |
| 419 | OwningArrayRef() {} |
| 420 | OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} |
| 421 | OwningArrayRef(ArrayRef<T> Data) |
| 422 | : MutableArrayRef<T>(new T[Data.size()], Data.size()) { |
| 423 | std::copy(Data.begin(), Data.end(), this->begin()); |
| 424 | } |
| 425 | OwningArrayRef(OwningArrayRef &&Other) { *this = Other; } |
| 426 | OwningArrayRef &operator=(OwningArrayRef &&Other) { |
| 427 | delete[] this->data(); |
| 428 | this->MutableArrayRef<T>::operator=(Other); |
| 429 | Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); |
| 430 | return *this; |
| 431 | } |
| 432 | ~OwningArrayRef() { delete[] this->data(); } |
| 433 | }; |
| 434 | |
| 435 | /// @name ArrayRef Convenience constructors |
| 436 | /// @{ |
| 437 | |
| 438 | /// Construct an ArrayRef from a single element. |
| 439 | template<typename T> |
| 440 | ArrayRef<T> makeArrayRef(const T &OneElt) { |
| 441 | return OneElt; |
| 442 | } |
| 443 | |
| 444 | /// Construct an ArrayRef from a pointer and length. |
| 445 | template<typename T> |
| 446 | ArrayRef<T> makeArrayRef(const T *data, size_t length) { |
| 447 | return ArrayRef<T>(data, length); |
| 448 | } |
| 449 | |
| 450 | /// Construct an ArrayRef from a range. |
| 451 | template<typename T> |
| 452 | ArrayRef<T> makeArrayRef(const T *begin, const T *end) { |
| 453 | return ArrayRef<T>(begin, end); |
| 454 | } |
| 455 | |
| 456 | /// Construct an ArrayRef from a SmallVector. |
| 457 | template <typename T> |
| 458 | ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { |
| 459 | return Vec; |
| 460 | } |
| 461 | |
| 462 | /// Construct an ArrayRef from a SmallVector. |
| 463 | template <typename T, unsigned N> |
| 464 | ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { |
| 465 | return Vec; |
| 466 | } |
| 467 | |
| 468 | /// Construct an ArrayRef from a std::vector. |
| 469 | template<typename T> |
| 470 | ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { |
| 471 | return Vec; |
| 472 | } |
| 473 | |
| 474 | /// Construct an ArrayRef from an ArrayRef (no-op) (const) |
| 475 | template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { |
| 476 | return Vec; |
| 477 | } |
| 478 | |
| 479 | /// Construct an ArrayRef from an ArrayRef (no-op) |
| 480 | template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { |
| 481 | return Vec; |
| 482 | } |
| 483 | |
| 484 | /// Construct an ArrayRef from a C array. |
| 485 | template<typename T, size_t N> |
| 486 | ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { |
| 487 | return ArrayRef<T>(Arr); |
| 488 | } |
| 489 | |
| 490 | /// @} |
| 491 | /// @name ArrayRef Comparison Operators |
| 492 | /// @{ |
| 493 | |
| 494 | template<typename T> |
| 495 | inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 496 | return LHS.equals(RHS); |
| 497 | } |
| 498 | |
| 499 | template<typename T> |
| 500 | inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { |
| 501 | return !(LHS == RHS); |
| 502 | } |
| 503 | |
| 504 | /// @} |
| 505 | |
| 506 | // ArrayRefs can be treated like a POD type. |
| 507 | template <typename T> struct isPodLike; |
| 508 | template <typename T> struct isPodLike<ArrayRef<T> > { |
| 509 | static const bool value = true; |
| 510 | }; |
| 511 | |
| 512 | template <typename T> hash_code hash_value(ArrayRef<T> S) { |
| 513 | return hash_combine_range(S.begin(), S.end()); |
| 514 | } |
| 515 | } // end namespace llvm |
| 516 | |
| 517 | #endif // LLVM_ADT_ARRAYREF_H |
| 518 | |