1 | /* adler32_simd.c |
2 | * |
3 | * Copyright 2017 The Chromium Authors. All rights reserved. |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the Chromium source repository LICENSE file. |
6 | * |
7 | * Per http://en.wikipedia.org/wiki/Adler-32 the adler32 A value (aka s1) is |
8 | * the sum of N input data bytes D1 ... DN, |
9 | * |
10 | * A = A0 + D1 + D2 + ... + DN |
11 | * |
12 | * where A0 is the initial value. |
13 | * |
14 | * SSE2 _mm_sad_epu8() can be used for byte sums (see http://bit.ly/2wpUOeD, |
15 | * for example) and accumulating the byte sums can use SSE shuffle-adds (see |
16 | * the "Integer" section of http://bit.ly/2erPT8t for details). Arm NEON has |
17 | * similar instructions. |
18 | * |
19 | * The adler32 B value (aka s2) sums the A values from each step: |
20 | * |
21 | * B0 + (A0 + D1) + (A0 + D1 + D2) + ... + (A0 + D1 + D2 + ... + DN) or |
22 | * |
23 | * B0 + N.A0 + N.D1 + (N-1).D2 + (N-2).D3 + ... + (N-(N-1)).DN |
24 | * |
25 | * B0 being the initial value. For 32 bytes (ideal for garden-variety SIMD): |
26 | * |
27 | * B = B0 + 32.A0 + [D1 D2 D3 ... D32] x [32 31 30 ... 1]. |
28 | * |
29 | * Adjacent blocks of 32 input bytes can be iterated with the expressions to |
30 | * compute the adler32 s1 s2 of M >> 32 input bytes [1]. |
31 | * |
32 | * As M grows, the s1 s2 sums grow. If left unchecked, they would eventually |
33 | * overflow the precision of their integer representation (bad). However, s1 |
34 | * and s2 also need to be computed modulo the adler BASE value (reduced). If |
35 | * at most NMAX bytes are processed before a reduce, s1 s2 _cannot_ overflow |
36 | * a uint32_t type (the NMAX constraint) [2]. |
37 | * |
38 | * [1] the iterative equations for s2 contain constant factors; these can be |
39 | * hoisted from the n-blocks do loop of the SIMD code. |
40 | * |
41 | * [2] zlib adler32_z() uses this fact to implement NMAX-block-based updates |
42 | * of the adler s1 s2 of uint32_t type (see adler32.c). |
43 | */ |
44 | |
45 | #include "adler32_simd.h" |
46 | |
47 | /* Definitions from adler32.c: largest prime smaller than 65536 */ |
48 | #define BASE 65521U |
49 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ |
50 | #define NMAX 5552 |
51 | |
52 | #if defined(ADLER32_SIMD_SSSE3) |
53 | |
54 | #include <tmmintrin.h> |
55 | |
56 | uint32_t ZLIB_INTERNAL adler32_simd_( /* SSSE3 */ |
57 | uint32_t adler, |
58 | const unsigned char *buf, |
59 | z_size_t len) |
60 | { |
61 | /* |
62 | * Split Adler-32 into component sums. |
63 | */ |
64 | uint32_t s1 = adler & 0xffff; |
65 | uint32_t s2 = adler >> 16; |
66 | |
67 | /* |
68 | * Process the data in blocks. |
69 | */ |
70 | const unsigned BLOCK_SIZE = 1 << 5; |
71 | |
72 | z_size_t blocks = len / BLOCK_SIZE; |
73 | len -= blocks * BLOCK_SIZE; |
74 | |
75 | while (blocks) |
76 | { |
77 | unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */ |
78 | if (n > blocks) |
79 | n = (unsigned) blocks; |
80 | blocks -= n; |
81 | |
82 | const __m128i tap1 = |
83 | _mm_setr_epi8(32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17); |
84 | const __m128i tap2 = |
85 | _mm_setr_epi8(16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1); |
86 | const __m128i zero = |
87 | _mm_setr_epi8( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); |
88 | const __m128i ones = |
89 | _mm_set_epi16( 1, 1, 1, 1, 1, 1, 1, 1); |
90 | |
91 | /* |
92 | * Process n blocks of data. At most NMAX data bytes can be |
93 | * processed before s2 must be reduced modulo BASE. |
94 | */ |
95 | __m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n); |
96 | __m128i v_s2 = _mm_set_epi32(0, 0, 0, s2); |
97 | __m128i v_s1 = _mm_set_epi32(0, 0, 0, 0); |
98 | |
99 | do { |
100 | /* |
101 | * Load 32 input bytes. |
102 | */ |
