1 | /* deflate.c -- compress data using the deflation algorithm |
2 | * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | */ |
5 | |
6 | /* |
7 | * ALGORITHM |
8 | * |
9 | * The "deflation" process depends on being able to identify portions |
10 | * of the input text which are identical to earlier input (within a |
11 | * sliding window trailing behind the input currently being processed). |
12 | * |
13 | * The most straightforward technique turns out to be the fastest for |
14 | * most input files: try all possible matches and select the longest. |
15 | * The key feature of this algorithm is that insertions into the string |
16 | * dictionary are very simple and thus fast, and deletions are avoided |
17 | * completely. Insertions are performed at each input character, whereas |
18 | * string matches are performed only when the previous match ends. So it |
19 | * is preferable to spend more time in matches to allow very fast string |
20 | * insertions and avoid deletions. The matching algorithm for small |
21 | * strings is inspired from that of Rabin & Karp. A brute force approach |
22 | * is used to find longer strings when a small match has been found. |
23 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 | * (by Leonid Broukhis). |
25 | * A previous version of this file used a more sophisticated algorithm |
26 | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 | * time, but has a larger average cost, uses more memory and is patented. |
28 | * However the F&G algorithm may be faster for some highly redundant |
29 | * files if the parameter max_chain_length (described below) is too large. |
30 | * |
31 | * ACKNOWLEDGEMENTS |
32 | * |
33 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 | * I found it in 'freeze' written by Leonid Broukhis. |
35 | * Thanks to many people for bug reports and testing. |
36 | * |
37 | * REFERENCES |
38 | * |
39 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 | * Available in http://tools.ietf.org/html/rfc1951 |
41 | * |
42 | * A description of the Rabin and Karp algorithm is given in the book |
43 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 | * |
45 | * Fiala,E.R., and Greene,D.H. |
46 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 | * |
48 | */ |
49 | |
50 | /* @(#) $Id$ */ |
51 | #include <assert.h> |
52 | #include "deflate.h" |
53 | #include "cpu_features.h" |
54 | #include "contrib/optimizations/insert_string.h" |
55 | |
56 | #if (defined(__ARM_NEON__) || defined(__ARM_NEON)) |
57 | #include "contrib/optimizations/slide_hash_neon.h" |
58 | #endif |
59 | #if defined(CRC32_ARMV8_CRC32) |
60 | #include "crc32_simd.h" |
61 | #endif |
62 | |
63 | const char deflate_copyright[] = |
64 | " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler " ; |
65 | /* |
66 | If you use the zlib library in a product, an acknowledgment is welcome |
67 | in the documentation of your product. If for some reason you cannot |
68 | include such an acknowledgment, I would appreciate that you keep this |
69 | copyright string in the executable of your product. |
70 | */ |
71 | |
72 | /* =========================================================================== |
73 | * Function prototypes. |
74 | */ |
75 | typedef enum { |
76 | need_more, /* block not completed, need more input or more output */ |
77 | block_done, /* block flush performed */ |
78 | finish_started, /* finish started, need only more output at next deflate */ |
79 | finish_done /* finish done, accept no more input or output */ |
80 | } block_state; |
81 | |
82 | typedef block_state (*compress_func) OF((deflate_state *s, int flush)); |
83 | /* Compression function. Returns the block state after the call. */ |
84 | |
85 | local int deflateStateCheck OF((z_streamp strm)); |
86 | local void slide_hash OF((deflate_state *s)); |
87 | local void fill_window OF((deflate_state *s)); |
88 | local block_state deflate_stored OF((deflate_state *s, int flush)); |
89 | local block_state deflate_fast OF((deflate_state *s, int flush)); |
90 | #ifndef FASTEST |
91 | local block_state deflate_slow OF((deflate_state *s, int flush)); |
92 | #endif |
93 | local block_state deflate_rle OF((deflate_state *s, int flush)); |
94 | local block_state deflate_huff OF((deflate_state *s, int flush)); |
95 | local void lm_init OF((deflate_state *s)); |
96 | local void putShortMSB OF((deflate_state *s, uInt b)); |
97 | local void flush_pending OF((z_streamp strm)); |
98 | unsigned ZLIB_INTERNAL deflate_read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); |
99 | #ifdef ASMV |
100 | # pragma message("Assembler code may have bugs -- use at your own risk") |
101 | void match_init OF((void)); /* asm code initialization */ |
102 | uInt longest_match OF((deflate_state *s, IPos cur_match)); |
103 | #else |
104 | local uInt longest_match OF((deflate_state *s, IPos cur_match)); |
105 | #endif |
106 | |
107 | #ifdef ZLIB_DEBUG |
108 | local void check_match OF((deflate_state *s, IPos start, IPos match, |
109 | int length)); |
110 | #endif |
111 | |
112 | /* From crc32.c */ |
113 | extern void ZLIB_INTERNAL crc_reset(deflate_state *const s); |
114 | extern void ZLIB_INTERNAL crc_finalize(deflate_state *const s); |
115 | extern void ZLIB_INTERNAL copy_with_crc(z_streamp strm, Bytef *dst, long size); |
116 | |
117 | /* =========================================================================== |
118 | * Local data |
119 | */ |
120 | |
121 | #define NIL 0 |
122 | /* Tail of hash chains */ |
123 | |
124 | #ifndef TOO_FAR |
125 | # define TOO_FAR 4096 |
126 | #endif |
127 | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
128 | |
129 | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
130 | * the desired pack level (0..9). The values given below have been tuned to |
131 | * exclude worst case performance for pathological files. Better values may be |
132 | * found for specific files. |
133 | */ |
134 | typedef struct config_s { |
135 | ush good_length; /* reduce lazy search above this match length */ |
136 | ush max_lazy; /* do not perform lazy search above this match length */ |
137 | ush nice_length; /* quit search above this match length */ |
138 | ush max_chain; |
139 | compress_func func; |
140 | } config; |
141 | |
142 | #ifdef FASTEST |
143 | local const config configuration_table[2] = { |
144 | /* good lazy nice chain */ |
145 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
146 | /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ |
147 | #else |
148 | local const config configuration_table[10] = { |
149 | /* good lazy nice chain */ |
150 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
151 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
152 | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
153 | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
154 | |
155 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
156 | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
157 | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
158 | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
159 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
160 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
161 | #endif |
162 | |
163 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
164 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
165 | * meaning. |
166 | */ |
167 | |
168 | /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
169 | #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) |
170 | |
171 | /* =========================================================================== |
172 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
173 | * prev[] will be initialized on the fly. |
174 | */ |
175 | #define CLEAR_HASH(s) \ |
176 | s->head[s->hash_size-1] = NIL; \ |
177 | zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
178 | |
179 | /* =========================================================================== |
180 | * Slide the hash table when sliding the window down (could be avoided with 32 |
181 | * bit values at the expense of memory usage). We slide even when level == 0 to |
182 | * keep the hash table consistent if we switch back to level > 0 later. |
183 | */ |
184 | local void slide_hash(s) |
185 | deflate_state *s; |
186 | { |
187 | #if (defined(__ARM_NEON__) || defined(__ARM_NEON)) |
188 | /* NEON based hash table rebase. */ |
189 | return neon_slide_hash(s->head, s->prev, s->w_size, s->hash_size); |
190 | #endif |
191 | unsigned n, m; |
192 | Posf *p; |
193 | uInt wsize = s->w_size; |
194 | |
195 | n = s->hash_size; |
196 | p = &s->head[n]; |
197 | do { |
198 | m = *--p; |
199 | *p = (Pos)(m >= wsize ? m - wsize : NIL); |
200 | } while (--n); |
201 | n = wsize; |
202 | #ifndef FASTEST |
203 | p = &s->prev[n]; |
204 | do { |
205 | m = *--p; |
206 | *p = (Pos)(m >= wsize ? m - wsize : NIL); |
207 | /* If n is not on any hash chain, prev[n] is garbage but |
208 | * its value will never be used. |
209 | */ |
210 | } while (--n); |
211 | #endif |
212 | } |
213 | |
214 | /* ========================================================================= */ |
215 | int ZEXPORT deflateInit_(strm, level, version, stream_size) |
216 | z_streamp strm; |
217 | int level; |
218 | const char *version; |
219 | int stream_size; |
220 | { |
221 | return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
222 | Z_DEFAULT_STRATEGY, version, stream_size); |
223 | /* To do: ignore strm->next_in if we use it as window */ |
224 | } |
225 | |
226 | /* ========================================================================= */ |
227 | int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, |
228 | version, stream_size) |
229 | z_streamp strm; |
230 | int level; |
231 | int method; |
232 | int windowBits; |
233 | int memLevel; |
234 | int strategy; |
235 | const char *version; |
236 | int stream_size; |
237 | { |
238 | unsigned window_padding = 8; |
239 | deflate_state *s; |
240 | int wrap = 1; |
241 | static const char my_version[] = ZLIB_VERSION; |
242 | |
243 | // Needed to activate optimized insert_string() that helps compression |
244 | // for all wrapper formats (e.g. RAW, ZLIB, GZIP). |
245 | // Feature detection is not triggered while using RAW mode (i.e. we never |
246 | // call crc32() with a NULL buffer). |
247 | #if defined(CRC32_ARMV8_CRC32) || defined(CRC32_SIMD_SSE42_PCLMUL) |
248 | cpu_check_features(); |
249 | #endif |
250 | |
251 | if (version == Z_NULL || version[0] != my_version[0] || |
252 | stream_size != sizeof(z_stream)) { |
253 | return Z_VERSION_ERROR; |
254 | } |
255 | if (strm == Z_NULL) return Z_STREAM_ERROR; |
256 | |
257 | strm->msg = Z_NULL; |
258 | if (strm->zalloc == (alloc_func)0) { |
259 | #ifdef Z_SOLO |
260 | return Z_STREAM_ERROR; |
261 | #else |
262 | strm->zalloc = zcalloc; |
263 | strm->opaque = (voidpf)0; |
264 | #endif |
265 | } |
266 | if (strm->zfree == (free_func)0) |
267 | #ifdef Z_SOLO |
268 | return Z_STREAM_ERROR; |
269 | #else |
270 | strm->zfree = zcfree; |
271 | #endif |
272 | |
273 | #ifdef FASTEST |
274 | if (level != 0) level = 1; |
275 | #else |
276 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
277 | #endif |
278 | |
279 | if (windowBits < 0) { /* suppress zlib wrapper */ |
280 | wrap = 0; |
281 | windowBits = -windowBits; |
282 | } |
283 | #ifdef GZIP |
284 | else if (windowBits > 15) { |
285 | wrap = 2; /* write gzip wrapper instead */ |
286 | windowBits -= 16; |
287 | } |
288 | #endif |
289 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
290 | windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || |
291 | strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { |
292 | return Z_STREAM_ERROR; |
293 | } |
294 | if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ |
295 | s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
296 | if (s == Z_NULL) return Z_MEM_ERROR; |
297 | strm->state = (struct internal_state FAR *)s; |
298 | s->strm = strm; |
299 | s->status = INIT_STATE; /* to pass state test in deflateReset() */ |
300 | |
301 | s->wrap = wrap; |
302 | s->gzhead = Z_NULL; |
303 | s->w_bits = (uInt)windowBits; |
304 | s->w_size = 1 << s->w_bits; |
305 | s->w_mask = s->w_size - 1; |
306 | |
307 | if (x86_cpu_enable_simd) { |
308 | s->hash_bits = 15; |
309 | } else { |
310 | s->hash_bits = memLevel + 7; |
311 | } |
312 | |
313 | s->hash_size = 1 << s->hash_bits; |
314 | s->hash_mask = s->hash_size - 1; |
315 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
316 | |
317 | s->window = (Bytef *) ZALLOC(strm, |
318 | s->w_size + window_padding, |
319 | 2*sizeof(Byte)); |
320 | s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
321 | /* Avoid use of uninitialized value, see: |
322 | * https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11360 |
323 | */ |
324 | zmemzero(s->prev, s->w_size * sizeof(Pos)); |
325 | s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
326 | |
327 | s->high_water = 0; /* nothing written to s->window yet */ |
328 | |
329 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
330 | |
331 | /* We overlay pending_buf and sym_buf. This works since the average size |
332 | * for length/distance pairs over any compressed block is assured to be 31 |
333 | * bits or less. |
334 | * |
335 | * Analysis: The longest fixed codes are a length code of 8 bits plus 5 |
336 | * extra bits, for lengths 131 to 257. The longest fixed distance codes are |
337 | * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest |
338 | * possible fixed-codes length/distance pair is then 31 bits total. |
339 | * |
340 | * sym_buf starts one-fourth of the way into pending_buf. So there are |
341 | * three bytes in sym_buf for every four bytes in pending_buf. Each symbol |
342 | * in sym_buf is three bytes -- two for the distance and one for the |
343 | * literal/length. As each symbol is consumed, the pointer to the next |
344 | * sym_buf value to read moves forward three bytes. From that symbol, up to |
345 | * 31 bits are written to pending_buf. The closest the written pending_buf |
346 | * bits gets to the next sym_buf symbol to read is just before the last |
347 | * code is written. At that time, 31*(n-2) bits have been written, just |
348 | * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at |
349 | * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1 |
350 | * symbols are written.) The closest the writing gets to what is unread is |
351 | * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and |
352 | * can range from 128 to 32768. |
353 | * |
354 | * Therefore, at a minimum, there are 142 bits of space between what is |
355 | * written and what is read in the overlain buffers, so the symbols cannot |
356 | * be overwritten by the compressed data. That space is actually 139 bits, |
357 | * due to the three-bit fixed-code block header. |
358 | * |
359 | * That covers the case where either Z_FIXED is specified, forcing fixed |
360 | * codes, or when the use of fixed codes is chosen, because that choice |
361 | * results in a smaller compressed block than dynamic codes. That latter |
362 | * condition then assures that the above analysis also covers all dynamic |
363 | * blocks. A dynamic-code block will only be chosen to be emitted if it has |
364 | * fewer bits than a fixed-code block would for the same set of symbols. |
365 | * Therefore its average symbol length is assured to be less than 31. So |
366 | * the compressed data for a dynamic block also cannot overwrite the |
367 | * symbols from which it is being constructed. |
368 | */ |
369 | s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4); |
370 | s->pending_buf_size = (ulg)s->lit_bufsize * 4; |
371 | |
372 | if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
373 | s->pending_buf == Z_NULL) { |
374 | s->status = FINISH_STATE; |
375 | strm->msg = ERR_MSG(Z_MEM_ERROR); |
376 | deflateEnd (strm); |
377 | return Z_MEM_ERROR; |
378 | } |
379 | s->sym_buf = s->pending_buf + s->lit_bufsize; |
380 | s->sym_end = (s->lit_bufsize - 1) * 3; |
381 | /* We avoid equality with lit_bufsize*3 because of wraparound at 64K |
382 | * on 16 bit machines and because stored blocks are restricted to |
383 | * 64K-1 bytes. |
384 | */ |
385 | |
386 | s->level = level; |
387 | s->strategy = strategy; |
388 | s->method = (Byte)method; |
389 | |
390 | return deflateReset(strm); |
391 | } |
392 | |
393 | /* ========================================================================= |
394 | * Check for a valid deflate stream state. Return 0 if ok, 1 if not. |
395 | */ |
396 | local int deflateStateCheck (strm) |
397 | z_streamp strm; |
398 | { |
399 | deflate_state *s; |
400 | if (strm == Z_NULL || |
401 | strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) |
402 | return 1; |
403 | s = strm->state; |
404 | if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && |
405 | #ifdef GZIP |
406 | s->status != GZIP_STATE && |
407 | #endif |
408 | s->status != EXTRA_STATE && |
409 | s->status != NAME_STATE && |
410 | s->status != COMMENT_STATE && |
411 | s->status != HCRC_STATE && |
412 | s->status != BUSY_STATE && |
413 | s->status != FINISH_STATE)) |
414 | return 1; |
415 | return 0; |
416 | } |
417 | |
418 | /* ========================================================================= */ |
419 | int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) |
420 | z_streamp strm; |
421 | const Bytef *dictionary; |
422 | uInt dictLength; |
423 | { |
424 | deflate_state *s; |
425 | uInt str, n; |
426 | int wrap; |
427 | unsigned avail; |
428 | z_const unsigned char *next; |
429 | |
430 | if (deflateStateCheck(strm) || dictionary == Z_NULL) |
431 | return Z_STREAM_ERROR; |
432 | s = strm->state; |
433 | wrap = s->wrap; |
434 | if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
435 | return Z_STREAM_ERROR; |
436 | |
437 | /* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
438 | if (wrap == 1) |
439 | strm->adler = adler32(strm->adler, dictionary, dictLength); |
440 | s->wrap = 0; /* avoid computing Adler-32 in deflate_read_buf */ |
441 | |
442 | /* if dictionary would fill window, just replace the history */ |
443 | if (dictLength >= s->w_size) { |
444 | if (wrap == 0) { /* already empty otherwise */ |
445 | CLEAR_HASH(s); |
446 | s->strstart = 0; |
447 | s->block_start = 0L; |
448 | s->insert = 0; |
449 | } |
450 | dictionary += dictLength - s->w_size; /* use the tail */ |
451 | dictLength = s->w_size; |
452 | } |
453 | |
454 | /* insert dictionary into window and hash */ |
455 | avail = strm->avail_in; |
456 | next = strm->next_in; |
457 | strm->avail_in = dictLength; |
458 | strm->next_in = (z_const Bytef *)dictionary; |
459 | fill_window(s); |
460 | while (s->lookahead >= MIN_MATCH) { |
461 | str = s->strstart; |
462 | n = s->lookahead - (MIN_MATCH-1); |
463 | do { |
464 | insert_string(s, str); |
465 | str++; |
466 | } while (--n); |
467 | s->strstart = str; |
468 | s->lookahead = MIN_MATCH-1; |
469 | fill_window(s); |
470 | } |
471 | s->strstart += s->lookahead; |
472 | s->block_start = (long)s->strstart; |
473 | s->insert = s->lookahead; |
474 | s->lookahead = 0; |
475 | s->match_length = s->prev_length = MIN_MATCH-1; |
476 | s->match_available = 0; |
477 | strm->next_in = next; |
478 | strm->avail_in = avail; |
479 | s->wrap = wrap; |
480 | return Z_OK; |
481 | } |
482 | |
483 | /* ========================================================================= */ |
484 | int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength) |
485 | z_streamp strm; |
486 | Bytef *dictionary; |
487 | uInt *dictLength; |
488 | { |
489 | deflate_state *s; |
490 | uInt len; |
491 | |
492 | if (deflateStateCheck(strm)) |
493 | return Z_STREAM_ERROR; |
494 | s = strm->state; |
495 | len = s->strstart + s->lookahead; |
496 | if (len > s->w_size) |
497 | len = s->w_size; |
498 | if (dictionary != Z_NULL && len) |
499 | zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); |
500 | if (dictLength != Z_NULL) |
501 | *dictLength = len; |
502 | return Z_OK; |
503 | } |
504 | |
505 | /* ========================================================================= */ |
506 | int ZEXPORT deflateResetKeep (strm) |
507 | z_streamp strm; |
508 | { |
509 | deflate_state *s; |
510 | |
511 | if (deflateStateCheck(strm)) { |
512 | return Z_STREAM_ERROR; |
513 | } |
514 | |
515 | strm->total_in = strm->total_out = 0; |
516 | strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
517 | strm->data_type = Z_UNKNOWN; |
518 | |
519 | s = (deflate_state *)strm->state; |
520 | s->pending = 0; |
521 | s->pending_out = s->pending_buf; |
522 | |
523 | if (s->wrap < 0) { |
524 | s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
525 | } |
526 | s->status = |
527 | #ifdef GZIP |
528 | s->wrap == 2 ? GZIP_STATE : |
529 | #endif |
530 | s->wrap ? INIT_STATE : BUSY_STATE; |
531 | strm->adler = |
532 | #ifdef GZIP |
533 | s->wrap == 2 ? crc32(0L, Z_NULL, 0) : |
534 | #endif |
535 | adler32(0L, Z_NULL, 0); |
536 | s->last_flush = Z_NO_FLUSH; |
537 | |
538 | _tr_init(s); |
539 | |
540 | return Z_OK; |
541 | } |
542 | |
543 | /* ========================================================================= */ |