103 | const __m128i bytes1 = _mm_loadu_si128((__m128i*)(buf)); |
104 | const __m128i bytes2 = _mm_loadu_si128((__m128i*)(buf + 16)); |
105 | |
106 | /* |
107 | * Add previous block byte sum to v_ps. |
108 | */ |
109 | v_ps = _mm_add_epi32(v_ps, v_s1); |
110 | |
111 | /* |
112 | * Horizontally add the bytes for s1, multiply-adds the |
113 | * bytes by [ 32, 31, 30, ... ] for s2. |
114 | */ |
115 | v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero)); |
116 | const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1); |
117 | v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones)); |
118 | |
119 | v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero)); |
120 | const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2); |
121 | v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones)); |
122 | |
123 | buf += BLOCK_SIZE; |
124 | |
125 | } while (--n); |
126 | |
127 | v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5)); |
128 | |
129 | /* |
130 | * Sum epi32 ints v_s1(s2) and accumulate in s1(s2). |
131 | */ |
132 | |
133 | #define S23O1 _MM_SHUFFLE(2,3,0,1) /* A B C D -> B A D C */ |
134 | #define S1O32 _MM_SHUFFLE(1,0,3,2) /* A B C D -> C D A B */ |
135 | |
136 | v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1)); |
137 | v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32)); |
138 | |
139 | s1 += _mm_cvtsi128_si32(v_s1); |
140 | |
141 | v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1)); |
142 | v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32)); |
143 | |
144 | s2 = _mm_cvtsi128_si32(v_s2); |
145 | |
146 | #undef S23O1 |
147 | #undef S1O32 |
148 | |
149 | /* |
150 | * Reduce. |
151 | */ |
152 | s1 %= BASE; |
153 | s2 %= BASE; |
154 | } |
155 | |
156 | /* |
157 | * Handle leftover data. |
158 | */ |
159 | if (len) { |
160 | if (len >= 16) { |
161 | s2 += (s1 += *buf++); |
162 | s2 += (s1 += *buf++); |
163 | s2 += (s1 += *buf++); |
164 | s2 += (s1 += *buf++); |
165 | |
166 | s2 += (s1 += *buf++); |
167 | s2 += (s1 += *buf++); |
168 | s2 += (s1 += *buf++); |
169 | s2 += (s1 += *buf++); |
170 | |
171 | s2 += (s1 += *buf++); |
172 | s2 += (s1 += *buf++); |
173 | s2 += (s1 += *buf++); |
174 | s2 += (s1 += *buf++); |
175 | |
176 | s2 += (s1 += *buf++); |
177 | s2 += (s1 += *buf++); |
178 | s2 += (s1 += *buf++); |
179 | s2 += (s1 += *buf++); |
180 | |
181 | len -= 16; |
182 | } |
183 | |
184 | while (len--) { |
185 | s2 += (s1 += *buf++); |
186 | } |
187 | |
188 | if (s1 >= BASE) |
189 | s1 -= BASE; |
190 | s2 %= BASE; |
191 | } |
192 | |
193 | /* |
194 | * Return the recombined sums. |
195 | */ |
196 | return s1 | (s2 << 16); |
197 | } |
198 | |
199 | #elif defined(ADLER32_SIMD_NEON) |
200 | |
201 | #include <arm_neon.h> |
202 | |
203 | uint32_t ZLIB_INTERNAL adler32_simd_( /* NEON */ |
204 | uint32_t adler, |
205 | const unsigned char *buf, |
206 | z_size_t len) |
207 | { |
208 | /* |
209 | * Split Adler-32 into component sums. |
210 | */ |
211 | uint32_t s1 = adler & 0xffff; |
212 | uint32_t s2 = adler >> 16; |
213 | |
214 | /* |
215 | * Serially compute s1 & s2, until the data is 16-byte aligned. |
216 | */ |
217 | if ((uintptr_t)buf & 15) { |
218 | while ((uintptr_t)buf & 15) { |
219 | s2 += (s1 += *buf++); |
220 | --len; |
221 | } |
222 | |
223 | if (s1 >= BASE) |
224 | s1 -= BASE; |
225 | s2 %= BASE; |
226 | } |
227 | |
228 | /* |
229 | * Process the data in blocks. |
230 | */ |
231 | const unsigned BLOCK_SIZE = 1 << 5; |
232 | |
233 | z_size_t blocks = len / BLOCK_SIZE; |
234 | len -= blocks * BLOCK_SIZE; |
235 | |
236 | while (blocks) |
237 | { |
238 | unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */ |
239 | if (n > blocks) |
240 | n = (unsigned) blocks; |
241 | blocks -= n; |
242 | |
243 | /* |