544 | int ZEXPORT deflateReset (strm) |
545 | z_streamp strm; |
546 | { |
547 | int ret; |
548 | |
549 | ret = deflateResetKeep(strm); |
550 | if (ret == Z_OK) |
551 | lm_init(strm->state); |
552 | return ret; |
553 | } |
554 | |
555 | /* ========================================================================= */ |
556 | int ZEXPORT deflateSetHeader (strm, head) |
557 | z_streamp strm; |
558 | gz_headerp head; |
559 | { |
560 | if (deflateStateCheck(strm) || strm->state->wrap != 2) |
561 | return Z_STREAM_ERROR; |
562 | strm->state->gzhead = head; |
563 | return Z_OK; |
564 | } |
565 | |
566 | /* ========================================================================= */ |
567 | int ZEXPORT deflatePending (strm, pending, bits) |
568 | unsigned *pending; |
569 | int *bits; |
570 | z_streamp strm; |
571 | { |
572 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
573 | if (pending != Z_NULL) |
574 | *pending = strm->state->pending; |
575 | if (bits != Z_NULL) |
576 | *bits = strm->state->bi_valid; |
577 | return Z_OK; |
578 | } |
579 | |
580 | /* ========================================================================= */ |
581 | int ZEXPORT deflatePrime (strm, bits, value) |
582 | z_streamp strm; |
583 | int bits; |
584 | int value; |
585 | { |
586 | deflate_state *s; |
587 | int put; |
588 | |
589 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
590 | s = strm->state; |
591 | if (s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) |
592 | return Z_BUF_ERROR; |
593 | do { |
594 | put = Buf_size - s->bi_valid; |
595 | if (put > bits) |
596 | put = bits; |
597 | s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); |
598 | s->bi_valid += put; |
599 | _tr_flush_bits(s); |
600 | value >>= put; |
601 | bits -= put; |
602 | } while (bits); |
603 | return Z_OK; |
604 | } |
605 | |
606 | /* ========================================================================= */ |
607 | int ZEXPORT deflateParams(strm, level, strategy) |
608 | z_streamp strm; |
609 | int level; |
610 | int strategy; |
611 | { |
612 | deflate_state *s; |
613 | compress_func func; |
614 | |
615 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
616 | s = strm->state; |
617 | |
618 | #ifdef FASTEST |
619 | if (level != 0) level = 1; |
620 | #else |
621 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
622 | #endif |
623 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { |
624 | return Z_STREAM_ERROR; |
625 | } |
626 | func = configuration_table[s->level].func; |
627 | |
628 | if ((strategy != s->strategy || func != configuration_table[level].func) && |
629 | s->high_water) { |
630 | /* Flush the last buffer: */ |
631 | int err = deflate(strm, Z_BLOCK); |
632 | if (err == Z_STREAM_ERROR) |
633 | return err; |
634 | if (strm->avail_out == 0) |
635 | return Z_BUF_ERROR; |
636 | } |
637 | if (s->level != level) { |
638 | if (s->level == 0 && s->matches != 0) { |
639 | if (s->matches == 1) |
640 | slide_hash(s); |
641 | else |
642 | CLEAR_HASH(s); |
643 | s->matches = 0; |
644 | } |
645 | s->level = level; |
646 | s->max_lazy_match = configuration_table[level].max_lazy; |
647 | s->good_match = configuration_table[level].good_length; |
648 | s->nice_match = configuration_table[level].nice_length; |
649 | s->max_chain_length = configuration_table[level].max_chain; |
650 | } |
651 | s->strategy = strategy; |
652 | return Z_OK; |
653 | } |
654 | |
655 | /* ========================================================================= */ |
656 | int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) |
657 | z_streamp strm; |
658 | int good_length; |
659 | int max_lazy; |
660 | int nice_length; |
661 | int max_chain; |
662 | { |
663 | deflate_state *s; |
664 | |
665 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
666 | s = strm->state; |
667 | s->good_match = (uInt)good_length; |
668 | s->max_lazy_match = (uInt)max_lazy; |
669 | s->nice_match = nice_length; |
670 | s->max_chain_length = (uInt)max_chain; |
671 | return Z_OK; |
672 | } |
673 | |
674 | /* ========================================================================= |
675 | * For the default windowBits of 15 and memLevel of 8, this function returns |
676 | * a close to exact, as well as small, upper bound on the compressed size. |
677 | * They are coded as constants here for a reason--if the #define's are |
678 | * changed, then this function needs to be changed as well. The return |
679 | * value for 15 and 8 only works for those exact settings. |
680 | * |
681 | * For any setting other than those defaults for windowBits and memLevel, |
682 | * the value returned is a conservative worst case for the maximum expansion |
683 | * resulting from using fixed blocks instead of stored blocks, which deflate |
684 | * can emit on compressed data for some combinations of the parameters. |
685 | * |
686 | * This function could be more sophisticated to provide closer upper bounds for |
687 | * every combination of windowBits and memLevel. But even the conservative |
688 | * upper bound of about 14% expansion does not seem onerous for output buffer |
689 | * allocation. |
690 | */ |
691 | uLong ZEXPORT deflateBound(strm, sourceLen) |
692 | z_streamp strm; |
693 | uLong sourceLen; |
694 | { |
695 | deflate_state *s; |
696 | uLong complen, wraplen; |
697 | |
698 | /* conservative upper bound for compressed data */ |
699 | complen = sourceLen + |
700 | ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; |
701 | |
702 | /* if can't get parameters, return conservative bound plus zlib wrapper */ |
703 | if (deflateStateCheck(strm)) |
704 | return complen + 6; |
705 | |
706 | /* compute wrapper length */ |
707 | s = strm->state; |
708 | switch (s->wrap) { |
709 | case 0: /* raw deflate */ |
710 | wraplen = 0; |
711 | break; |
712 | case 1: /* zlib wrapper */ |
713 | wraplen = 6 + (s->strstart ? 4 : 0); |
714 | break; |
715 | #ifdef GZIP |
716 | case 2: /* gzip wrapper */ |
717 | wraplen = 18; |
718 | if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ |
719 | Bytef *str; |
720 | if (s->gzhead->extra != Z_NULL) |
721 | wraplen += 2 + s->gzhead->extra_len; |
722 | str = s->gzhead->name; |
723 | if (str != Z_NULL) |
724 | do { |
725 | wraplen++; |
726 | } while (*str++); |
727 | str = s->gzhead->comment; |
728 | if (str != Z_NULL) |
729 | do { |
730 | wraplen++; |
731 | } while (*str++); |
732 | if (s->gzhead->hcrc) |
733 | wraplen += 2; |
734 | } |
735 | break; |
736 | #endif |
737 | default: /* for compiler happiness */ |
738 | wraplen = 6; |
739 | } |
740 | |
741 | /* if not default parameters, return conservative bound */ |
742 | if (s->w_bits != 15 || s->hash_bits != 8 + 7) |
743 | return complen + wraplen; |
744 | |
745 | /* default settings: return tight bound for that case */ |
746 | return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + |
747 | (sourceLen >> 25) + 13 - 6 + wraplen; |
748 | } |
749 | |
750 | /* ========================================================================= |
751 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
752 | * IN assertion: the stream state is correct and there is enough room in |
753 | * pending_buf. |
754 | */ |
755 | local void putShortMSB (s, b) |
756 | deflate_state *s; |
757 | uInt b; |
758 | { |
759 | put_byte(s, (Byte)(b >> 8)); |
760 | put_byte(s, (Byte)(b & 0xff)); |
761 | } |
762 | |
763 | /* ========================================================================= |
764 | * Flush as much pending output as possible. All deflate() output, except for |
765 | * some deflate_stored() output, goes through this function so some |
766 | * applications may wish to modify it to avoid allocating a large |
767 | * strm->next_out buffer and copying into it. (See also deflate_read_buf()). |
768 | */ |
769 | local void flush_pending(strm) |
770 | z_streamp strm; |
771 | { |
772 | unsigned len; |
773 | deflate_state *s = strm->state; |
774 | |
775 | _tr_flush_bits(s); |
776 | len = s->pending; |
777 | if (len > strm->avail_out) len = strm->avail_out; |
778 | if (len == 0) return; |
779 | |
780 | zmemcpy(strm->next_out, s->pending_out, len); |
781 | strm->next_out += len; |
782 | s->pending_out += len; |
783 | strm->total_out += len; |
784 | strm->avail_out -= len; |
785 | s->pending -= len; |
786 | if (s->pending == 0) { |
787 | s->pending_out = s->pending_buf; |
788 | } |
789 | } |
790 | |
791 | /* =========================================================================== |
792 | * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. |
793 | */ |
794 | #define HCRC_UPDATE(beg) \ |
795 | do { \ |
796 | if (s->gzhead->hcrc && s->pending > (beg)) \ |
797 | strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ |
798 | s->pending - (beg)); \ |
799 | } while (0) |
800 | |
801 | /* ========================================================================= */ |
802 | int ZEXPORT deflate (strm, flush) |
803 | z_streamp strm; |
804 | int flush; |
805 | { |
806 | int old_flush; /* value of flush param for previous deflate call */ |
807 | deflate_state *s; |
808 | |
809 | if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { |
810 | return Z_STREAM_ERROR; |
811 | } |
812 | s = strm->state; |
813 | |
814 | if (strm->next_out == Z_NULL || |
815 | (strm->avail_in != 0 && strm->next_in == Z_NULL) || |
816 | (s->status == FINISH_STATE && flush != Z_FINISH)) { |
817 | ERR_RETURN(strm, Z_STREAM_ERROR); |
818 | } |
819 | if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
820 | |
821 | old_flush = s->last_flush; |
822 | s->last_flush = flush; |
823 | |
824 | /* Flush as much pending output as possible */ |
825 | if (s->pending != 0) { |
826 | flush_pending(strm); |
827 | if (strm->avail_out == 0) { |
828 | /* Since avail_out is 0, deflate will be called again with |
829 | * more output space, but possibly with both pending and |
830 | * avail_in equal to zero. There won't be anything to do, |
831 | * but this is not an error situation so make sure we |
832 | * return OK instead of BUF_ERROR at next call of deflate: |
833 | */ |
834 | s->last_flush = -1; |
835 | return Z_OK; |
836 | } |
837 | |
838 | /* Make sure there is something to do and avoid duplicate consecutive |
839 | * flushes. For repeated and useless calls with Z_FINISH, we keep |
840 | * returning Z_STREAM_END instead of Z_BUF_ERROR. |
841 | */ |
842 | } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && |
843 | flush != Z_FINISH) { |
844 | ERR_RETURN(strm, Z_BUF_ERROR); |
845 | } |
846 | |
847 | /* User must not provide more input after the first FINISH: */ |
848 | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
849 | ERR_RETURN(strm, Z_BUF_ERROR); |
850 | } |
851 | |
852 | /* Write the header */ |
853 | if (s->status == INIT_STATE) { |
854 | /* zlib header */ |
855 | uInt = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
856 | uInt level_flags; |
857 | |
858 | if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
859 | level_flags = 0; |
860 | else if (s->level < 6) |
861 | level_flags = 1; |
862 | else if (s->level == 6) |
863 | level_flags = 2; |
864 | else |
865 | level_flags = 3; |
866 | header |= (level_flags << 6); |
867 | if (s->strstart != 0) header |= PRESET_DICT; |
868 | header += 31 - (header % 31); |
869 | |
870 | putShortMSB(s, header); |
871 | |
872 | /* Save the adler32 of the preset dictionary: */ |
873 | if (s->strstart != 0) { |
874 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
875 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
876 | } |
877 | strm->adler = adler32(0L, Z_NULL, 0); |
878 | s->status = BUSY_STATE; |
879 | |
880 | /* Compression must start with an empty pending buffer */ |
881 | flush_pending(strm); |
882 | if (s->pending != 0) { |
883 | s->last_flush = -1; |
884 | return Z_OK; |
885 | } |
886 | } |
887 | #ifdef GZIP |
888 | if (s->status == GZIP_STATE) { |
889 | /* gzip header */ |
890 | crc_reset(s); |
891 | put_byte(s, 31); |
892 | put_byte(s, 139); |
893 | put_byte(s, 8); |
894 | if (s->gzhead == Z_NULL) { |
895 | put_byte(s, 0); |
896 | put_byte(s, 0); |
897 | put_byte(s, 0); |
898 | put_byte(s, 0); |
899 | put_byte(s, 0); |
900 | put_byte(s, s->level == 9 ? 2 : |
901 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
902 | 4 : 0)); |
903 | put_byte(s, OS_CODE); |
904 | s->status = BUSY_STATE; |
905 | |
906 | /* Compression must start with an empty pending buffer */ |
907 | flush_pending(strm); |
908 | if (s->pending != 0) { |
909 | s->last_flush = -1; |
910 | return Z_OK; |
911 | } |
912 | } |
913 | else { |
914 | put_byte(s, (s->gzhead->text ? 1 : 0) + |
915 | (s->gzhead->hcrc ? 2 : 0) + |
916 | (s->gzhead->extra == Z_NULL ? 0 : 4) + |
917 | (s->gzhead->name == Z_NULL ? 0 : 8) + |
918 | (s->gzhead->comment == Z_NULL ? 0 : 16) |
919 | ); |
920 | put_byte(s, (Byte)(s->gzhead->time & 0xff)); |
921 | put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); |
922 | put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); |
923 | put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); |
924 | put_byte(s, s->level == 9 ? 2 : |
925 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
926 | 4 : 0)); |
927 | put_byte(s, s->gzhead->os & 0xff); |
928 | if (s->gzhead->extra != Z_NULL) { |
929 | put_byte(s, s->gzhead->extra_len & 0xff); |
930 | put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); |
931 | } |
932 | if (s->gzhead->hcrc) |
933 | strm->adler = crc32(strm->adler, s->pending_buf, |
934 | s->pending); |
935 | s->gzindex = 0; |
936 | s->status = EXTRA_STATE; |
937 | } |
938 | } |
939 | if (s->status == EXTRA_STATE) { |
940 | if (s->gzhead->extra != Z_NULL) { |
941 | ulg beg = s->pending; /* start of bytes to update crc */ |
942 | uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; |
943 | while (s->pending + left > s->pending_buf_size) { |
944 | uInt copy = s->pending_buf_size - s->pending; |
945 | zmemcpy(s->pending_buf + s->pending, |
946 | s->gzhead->extra + s->gzindex, copy); |
947 | s->pending = s->pending_buf_size; |
948 | HCRC_UPDATE(beg); |
949 | s->gzindex += copy; |
950 | flush_pending(strm); |
951 | if (s->pending != 0) { |
952 | s->last_flush = -1; |
953 | return Z_OK; |
954 | } |
955 | beg = 0; |
956 | left -= copy; |
957 | } |
958 | zmemcpy(s->pending_buf + s->pending, |
959 | s->gzhead->extra + s->gzindex, left); |
960 | s->pending += left; |
961 | HCRC_UPDATE(beg); |
962 | s->gzindex = 0; |
963 | } |
964 | s->status = NAME_STATE; |
965 | } |
966 | if (s->status == NAME_STATE) { |
967 | if (s->gzhead->name != Z_NULL) { |
968 | ulg beg = s->pending; /* start of bytes to update crc */ |
969 | int val; |
970 | do { |
971 | if (s->pending == s->pending_buf_size) { |
972 | HCRC_UPDATE(beg); |
973 | flush_pending(strm); |
974 | if (s->pending != 0) { |
975 | s->last_flush = -1; |
976 | return Z_OK; |
977 | } |
978 | beg = 0; |
979 | } |
980 | val = s->gzhead->name[s->gzindex++]; |
981 | put_byte(s, val); |
982 | } while (val != 0); |
983 | HCRC_UPDATE(beg); |
984 | s->gzindex = 0; |
985 | } |
986 | s->status = COMMENT_STATE; |
987 | } |
988 | if (s->status == COMMENT_STATE) { |
989 | if (s->gzhead->comment != Z_NULL) { |
990 | ulg beg = s->pending; /* start of bytes to update crc */ |
991 | int val; |
992 | do { |
993 | if (s->pending == s->pending_buf_size) { |
994 | HCRC_UPDATE(beg); |
995 | flush_pending(strm); |
996 | if (s->pending != 0) { |
997 | s->last_flush = -1; |
998 | return Z_OK; |
999 | } |
1000 | beg = 0; |
1001 | } |
1002 | val = s->gzhead->comment[s->gzindex++]; |
1003 | put_byte(s, val); |
1004 | } while (val != 0); |
1005 | HCRC_UPDATE(beg); |
1006 | } |
1007 | s->status = HCRC_STATE; |
1008 | } |
1009 | if (s->status == HCRC_STATE) { |
1010 | if (s->gzhead->hcrc) { |
1011 | if (s->pending + 2 > s->pending_buf_size) { |
1012 | flush_pending(strm); |
1013 | if (s->pending != 0) { |
1014 | s->last_flush = -1; |
1015 | return Z_OK; |
1016 | } |
1017 | } |
1018 | put_byte(s, (Byte)(strm->adler & 0xff)); |
1019 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
1020 | strm->adler = crc32(0L, Z_NULL, 0); |
1021 | } |
1022 | s->status = BUSY_STATE; |
1023 | |
1024 | /* Compression must start with an empty pending buffer */ |
1025 | flush_pending(strm); |
1026 | if (s->pending != 0) { |
1027 | s->last_flush = -1; |
1028 | return Z_OK; |
1029 | } |
1030 | } |
1031 | #endif |
1032 | |
1033 | /* Start a new block or continue the current one. |
1034 | */ |
1035 | if (strm->avail_in != 0 || s->lookahead != 0 || |
1036 | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
1037 | block_state bstate; |
1038 | |
1039 | bstate = s->level == 0 ? deflate_stored(s, flush) : |
1040 | s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
1041 | s->strategy == Z_RLE ? deflate_rle(s, flush) : |
1042 | (*(configuration_table[s->level].func))(s, flush); |
1043 | |
1044 | if (bstate == finish_started || bstate == finish_done) { |
1045 | s->status = FINISH_STATE; |
1046 | } |
1047 | if (bstate == need_more || bstate == finish_started) { |
1048 | if (strm->avail_out == 0) { |
1049 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
1050 | } |
1051 | return Z_OK; |
1052 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
1053 | * of deflate should use the same flush parameter to make sure |
1054 | * that the flush is complete. So we don't have to output an |
1055 | * empty block here, this will be done at next call. This also |
1056 | * ensures that for a very small output buffer, we emit at most |
1057 | * one empty block. |
1058 | */ |
1059 | } |
1060 | if (bstate == block_done) { |
1061 | if (flush == Z_PARTIAL_FLUSH) { |
1062 | _tr_align(s); |
1063 | } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
1064 | _tr_stored_block(s, (char*)0, 0L, 0); |
1065 | /* For a full flush, this empty block will be recognized |
1066 | * as a special marker by inflate_sync(). |
1067 | */ |
1068 | if (flush == Z_FULL_FLUSH) { |
1069 | CLEAR_HASH(s); /* forget history */ |
1070 | if (s->lookahead == 0) { |
1071 | s->strstart = 0; |
1072 | s->block_start = 0L; |
1073 | s->insert = 0; |
1074 | } |
1075 | } |
1076 | } |
1077 | flush_pending(strm); |
1078 | if (strm->avail_out == 0) { |
1079 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
1080 | return Z_OK; |
1081 | } |
1082 | } |
1083 | } |
1084 | |
1085 | if (flush != Z_FINISH) return Z_OK; |
1086 | if (s->wrap <= 0) return Z_STREAM_END; |
1087 | |
1088 | /* Write the trailer */ |
1089 | #ifdef GZIP |
1090 | if (s->wrap == 2) { |
1091 | crc_finalize(s); |
1092 | put_byte(s, (Byte)(strm->adler & 0xff)); |
1093 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
1094 | put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); |
1095 | put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); |
1096 | put_byte(s, (Byte)(strm->total_in & 0xff)); |
1097 | put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); |
1098 | put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); |
1099 | put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); |
1100 | } |
1101 | else |
1102 | #endif |
1103 | { |
1104 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
1105 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
1106 | } |
1107 | flush_pending(strm); |
1108 | /* If avail_out is zero, the application will call deflate again |
1109 | * to flush the rest. |
1110 | */ |
1111 | if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ |
1112 | return s->pending != 0 ? Z_OK : Z_STREAM_END; |
1113 | } |
1114 | |
1115 | /* ========================================================================= */ |
1116 | int ZEXPORT deflateEnd (strm) |
1117 | z_streamp strm; |
1118 | { |
1119 | int status; |
1120 | |
1121 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
1122 | |
1123 | status = strm->state->status; |
1124 | |
1125 | /* Deallocate in reverse order of allocations: */ |
1126 | TRY_FREE(strm, strm->state->pending_buf); |
1127 | TRY_FREE(strm, strm->state->head); |
1128 | TRY_FREE(strm, strm->state->prev); |
1129 | TRY_FREE(strm, strm->state->window); |
1130 | |
1131 | ZFREE(strm, strm->state); |
1132 | strm->state = Z_NULL; |
1133 | |
1134 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
1135 | } |
1136 | |
1137 | /* ========================================================================= |
1138 | * Copy the source state to the destination state. |
1139 | * To simplify the source, this is not supported for 16-bit MSDOS (which |
1140 | * doesn't have enough memory anyway to duplicate compression states). |
1141 | */ |
1142 | int ZEXPORT deflateCopy (dest, source) |
1143 | z_streamp dest; |
1144 | z_streamp source; |
1145 | { |
1146 | #ifdef MAXSEG_64K |
1147 | return Z_STREAM_ERROR; |
1148 | #else |
1149 | deflate_state *ds; |
1150 | deflate_state *ss; |
1151 | |
1152 | |
1153 | if (deflateStateCheck(source) || dest == Z_NULL) { |
1154 | return Z_STREAM_ERROR; |
1155 | } |
1156 | |
1157 | ss = source->state; |
1158 | |
1159 | zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); |
1160 | |
1161 | ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
1162 | if (ds == Z_NULL) return Z_MEM_ERROR; |