244 | * Process n blocks of data. At most NMAX data bytes can be |
245 | * processed before s2 must be reduced modulo BASE. |
246 | */ |
247 | uint32x4_t v_s2 = (uint32x4_t) { 0, 0, 0, s1 * n }; |
248 | uint32x4_t v_s1 = (uint32x4_t) { 0, 0, 0, 0 }; |
249 | |
250 | uint16x8_t v_column_sum_1 = vdupq_n_u16(0); |
251 | uint16x8_t v_column_sum_2 = vdupq_n_u16(0); |
252 | uint16x8_t v_column_sum_3 = vdupq_n_u16(0); |
253 | uint16x8_t v_column_sum_4 = vdupq_n_u16(0); |
254 | |
255 | do { |
256 | /* |
257 | * Load 32 input bytes. |
258 | */ |
259 | const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(buf)); |
260 | const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(buf + 16)); |
261 | |
262 | /* |
263 | * Add previous block byte sum to v_s2. |
264 | */ |
265 | v_s2 = vaddq_u32(v_s2, v_s1); |
266 | |
267 | /* |
268 | * Horizontally add the bytes for s1. |
269 | */ |
270 | v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2)); |
271 | |
272 | /* |
273 | * Vertically add the bytes for s2. |
274 | */ |
275 | v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8 (bytes1)); |
276 | v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1)); |
277 | v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8 (bytes2)); |
278 | v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2)); |
279 | |
280 | buf += BLOCK_SIZE; |
281 | |
282 | } while (--n); |
283 | |
284 | v_s2 = vshlq_n_u32(v_s2, 5); |
285 | |
286 | /* |
287 | * Multiply-add bytes by [ 32, 31, 30, ... ] for s2. |
288 | */ |
289 | v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_1), |
290 | (uint16x4_t) { 32, 31, 30, 29 }); |
291 | v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1), |
292 | (uint16x4_t) { 28, 27, 26, 25 }); |
293 | v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_2), |
294 | (uint16x4_t) { 24, 23, 22, 21 }); |
295 | v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2), |
296 | (uint16x4_t) { 20, 19, 18, 17 }); |
297 | v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_3), |
298 | (uint16x4_t) { 16, 15, 14, 13 }); |
299 | v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3), |
300 | (uint16x4_t) { 12, 11, 10, 9 }); |
301 | v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_4), |
302 | (uint16x4_t) { 8, 7, 6, 5 }); |
303 | v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4), |
304 | (uint16x4_t) { 4, 3, 2, 1 }); |
305 | |
306 | /* |
307 | * Sum epi32 ints v_s1(s2) and accumulate in s1(s2). |
308 | */ |
309 | uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1)); |
310 | uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2)); |
311 | uint32x2_t s1s2 = vpadd_u32(sum1, sum2); |
312 | |
313 | s1 += vget_lane_u32(s1s2, 0); |
314 | s2 += vget_lane_u32(s1s2, 1); |
315 | |
316 | /* |
317 | * Reduce. |
318 | */ |
319 | s1 %= BASE; |
320 | s2 %= BASE; |
321 | } |
322 | |
323 | /* |
324 | * Handle leftover data. |
325 | */ |
326 | if (len) { |
327 | if (len >= 16) { |
328 | s2 += (s1 += *buf++); |
329 | s2 += (s1 += *buf++); |
330 | s2 += (s1 += *buf++); |
331 | s2 += (s1 += *buf++); |
332 | |
333 | s2 += (s1 += *buf++); |
334 | s2 += (s1 += *buf++); |
335 | s2 += (s1 += *buf++); |
336 | s2 += (s1 += *buf++); |
337 | |
338 | s2 += (s1 += *buf++); |
339 | s2 += (s1 += *buf++); |
340 | s2 += (s1 += *buf++); |
341 | s2 += (s1 += *buf++); |
342 | |
343 | s2 += (s1 += *buf++); |
344 | s2 += (s1 += *buf++); |
345 | s2 += (s1 += *buf++); |
346 | s2 += (s1 += *buf++); |
347 | |
348 | len -= 16; |
349 | } |
350 | |
351 | while (len--) { |
352 | s2 += (s1 += *buf++); |
353 | } |
354 | |
355 | if (s1 >= BASE) |
356 | s1 -= BASE; |
357 | s2 %= BASE; |
358 | } |
359 | |
360 | /* |
361 | * Return the recombined sums. |
362 | */ |
363 | return s1 | (s2 << 16); |
364 | } |
365 | |
366 | #endif /* ADLER32_SIMD_SSSE3 */ |
367 | |