1163 | dest->state = (struct internal_state FAR *) ds; |
1164 | zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); |
1165 | ds->strm = dest; |
1166 | |
1167 | ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
1168 | ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
1169 | ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
1170 | ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4); |
1171 | |
1172 | if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
1173 | ds->pending_buf == Z_NULL) { |
1174 | deflateEnd (dest); |
1175 | return Z_MEM_ERROR; |
1176 | } |
1177 | /* following zmemcpy do not work for 16-bit MSDOS */ |
1178 | zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
1179 | zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); |
1180 | zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); |
1181 | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
1182 | |
1183 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
1184 | ds->sym_buf = ds->pending_buf + ds->lit_bufsize; |
1185 | |
1186 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
1187 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
1188 | ds->bl_desc.dyn_tree = ds->bl_tree; |
1189 | |
1190 | return Z_OK; |
1191 | #endif /* MAXSEG_64K */ |
1192 | } |
1193 | |
1194 | /* =========================================================================== |
1195 | * Read a new buffer from the current input stream, update the adler32 |
1196 | * and total number of bytes read. All deflate() input goes through |
1197 | * this function so some applications may wish to modify it to avoid |
1198 | * allocating a large strm->next_in buffer and copying from it. |
1199 | * (See also flush_pending()). |
1200 | */ |
1201 | ZLIB_INTERNAL unsigned deflate_read_buf(strm, buf, size) |
1202 | z_streamp strm; |
1203 | Bytef *buf; |
1204 | unsigned size; |
1205 | { |
1206 | unsigned len = strm->avail_in; |
1207 | |
1208 | if (len > size) len = size; |
1209 | if (len == 0) return 0; |
1210 | |
1211 | strm->avail_in -= len; |
1212 | |
1213 | #ifdef GZIP |
1214 | if (strm->state->wrap == 2) |
1215 | copy_with_crc(strm, buf, len); |
1216 | else |
1217 | #endif |
1218 | { |
1219 | zmemcpy(buf, strm->next_in, len); |
1220 | if (strm->state->wrap == 1) |
1221 | strm->adler = adler32(strm->adler, buf, len); |
1222 | } |
1223 | strm->next_in += len; |
1224 | strm->total_in += len; |
1225 | |
1226 | return len; |
1227 | } |
1228 | |
1229 | /* =========================================================================== |
1230 | * Initialize the "longest match" routines for a new zlib stream |
1231 | */ |
1232 | local void lm_init (s) |
1233 | deflate_state *s; |
1234 | { |
1235 | s->window_size = (ulg)2L*s->w_size; |
1236 | |
1237 | CLEAR_HASH(s); |
1238 | |
1239 | /* Set the default configuration parameters: |
1240 | */ |
1241 | s->max_lazy_match = configuration_table[s->level].max_lazy; |
1242 | s->good_match = configuration_table[s->level].good_length; |
1243 | s->nice_match = configuration_table[s->level].nice_length; |
1244 | s->max_chain_length = configuration_table[s->level].max_chain; |
1245 | |
1246 | s->strstart = 0; |
1247 | s->block_start = 0L; |
1248 | s->lookahead = 0; |
1249 | s->insert = 0; |
1250 | s->match_length = s->prev_length = MIN_MATCH-1; |
1251 | s->match_available = 0; |
1252 | s->ins_h = 0; |
1253 | #ifndef FASTEST |
1254 | #ifdef ASMV |
1255 | match_init(); /* initialize the asm code */ |
1256 | #endif |
1257 | #endif |
1258 | } |
1259 | |
1260 | #ifndef FASTEST |
1261 | /* =========================================================================== |
1262 | * Set match_start to the longest match starting at the given string and |
1263 | * return its length. Matches shorter or equal to prev_length are discarded, |
1264 | * in which case the result is equal to prev_length and match_start is |
1265 | * garbage. |
1266 | * IN assertions: cur_match is the head of the hash chain for the current |
1267 | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
1268 | * OUT assertion: the match length is not greater than s->lookahead. |
1269 | */ |
1270 | #ifndef ASMV |
1271 | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
1272 | * match.S. The code will be functionally equivalent. |
1273 | */ |
1274 | local uInt longest_match(s, cur_match) |
1275 | deflate_state *s; |
1276 | IPos cur_match; /* current match */ |
1277 | { |
1278 | unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
1279 | register Bytef *scan = s->window + s->strstart; /* current string */ |
1280 | register Bytef *match; /* matched string */ |
1281 | register int len; /* length of current match */ |
1282 | int best_len = (int)s->prev_length; /* best match length so far */ |
1283 | int nice_match = s->nice_match; /* stop if match long enough */ |
1284 | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
1285 | s->strstart - (IPos)MAX_DIST(s) : NIL; |
1286 | /* Stop when cur_match becomes <= limit. To simplify the code, |
1287 | * we prevent matches with the string of window index 0. |
1288 | */ |
1289 | Posf *prev = s->prev; |
1290 | uInt wmask = s->w_mask; |
1291 | |
1292 | #ifdef UNALIGNED_OK |
1293 | /* Compare two bytes at a time. Note: this is not always beneficial. |
1294 | * Try with and without -DUNALIGNED_OK to check. |
1295 | */ |
1296 | register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
1297 | register ush scan_start = *(ushf*)scan; |
1298 | register ush scan_end = *(ushf*)(scan+best_len-1); |
1299 | #else |
1300 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1301 | register Byte scan_end1 = scan[best_len-1]; |
1302 | register Byte scan_end = scan[best_len]; |
1303 | #endif |
1304 | |
1305 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1306 | * It is easy to get rid of this optimization if necessary. |
1307 | */ |
1308 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever" ); |
1309 | |
1310 | /* Do not waste too much time if we already have a good match: */ |
1311 | if (s->prev_length >= s->good_match) { |
1312 | chain_length >>= 2; |
1313 | } |
1314 | /* Do not look for matches beyond the end of the input. This is necessary |
1315 | * to make deflate deterministic. |
1316 | */ |
1317 | if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; |
1318 | |
1319 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead" ); |
1320 | |
1321 | do { |
1322 | Assert(cur_match < s->strstart, "no future" ); |
1323 | match = s->window + cur_match; |
1324 | |
1325 | /* Skip to next match if the match length cannot increase |
1326 | * or if the match length is less than 2. Note that the checks below |
1327 | * for insufficient lookahead only occur occasionally for performance |
1328 | * reasons. Therefore uninitialized memory will be accessed, and |
1329 | * conditional jumps will be made that depend on those values. |
1330 | * However the length of the match is limited to the lookahead, so |
1331 | * the output of deflate is not affected by the uninitialized values. |
1332 | */ |
1333 | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
1334 | /* This code assumes sizeof(unsigned short) == 2. Do not use |
1335 | * UNALIGNED_OK if your compiler uses a different size. |
1336 | */ |
1337 | if (*(ushf*)(match+best_len-1) != scan_end || |
1338 | *(ushf*)match != scan_start) continue; |
1339 | |
1340 | /* It is not necessary to compare scan[2] and match[2] since they are |
1341 | * always equal when the other bytes match, given that the hash keys |
1342 | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
1343 | * strstart+3, +5, ... up to strstart+257. We check for insufficient |
1344 | * lookahead only every 4th comparison; the 128th check will be made |
1345 | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
1346 | * necessary to put more guard bytes at the end of the window, or |
1347 | * to check more often for insufficient lookahead. |
1348 | */ |
1349 | Assert(scan[2] == match[2], "scan[2]?" ); |
1350 | scan++, match++; |
1351 | do { |
1352 | } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1353 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1354 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1355 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1356 | scan < strend); |
1357 | /* The funny "do {}" generates better code on most compilers */ |
1358 | |
1359 | /* Here, scan <= window+strstart+257 */ |
1360 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan" ); |
1361 | if (*scan == *match) scan++; |
1362 | |
1363 | len = (MAX_MATCH - 1) - (int)(strend-scan); |
1364 | scan = strend - (MAX_MATCH-1); |
1365 | |
1366 | #else /* UNALIGNED_OK */ |
1367 | |
1368 | if (match[best_len] != scan_end || |
1369 | match[best_len-1] != scan_end1 || |
1370 | *match != *scan || |
1371 | *++match != scan[1]) continue; |
1372 | |
1373 | /* The check at best_len-1 can be removed because it will be made |
1374 | * again later. (This heuristic is not always a win.) |
1375 | * It is not necessary to compare scan[2] and match[2] since they |
1376 | * are always equal when the other bytes match, given that |
1377 | * the hash keys are equal and that HASH_BITS >= 8. |
1378 | */ |
1379 | scan += 2, match++; |
1380 | Assert(*scan == *match, "match[2]?" ); |
1381 | |
1382 | /* We check for insufficient lookahead only every 8th comparison; |
1383 | * the 256th check will be made at strstart+258. |
1384 | */ |
1385 | do { |
1386 | } while (*++scan == *++match && *++scan == *++match && |
1387 | *++scan == *++match && *++scan == *++match && |
1388 | *++scan == *++match && *++scan == *++match && |
1389 | *++scan == *++match && *++scan == *++match && |
1390 | scan < strend); |
1391 | |
1392 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan" ); |
1393 | |
1394 | len = MAX_MATCH - (int)(strend - scan); |
1395 | scan = strend - MAX_MATCH; |
1396 | |
1397 | #endif /* UNALIGNED_OK */ |
1398 | |
1399 | if (len > best_len) { |
1400 | s->match_start = cur_match; |
1401 | best_len = len; |
1402 | if (len >= nice_match) break; |
1403 | #ifdef UNALIGNED_OK |
1404 | scan_end = *(ushf*)(scan+best_len-1); |
1405 | #else |
1406 | scan_end1 = scan[best_len-1]; |
1407 | scan_end = scan[best_len]; |
1408 | #endif |
1409 | } |
1410 | } while ((cur_match = prev[cur_match & wmask]) > limit |
1411 | && --chain_length != 0); |
1412 | |
1413 | if ((uInt)best_len <= s->lookahead) return (uInt)best_len; |
1414 | return s->lookahead; |
1415 | } |
1416 | #endif /* ASMV */ |
1417 | |
1418 | #else /* FASTEST */ |
1419 | |
1420 | /* --------------------------------------------------------------------------- |
1421 | * Optimized version for FASTEST only |
1422 | */ |
1423 | local uInt longest_match(s, cur_match) |
1424 | deflate_state *s; |
1425 | IPos cur_match; /* current match */ |
1426 | { |
1427 | register Bytef *scan = s->window + s->strstart; /* current string */ |
1428 | register Bytef *match; /* matched string */ |
1429 | register int len; /* length of current match */ |
1430 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1431 | |
1432 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1433 | * It is easy to get rid of this optimization if necessary. |
1434 | */ |
1435 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever" ); |
1436 | |
1437 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead" ); |
1438 | |
1439 | Assert(cur_match < s->strstart, "no future" ); |
1440 | |
1441 | match = s->window + cur_match; |
1442 | |
1443 | /* Return failure if the match length is less than 2: |
1444 | */ |
1445 | if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; |
1446 | |
1447 | /* The check at best_len-1 can be removed because it will be made |
1448 | * again later. (This heuristic is not always a win.) |
1449 | * It is not necessary to compare scan[2] and match[2] since they |
1450 | * are always equal when the other bytes match, given that |
1451 | * the hash keys are equal and that HASH_BITS >= 8. |
1452 | */ |
1453 | scan += 2, match += 2; |
1454 | Assert(*scan == *match, "match[2]?" ); |
1455 | |
1456 | /* We check for insufficient lookahead only every 8th comparison; |
1457 | * the 256th check will be made at strstart+258. |
1458 | */ |
1459 | do { |
1460 | } while (*++scan == *++match && *++scan == *++match && |
1461 | *++scan == *++match && *++scan == *++match && |
1462 | *++scan == *++match && *++scan == *++match && |
1463 | *++scan == *++match && *++scan == *++match && |
1464 | scan < strend); |
1465 | |
1466 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan" ); |
1467 | |
1468 | len = MAX_MATCH - (int)(strend - scan); |
1469 | |
1470 | if (len < MIN_MATCH) return MIN_MATCH - 1; |
1471 | |
1472 | s->match_start = cur_match; |
1473 | return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; |
1474 | } |
1475 | |
1476 | #endif /* FASTEST */ |
1477 | |
1478 | #ifdef ZLIB_DEBUG |
1479 | |
1480 | #define EQUAL 0 |
1481 | /* result of memcmp for equal strings */ |
1482 | |
1483 | /* =========================================================================== |
1484 | * Check that the match at match_start is indeed a match. |
1485 | */ |
1486 | local void check_match(s, start, match, length) |
1487 | deflate_state *s; |
1488 | IPos start, match; |
1489 | int length; |
1490 | { |
1491 | /* check that the match is indeed a match */ |
1492 | if (zmemcmp(s->window + match, |
1493 | s->window + start, length) != EQUAL) { |
1494 | fprintf(stderr, " start %u, match %u, length %d\n" , |
1495 | start, match, length); |
1496 | do { |
1497 | fprintf(stderr, "%c%c" , s->window[match++], s->window[start++]); |
1498 | } while (--length != 0); |
1499 | z_error("invalid match" ); |
1500 | } |
1501 | if (z_verbose > 1) { |
1502 | fprintf(stderr,"\\[%d,%d]" , start-match, length); |
1503 | do { putc(s->window[start++], stderr); } while (--length != 0); |
1504 | } |
1505 | } |
1506 | #else |
1507 | # define check_match(s, start, match, length) |
1508 | #endif /* ZLIB_DEBUG */ |
1509 | |
1510 | /* =========================================================================== |
1511 | * Fill the window when the lookahead becomes insufficient. |
1512 | * Updates strstart and lookahead. |
1513 | * |
1514 | * IN assertion: lookahead < MIN_LOOKAHEAD |
1515 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
1516 | * At least one byte has been read, or avail_in == 0; reads are |
1517 | * performed for at least two bytes (required for the zip translate_eol |
1518 | * option -- not supported here). |
1519 | */ |
1520 | local void fill_window_c(deflate_state *s); |
1521 | |
1522 | local void fill_window(deflate_state *s) |
1523 | { |
1524 | #ifdef DEFLATE_FILL_WINDOW_SSE2 |
1525 | if (x86_cpu_enable_simd) { |
1526 | fill_window_sse(s); |
1527 | return; |
1528 | } |
1529 | #endif |
1530 | fill_window_c(s); |
1531 | } |
1532 | |
1533 | local void fill_window_c(s) |
1534 | deflate_state *s; |
1535 | { |
1536 | unsigned n; |
1537 | unsigned more; /* Amount of free space at the end of the window. */ |
1538 | uInt wsize = s->w_size; |
1539 | |
1540 | Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead" ); |
1541 | |
1542 | do { |
1543 | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
1544 | |
1545 | /* Deal with !@#$% 64K limit: */ |
1546 | if (sizeof(int) <= 2) { |
1547 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
1548 | more = wsize; |
1549 | |
1550 | } else if (more == (unsigned)(-1)) { |
1551 | /* Very unlikely, but possible on 16 bit machine if |
1552 | * strstart == 0 && lookahead == 1 (input done a byte at time) |
1553 | */ |
1554 | more--; |
1555 | } |
1556 | } |
1557 | |
1558 | /* If the window is almost full and there is insufficient lookahead, |
1559 | * move the upper half to the lower one to make room in the upper half. |
1560 | */ |
1561 | if (s->strstart >= wsize+MAX_DIST(s)) { |
1562 | |
1563 | zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more); |
1564 | s->match_start -= wsize; |
1565 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
1566 | s->block_start -= (long) wsize; |
1567 | slide_hash(s); |
1568 | more += wsize; |
1569 | } |
1570 | if (s->strm->avail_in == 0) break; |
1571 | |
1572 | /* If there was no sliding: |
1573 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
1574 | * more == window_size - lookahead - strstart |
1575 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
1576 | * => more >= window_size - 2*WSIZE + 2 |
1577 | * In the BIG_MEM or MMAP case (not yet supported), |
1578 | * window_size == input_size + MIN_LOOKAHEAD && |
1579 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
1580 | * Otherwise, window_size == 2*WSIZE so more >= 2. |
1581 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
1582 | */ |
1583 | Assert(more >= 2, "more < 2" ); |
1584 | |
1585 | n = deflate_read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
1586 | s->lookahead += n; |
1587 | |
1588 | /* Initialize the hash value now that we have some input: */ |
1589 | if (s->lookahead + s->insert >= MIN_MATCH) { |
1590 | uInt str = s->strstart - s->insert; |
1591 | s->ins_h = s->window[str]; |
1592 | UPDATE_HASH(s, s->ins_h, s->window[str + 1]); |
1593 | #if MIN_MATCH != 3 |
1594 | Call UPDATE_HASH() MIN_MATCH-3 more times |
1595 | #endif |
1596 | while (s->insert) { |
1597 | UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); |
1598 | #ifndef FASTEST |
1599 | s->prev[str & s->w_mask] = s->head[s->ins_h]; |
1600 | #endif |
1601 | s->head[s->ins_h] = (Pos)str; |
1602 | str++; |
1603 | s->insert--; |
1604 | if (s->lookahead + s->insert < MIN_MATCH) |
1605 | break; |
1606 | } |
1607 | } |
1608 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
1609 | * but this is not important since only literal bytes will be emitted. |
1610 | */ |
1611 | |
1612 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
1613 | |
1614 | /* If the WIN_INIT bytes after the end of the current data have never been |
1615 | * written, then zero those bytes in order to avoid memory check reports of |
1616 | * the use of uninitialized (or uninitialised as Julian writes) bytes by |
1617 | * the longest match routines. Update the high water mark for the next |
1618 | * time through here. WIN_INIT is set to MAX_MATCH since the longest match |
1619 | * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
1620 | */ |
1621 | if (s->high_water < s->window_size) { |
1622 | ulg curr = s->strstart + (ulg)(s->lookahead); |
1623 | ulg init; |
1624 | |
1625 | if (s->high_water < curr) { |
1626 | /* Previous high water mark below current data -- zero WIN_INIT |
1627 | * bytes or up to end of window, whichever is less. |
1628 | */ |
1629 | init = s->window_size - curr; |
1630 | if (init > WIN_INIT) |
1631 | init = WIN_INIT; |
1632 | zmemzero(s->window + curr, (unsigned)init); |
1633 | s->high_water = curr + init; |
1634 | } |
1635 | else if (s->high_water < (ulg)curr + WIN_INIT) { |
1636 | /* High water mark at or above current data, but below current data |
1637 | * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
1638 | * to end of window, whichever is less. |
1639 | */ |
1640 | init = (ulg)curr + WIN_INIT - s->high_water; |
1641 | if (init > s->window_size - s->high_water) |
1642 | init = s->window_size - s->high_water; |
1643 | zmemzero(s->window + s->high_water, (unsigned)init); |
1644 | s->high_water += init; |
1645 | } |
1646 | } |
1647 | |
1648 | Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
1649 | "not enough room for search" ); |
1650 | } |
1651 | |
1652 | /* =========================================================================== |
1653 | * Flush the current block, with given end-of-file flag. |
1654 | * IN assertion: strstart is set to the end of the current match. |
1655 | */ |
1656 | #define FLUSH_BLOCK_ONLY(s, last) { \ |
1657 | _tr_flush_block(s, (s->block_start >= 0L ? \ |
1658 | (charf *)&s->window[(unsigned)s->block_start] : \ |
1659 | (charf *)Z_NULL), \ |
1660 | (ulg)((long)s->strstart - s->block_start), \ |
1661 | (last)); \ |
1662 | s->block_start = s->strstart; \ |
1663 | flush_pending(s->strm); \ |
1664 | Tracev((stderr,"[FLUSH]")); \ |
1665 | } |
1666 | |
1667 | /* Same but force premature exit if necessary. */ |
1668 | #define FLUSH_BLOCK(s, last) { \ |
1669 | FLUSH_BLOCK_ONLY(s, last); \ |
1670 | if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ |
1671 | } |
1672 | |
1673 | /* Maximum stored block length in deflate format (not including header). */ |
1674 | #define MAX_STORED 65535 |
1675 | |
1676 | /* Minimum of a and b. */ |
1677 | #define MIN(a, b) ((a) > (b) ? (b) : (a)) |
1678 | |
1679 | /* =========================================================================== |
1680 | * Copy without compression as much as possible from the input stream, return |
1681 | * the current block state. |
1682 | * |
1683 | * In case deflateParams() is used to later switch to a non-zero compression |
1684 | * level, s->matches (otherwise unused when storing) keeps track of the number |
1685 | * of hash table slides to perform. If s->matches is 1, then one hash table |
1686 | * slide will be done when switching. If s->matches is 2, the maximum value |
1687 | * allowed here, then the hash table will be cleared, since two or more slides |
1688 | * is the same as a clear. |
1689 | * |
1690 | * deflate_stored() is written to minimize the number of times an input byte is |
1691 | * copied. It is most efficient with large input and output buffers, which |
1692 | * maximizes the opportunites to have a single copy from next_in to next_out. |
1693 | */ |
1694 | local block_state deflate_stored(s, flush) |
1695 | deflate_state *s; |
1696 | int flush; |
1697 | { |
1698 | /* Smallest worthy block size when not flushing or finishing. By default |
1699 | * this is 32K. This can be as small as 507 bytes for memLevel == 1. For |
1700 | * large input and output buffers, the stored block size will be larger. |
1701 | */ |
1702 | unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); |
1703 | |
1704 | /* Copy as many min_block or larger stored blocks directly to next_out as |
1705 | * possible. If flushing, copy the remaining available input to next_out as |
1706 | * stored blocks, if there is enough space. |
1707 | */ |
1708 | unsigned len, left, have, last = 0; |
1709 | unsigned used = s->strm->avail_in; |
1710 | do { |
1711 | /* Set len to the maximum size block that we can copy directly with the |
1712 | * available input data and output space. Set left to how much of that |
1713 | * would be copied from what's left in the window. |
1714 | */ |
1715 | len = MAX_STORED; /* maximum deflate stored block length */ |
1716 | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1717 | if (s->strm->avail_out < have) /* need room for header */ |
1718 | break; |
1719 | /* maximum stored block length that will fit in avail_out: */ |
1720 | have = s->strm->avail_out - have; |
1721 | left = s->strstart - s->block_start; /* bytes left in window */ |
1722 | if (len > (ulg)left + s->strm->avail_in) |
1723 | len = left + s->strm->avail_in; /* limit len to the input */ |
1724 | if (len > have) |
1725 | len = have; /* limit len to the output */ |
1726 | |
1727 | /* If the stored block would be less than min_block in length, or if |
1728 | * unable to copy all of the available input when flushing, then try |
1729 | * copying to the window and the pending buffer instead. Also don't |
1730 | * write an empty block when flushing -- deflate() does that. |
1731 | */ |
1732 | if (len < min_block && ((len == 0 && flush != Z_FINISH) || |
1733 | flush == Z_NO_FLUSH || |
1734 | len != left + s->strm->avail_in)) |
1735 | break; |
1736 | |
1737 | /* Make a dummy stored block in pending to get the header bytes, |
1738 | * including any pending bits. This also updates the debugging counts. |
1739 | */ |
1740 | last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; |
1741 | _tr_stored_block(s, (char *)0, 0L, last); |
1742 | |
1743 | /* Replace the lengths in the dummy stored block with len. */ |
1744 | s->pending_buf[s->pending - 4] = len; |
1745 | s->pending_buf[s->pending - 3] = len >> 8; |
1746 | s->pending_buf[s->pending - 2] = ~len; |
1747 | s->pending_buf[s->pending - 1] = ~len >> 8; |
1748 | |
1749 | /* Write the stored block header bytes. */ |
1750 | flush_pending(s->strm); |
1751 | |
1752 | #ifdef ZLIB_DEBUG |
1753 | /* Update debugging counts for the data about to be copied. */ |
1754 | s->compressed_len += len << 3; |
1755 | s->bits_sent += len << 3; |
1756 | #endif |
1757 | |
1758 | /* Copy uncompressed bytes from the window to next_out. */ |
1759 | if (left) { |
1760 | if (left > len) |
1761 | left = len; |
1762 | zmemcpy(s->strm->next_out, s->window + s->block_start, left); |
1763 | s->strm->next_out += left; |
1764 | s->strm->avail_out -= left; |
1765 | s->strm->total_out += left; |
1766 | s->block_start += left; |
1767 | len -= left; |
1768 | } |
1769 | |
1770 | /* Copy uncompressed bytes directly from next_in to next_out, updating |
1771 | * the check value. |
1772 | */ |
1773 | if (len) { |
1774 | deflate_read_buf(s->strm, s->strm->next_out, len); |
1775 | s->strm->next_out += len; |
1776 | s->strm->avail_out -= len; |
1777 | s->strm->total_out += len; |
1778 | } |
1779 | } while (last == 0); |
1780 | |
1781 | /* Update the sliding window with the last s->w_size bytes of the copied |
1782 | * data, or append all of the copied data to the existing window if less |
1783 | * than s->w_size bytes were copied. Also update the number of bytes to |
1784 | * insert in the hash tables, in the event that deflateParams() switches to |
1785 | * a non-zero compression level. |
1786 | */ |
1787 | used -= s->strm->avail_in; /* number of input bytes directly copied */ |
1788 | if (used) { |
1789 | /* If any input was used, then no unused input remains in the window, |
1790 | * therefore s->block_start == s->strstart. |
1791 | */ |
1792 | if (used >= s->w_size) { /* supplant the previous history */ |
1793 | s->matches = 2; /* clear hash */ |
1794 | zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); |
1795 | s->strstart = s->w_size; |
1796 | } |
1797 | else { |
1798 | if (s->window_size - s->strstart <= used) { |
1799 | /* Slide the window down. */ |
1800 | s->strstart -= s->w_size; |
1801 | zmemcpy(s->window, s->window + s->w_size, s->strstart); |
1802 | if (s->matches < 2) |
1803 | s->matches++; /* add a pending slide_hash() */ |
1804 | } |
1805 | zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); |
1806 | s->strstart += used; |
1807 | } |
1808 | s->block_start = s->strstart; |
1809 | s->insert += MIN(used, s->w_size - s->insert); |
1810 | } |
1811 | if (s->high_water < s->strstart) |
1812 | s->high_water = s->strstart; |
1813 | |
1814 | /* If the last block was written to next_out, then done. */ |
1815 | if (last) |
1816 | return finish_done; |
1817 | |
1818 | /* If flushing and all input has been consumed, then done. */ |
1819 | if (flush != Z_NO_FLUSH && flush != Z_FINISH && |
1820 | s->strm->avail_in == 0 && (long)s->strstart == s->block_start) |
1821 | return block_done; |
1822 | |
1823 | /* Fill the window with any remaining input. */ |
1824 | have = s->window_size - s->strstart - 1; |
1825 | if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { |
1826 | /* Slide the window down. */ |
1827 | s->block_start -= s->w_size; |
1828 | s->strstart -= s->w_size; |
1829 | zmemcpy(s->window, s->window + s->w_size, s->strstart); |
1830 | if (s->matches < 2) |
1831 | s->matches++; /* add a pending slide_hash() */ |
1832 | have += s->w_size; /* more space now */ |
1833 | } |
1834 | if (have > s->strm->avail_in) |
1835 | have = s->strm->avail_in; |
1836 | if (have) { |
1837 | deflate_read_buf(s->strm, s->window + s->strstart, have); |
1838 | s->strstart += have; |
1839 | } |
1840 | if (s->high_water < s->strstart) |
1841 | s->high_water = s->strstart; |
1842 | |
1843 | /* There was not enough avail_out to write a complete worthy or flushed |
1844 | * stored block to next_out. Write a stored block to pending instead, if we |
1845 | * have enough input for a worthy block, or if flushing and there is enough |
1846 | * room for the remaining input as a stored block in the pending buffer. |
1847 | */ |
1848 | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1849 | /* maximum stored block length that will fit in pending: */ |
1850 | have = MIN(s->pending_buf_size - have, MAX_STORED); |
1851 | min_block = MIN(have, s->w_size); |
1852 | left = s->strstart - s->block_start; |
1853 | if (left >= min_block || |
1854 | ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && |
1855 | s->strm->avail_in == 0 && left <= have)) { |
1856 | len = MIN(left, have); |
1857 | last = flush == Z_FINISH && s->strm->avail_in == 0 && |
1858 | len == left ? 1 : 0; |
1859 | _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); |
1860 | s->block_start += len; |
1861 | flush_pending(s->strm); |
1862 | } |
1863 | |
1864 | /* We've done all we can with the available input and output. */ |
1865 | return last ? finish_started : need_more; |
1866 | } |
1867 | |
1868 | /* =========================================================================== |
1869 | * Compress as much as possible from the input stream, return the current |
1870 | * block state. |
1871 | * This function does not perform lazy evaluation of matches and inserts |
1872 | * new strings in the dictionary only for unmatched strings or for short |
1873 | * matches. It is used only for the fast compression options. |
1874 | */ |
1875 | local block_state deflate_fast(s, flush) |
1876 | deflate_state *s; |
1877 | int flush; |
1878 | { |
1879 | IPos hash_head; /* head of the hash chain */ |
1880 | int bflush; /* set if current block must be flushed */ |
1881 | |
1882 | for (;;) { |
1883 | /* Make sure that we always have enough lookahead, except |
1884 | * at the end of the input file. We need MAX_MATCH bytes |
1885 | * for the next match, plus MIN_MATCH bytes to insert the |
1886 | * string following the next match. |
1887 | */ |
1888 | if (s->lookahead < MIN_LOOKAHEAD) { |
1889 | fill_window(s); |
1890 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1891 | return need_more; |
1892 | } |
1893 | if (s->lookahead == 0) break; /* flush the current block */ |
1894 | } |
1895 | |
1896 | /* Insert the string window[strstart .. strstart+2] in the |
1897 | * dictionary, and set hash_head to the head of the hash chain: |
1898 | */ |
1899 | hash_head = NIL; |
1900 | if (s->lookahead >= MIN_MATCH) { |
1901 | hash_head = insert_string(s, s->strstart); |
1902 | } |
1903 | |
1904 | /* Find the longest match, discarding those <= prev_length. |
1905 | * At this point we have always match_length < MIN_MATCH |
1906 | */ |
1907 | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
1908 | /* To simplify the code, we prevent matches with the string |
1909 | * of window index 0 (in particular we have to avoid a match |
1910 | * of the string with itself at the start of the input file). |
1911 | */ |
1912 | s->match_length = longest_match (s, hash_head); |
1913 | /* longest_match() sets match_start */ |
1914 | } |
1915 | if (s->match_length >= MIN_MATCH) { |
1916 | check_match(s, s->strstart, s->match_start, s->match_length); |
1917 | |
1918 | _tr_tally_dist(s, s->strstart - s->match_start, |
1919 | s->match_length - MIN_MATCH, bflush); |
1920 | |
1921 | s->lookahead -= s->match_length; |
1922 | |
1923 | /* Insert new strings in the hash table only if the match length |
1924 | * is not too large. This saves time but degrades compression. |
1925 | */ |
1926 | #ifndef FASTEST |
1927 | if (s->match_length <= s->max_insert_length && |
1928 | s->lookahead >= MIN_MATCH) { |
1929 | s->match_length--; /* string at strstart already in table */ |
1930 | do { |
1931 | s->strstart++; |
1932 | hash_head = insert_string(s, s->strstart); |
1933 | /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
1934 | * always MIN_MATCH bytes ahead. |
1935 | */ |
1936 | } while (--s->match_length != 0); |
1937 | s->strstart++; |
1938 | } else |
1939 | #endif |
1940 | { |
1941 | s->strstart += s->match_length; |
1942 | s->match_length = 0; |
1943 | s->ins_h = s->window[s->strstart]; |
1944 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
1945 | #if MIN_MATCH != 3 |
1946 | Call UPDATE_HASH() MIN_MATCH-3 more times |
1947 | #endif |
1948 | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
1949 | * matter since it will be recomputed at next deflate call. |
1950 | */ |
1951 | } |
1952 | } else { |
1953 | /* No match, output a literal byte */ |
1954 | Tracevv((stderr,"%c" , s->window[s->strstart])); |
1955 | _tr_tally_lit (s, s->window[s->strstart], bflush); |
1956 | s->lookahead--; |
1957 | s->strstart++; |
1958 | } |
1959 | if (bflush) FLUSH_BLOCK(s, 0); |
1960 | } |
1961 | s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
1962 | if (flush == Z_FINISH) { |
1963 | FLUSH_BLOCK(s, 1); |
1964 | return finish_done; |
1965 | } |
1966 | if (s->sym_next) |
1967 | FLUSH_BLOCK(s, 0); |
1968 | return block_done; |
1969 | } |
1970 | |
1971 | #ifndef FASTEST |
1972 | /* =========================================================================== |
1973 | * Same as above, but achieves better compression. We use a lazy |
1974 | * evaluation for matches: a match is finally adopted only if there is |
1975 | * no better match at the next window position. |
1976 | */ |
1977 | local block_state deflate_slow(s, flush) |
1978 | deflate_state *s; |
1979 | int flush; |
1980 | { |
1981 | IPos hash_head; /* head of hash chain */ |
1982 | int bflush; /* set if current block must be flushed */ |
1983 | |
1984 | /* Process the input block. */ |
1985 | for (;;) { |
1986 | /* Make sure that we always have enough lookahead, except |
1987 | * at the end of the input file. We need MAX_MATCH bytes |
1988 | * for the next match, plus MIN_MATCH bytes to insert the |
1989 | * string following the next match. |
1990 | */ |
1991 | if (s->lookahead < MIN_LOOKAHEAD) { |
1992 | fill_window(s); |
1993 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1994 | return need_more; |
1995 | } |
1996 | if (s->lookahead == 0) break; /* flush the current block */ |
1997 | } |
1998 | |
1999 | /* Insert the string window[strstart .. strstart+2] in the |
2000 | * dictionary, and set hash_head to the head of the hash chain: |
2001 | */ |
2002 | hash_head = NIL; |
2003 | if (s->lookahead >= MIN_MATCH) { |
2004 | hash_head = insert_string(s, s->strstart); |
2005 | } |
2006 | |
2007 | /* Find the longest match, discarding those <= prev_length. |
2008 | */ |
2009 | s->prev_length = s->match_length, s->prev_match = s->match_start; |
2010 | s->match_length = MIN_MATCH-1; |
2011 | |
2012 | if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
2013 | s->strstart - hash_head <= MAX_DIST(s)) { |
2014 | /* To simplify the code, we prevent matches with the string |
2015 | * of window index 0 (in particular we have to avoid a match |
2016 | * of the string with itself at the start of the input file). |
2017 | */ |
2018 | s->match_length = longest_match (s, hash_head); |
2019 | /* longest_match() sets match_start */ |
2020 | |
2021 | if (s->match_length <= 5 && (s->strategy == Z_FILTERED |
2022 | #if TOO_FAR <= 32767 |
2023 | || (s->match_length == MIN_MATCH && |
2024 | s->strstart - s->match_start > TOO_FAR) |
2025 | #endif |
2026 | )) { |
2027 | |
2028 | /* If prev_match is also MIN_MATCH, match_start is garbage |
2029 | * but we will ignore the current match anyway. |
2030 | */ |
2031 | s->match_length = MIN_MATCH-1; |
2032 | } |
2033 | } |
2034 | /* If there was a match at the previous step and the current |
2035 | * match is not better, output the previous match: |
2036 | */ |
2037 | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
2038 | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
2039 | /* Do not insert strings in hash table beyond this. */ |
2040 | |
2041 | check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
2042 | |
2043 | _tr_tally_dist(s, s->strstart -1 - s->prev_match, |
2044 | s->prev_length - MIN_MATCH, bflush); |
2045 | |
2046 | /* Insert in hash table all strings up to the end of the match. |
2047 | * strstart-1 and strstart are already inserted. If there is not |
2048 | * enough lookahead, the last two strings are not inserted in |
2049 | * the hash table. |
2050 | */ |
2051 | s->lookahead -= s->prev_length-1; |
2052 | s->prev_length -= 2; |
2053 | do { |
2054 | if (++s->strstart <= max_insert) { |
2055 | hash_head = insert_string(s, s->strstart); |
2056 | } |
2057 | } while (--s->prev_length != 0); |
2058 | s->match_available = 0; |
2059 | s->match_length = MIN_MATCH-1; |
2060 | s->strstart++; |
2061 | |
2062 | if (bflush) FLUSH_BLOCK(s, 0); |
2063 | |
2064 | } else if (s->match_available) { |
2065 | /* If there was no match at the previous position, output a |
2066 | * single literal. If there was a match but the current match |
2067 | * is longer, truncate the previous match to a single literal. |
2068 | */ |
2069 | Tracevv((stderr,"%c" , s->window[s->strstart-1])); |
2070 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); |
2071 | if (bflush) { |
2072 | FLUSH_BLOCK_ONLY(s, 0); |
2073 | } |
2074 | s->strstart++; |
2075 | s->lookahead--; |
2076 | if (s->strm->avail_out == 0) return need_more; |
2077 | } else { |
2078 | /* There is no previous match to compare with, wait for |
2079 | * the next step to decide. |
2080 | */ |
2081 | s->match_available = 1; |
2082 | s->strstart++; |
2083 | s->lookahead--; |
2084 | } |
2085 | } |
2086 | Assert (flush != Z_NO_FLUSH, "no flush?" ); |
2087 | if (s->match_available) { |
2088 | Tracevv((stderr,"%c" , s->window[s->strstart-1])); |
2089 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); |
2090 | s->match_available = 0; |
2091 | } |
2092 | s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
2093 | if (flush == Z_FINISH) { |
2094 | FLUSH_BLOCK(s, 1); |
2095 | return finish_done; |
2096 | } |
2097 | if (s->sym_next) |
2098 | FLUSH_BLOCK(s, 0); |
2099 | return block_done; |
2100 | } |
2101 | #endif /* FASTEST */ |
2102 | |
2103 | /* =========================================================================== |
2104 | * For Z_RLE, simply look for runs of bytes, generate matches only of distance |
2105 | * one. Do not maintain a hash table. (It will be regenerated if this run of |
2106 | * deflate switches away from Z_RLE.) |
2107 | */ |
2108 | local block_state deflate_rle(s, flush) |
2109 | deflate_state *s; |
2110 | int flush; |
2111 | { |
2112 | int bflush; /* set if current block must be flushed */ |
2113 | uInt prev; /* byte at distance one to match */ |
2114 | Bytef *scan, *strend; /* scan goes up to strend for length of run */ |
2115 | |
2116 | for (;;) { |
2117 | /* Make sure that we always have enough lookahead, except |
2118 | * at the end of the input file. We need MAX_MATCH bytes |
2119 | * for the longest run, plus one for the unrolled loop. |
2120 | */ |
2121 | if (s->lookahead <= MAX_MATCH) { |
2122 | fill_window(s); |
2123 | if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { |
2124 | return need_more; |
2125 | } |
2126 | if (s->lookahead == 0) break; /* flush the current block */ |
2127 | } |
2128 | |
2129 | /* See how many times the previous byte repeats */ |
2130 | s->match_length = 0; |
2131 | if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
2132 | scan = s->window + s->strstart - 1; |
2133 | prev = *scan; |
2134 | if (prev == *++scan && prev == *++scan && prev == *++scan) { |
2135 | strend = s->window + s->strstart + MAX_MATCH; |
2136 | do { |
2137 | } while (prev == *++scan && prev == *++scan && |
2138 | prev == *++scan && prev == *++scan && |
2139 | prev == *++scan && prev == *++scan && |
2140 | prev == *++scan && prev == *++scan && |
2141 | scan < strend); |
2142 | s->match_length = MAX_MATCH - (uInt)(strend - scan); |
2143 | if (s->match_length > s->lookahead) |
2144 | s->match_length = s->lookahead; |
2145 | } |
2146 | Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan" ); |
2147 | } |
2148 | |
2149 | /* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
2150 | if (s->match_length >= MIN_MATCH) { |
2151 | check_match(s, s->strstart, s->strstart - 1, s->match_length); |
2152 | |
2153 | _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); |
2154 | |
2155 | s->lookahead -= s->match_length; |
2156 | s->strstart += s->match_length; |
2157 | s->match_length = 0; |
2158 | } else { |
2159 | /* No match, output a literal byte */ |
2160 | Tracevv((stderr,"%c" , s->window[s->strstart])); |
2161 | _tr_tally_lit (s, s->window[s->strstart], bflush); |
2162 | s->lookahead--; |
2163 | s->strstart++; |
2164 | } |
2165 | if (bflush) FLUSH_BLOCK(s, 0); |
2166 | } |
2167 | s->insert = 0; |
2168 | if (flush == Z_FINISH) { |
2169 | FLUSH_BLOCK(s, 1); |
2170 | return finish_done; |
2171 | } |
2172 | if (s->sym_next) |
2173 | FLUSH_BLOCK(s, 0); |
2174 | return block_done; |
2175 | } |
2176 | |
2177 | /* =========================================================================== |
2178 | * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
2179 | * (It will be regenerated if this run of deflate switches away from Huffman.) |
2180 | */ |
2181 | local block_state deflate_huff(s, flush) |
2182 | deflate_state *s; |
2183 | int flush; |
2184 | { |
2185 | int bflush; /* set if current block must be flushed */ |
2186 | |
2187 | for (;;) { |
2188 | /* Make sure that we have a literal to write. */ |
2189 | if (s->lookahead == 0) { |
2190 | fill_window(s); |
2191 | if (s->lookahead == 0) { |
2192 | if (flush == Z_NO_FLUSH) |
2193 | return need_more; |
2194 | break; /* flush the current block */ |
2195 | } |
2196 | } |
2197 | |
2198 | /* Output a literal byte */ |
2199 | s->match_length = 0; |
2200 | Tracevv((stderr,"%c" , s->window[s->strstart])); |
2201 | _tr_tally_lit (s, s->window[s->strstart], bflush); |
2202 | s->lookahead--; |
2203 | s->strstart++; |
2204 | if (bflush) FLUSH_BLOCK(s, 0); |
2205 | } |
2206 | s->insert = 0; |
2207 | if (flush == Z_FINISH) { |
2208 | FLUSH_BLOCK(s, 1); |
2209 | return finish_done; |
2210 | } |
2211 | if (s->sym_next) |
2212 | FLUSH_BLOCK(s, 0); |
2213 | return block_done; |
2214 | } |
2215 | |