| 1 | /* |
| 2 | * Copyright 2012-present Facebook, Inc. |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | /* |
| 17 | * AtomicHashMap -- |
| 18 | * |
| 19 | * A high-performance concurrent hash map with int32 or int64 keys. Supports |
| 20 | * insert, find(key), findAt(index), erase(key), size, and more. Memory cannot |
| 21 | * be freed or reclaimed by erase. Can grow to a maximum of about 18 times the |
| 22 | * initial capacity, but performance degrades linearly with growth. Can also be |
| 23 | * used as an object store with unique 32-bit references directly into the |
| 24 | * internal storage (retrieved with iterator::getIndex()). |
| 25 | * |
| 26 | * Advantages: |
| 27 | * - High-performance (~2-4x tbb::concurrent_hash_map in heavily |
| 28 | * multi-threaded environments). |
| 29 | * - Efficient memory usage if initial capacity is not over estimated |
| 30 | * (especially for small keys and values). |
| 31 | * - Good fragmentation properties (only allocates in large slabs which can |
| 32 | * be reused with clear() and never move). |
| 33 | * - Can generate unique, long-lived 32-bit references for efficient lookup |
| 34 | * (see findAt()). |
| 35 | * |
| 36 | * Disadvantages: |
| 37 | * - Keys must be native int32 or int64, or explicitly converted. |
| 38 | * - Must be able to specify unique empty, locked, and erased keys |
| 39 | * - Performance degrades linearly as size grows beyond initialization |
| 40 | * capacity. |
| 41 | * - Max size limit of ~18x initial size (dependent on max load factor). |
| 42 | * - Memory is not freed or reclaimed by erase. |
| 43 | * |
| 44 | * Usage and Operation Details: |
| 45 | * Simple performance/memory tradeoff with maxLoadFactor. Higher load factors |
| 46 | * give better memory utilization but probe lengths increase, reducing |
| 47 | * performance. |
| 48 | * |
| 49 | * Implementation and Performance Details: |
| 50 | * AHArray is a fixed size contiguous block of value_type cells. When |
| 51 | * writing a cell, the key is locked while the rest of the record is |
| 52 | * written. Once done, the cell is unlocked by setting the key. find() |
| 53 | * is completely wait-free and doesn't require any non-relaxed atomic |
| 54 | * operations. AHA cannot grow beyond initialization capacity, but is |
| 55 | * faster because of reduced data indirection. |
| 56 | * |
| 57 | * AHMap is a wrapper around AHArray sub-maps that allows growth and provides |
| 58 | * an interface closer to the STL UnorderedAssociativeContainer concept. These |
| 59 | * sub-maps are allocated on the fly and are processed in series, so the more |
| 60 | * there are (from growing past initial capacity), the worse the performance. |
| 61 | * |
| 62 | * Insert returns false if there is a key collision and throws if the max size |
| 63 | * of the map is exceeded. |
| 64 | * |
| 65 | * Benchmark performance with 8 simultaneous threads processing 1 million |
| 66 | * unique <int64, int64> entries on a 4-core, 2.5 GHz machine: |
| 67 | * |
| 68 | * Load Factor Mem Efficiency usec/Insert usec/Find |
| 69 | * 50% 50% 0.19 0.05 |
| 70 | * 85% 85% 0.20 0.06 |
| 71 | * 90% 90% 0.23 0.08 |
| 72 | * 95% 95% 0.27 0.10 |
| 73 | * |
| 74 | * See folly/tests/AtomicHashMapTest.cpp for more benchmarks. |
| 75 | * |
| 76 | * @author Spencer Ahrens <sahrens@fb.com> |
| 77 | * @author Jordan DeLong <delong.j@fb.com> |
| 78 | * |
| 79 | */ |
| 80 | |
| 81 | #pragma once |
| 82 | #define FOLLY_ATOMICHASHMAP_H_ |
| 83 | |
| 84 | #include <boost/iterator/iterator_facade.hpp> |
| 85 | #include <boost/noncopyable.hpp> |
| 86 | #include <boost/type_traits/is_convertible.hpp> |
| 87 | |
| 88 | #include <atomic> |
| 89 | #include <functional> |
| 90 | #include <stdexcept> |
| 91 | |
| 92 | #include <folly/AtomicHashArray.h> |
| 93 | #include <folly/CPortability.h> |
| 94 | #include <folly/Likely.h> |
| 95 | #include <folly/ThreadCachedInt.h> |
| 96 | #include <folly/container/Foreach.h> |
| 97 | #include <folly/hash/Hash.h> |
| 98 | |
| 99 | namespace folly { |
| 100 | |
| 101 | /* |
| 102 | * AtomicHashMap provides an interface somewhat similar to the |
| 103 | * UnorderedAssociativeContainer concept in C++. This does not |
| 104 | * exactly match this concept (or even the basic Container concept), |
| 105 | * because of some restrictions imposed by our datastructure. |
| 106 | * |
| 107 | * Specific differences (there are quite a few): |
| 108 | * |
| 109 | * - Efficiently thread safe for inserts (main point of this stuff), |
| 110 | * wait-free for lookups. |
| 111 | * |
| 112 | * - You can erase from this container, but the cell containing the key will |
| 113 | * not be free or reclaimed. |
| 114 | * |
| 115 | * - You can erase everything by calling clear() (and you must guarantee only |
| 116 | * one thread can be using the container to do that). |
| 117 | * |
| 118 | * - We aren't DefaultConstructible, CopyConstructible, Assignable, or |
| 119 | * EqualityComparable. (Most of these are probably not something |
| 120 | * you actually want to do with this anyway.) |
| 121 | * |
| 122 | * - We don't support the various bucket functions, rehash(), |
| 123 | * reserve(), or equal_range(). Also no constructors taking |
| 124 | * iterators, although this could change. |
| 125 | * |
| 126 | * - Several insertion functions, notably operator[], are not |
| 127 | * implemented. It is a little too easy to misuse these functions |
| 128 | * with this container, where part of the point is that when an |
| 129 | * insertion happens for a new key, it will atomically have the |
| 130 | * desired value. |
| 131 | * |
| 132 | * - The map has no templated insert() taking an iterator range, but |
| 133 | * we do provide an insert(key, value). The latter seems more |
| 134 | * frequently useful for this container (to avoid sprinkling |
| 135 | * make_pair everywhere), and providing both can lead to some gross |
| 136 | * template error messages. |
| 137 | * |
| 138 | * - The Allocator must not be stateful (a new instance will be spun up for |
| 139 | * each allocation), and its allocate() method must take a raw number of |
| 140 | * bytes. |
| 141 | * |
| 142 | * - KeyT must be a 32 bit or 64 bit atomic integer type, and you must |
| 143 | * define special 'locked' and 'empty' key values in the ctor |
| 144 | * |
| 145 | * - We don't take the Hash function object as an instance in the |
| 146 | * constructor. |
| 147 | * |
| 148 | */ |
| 149 | |
| 150 | // Thrown when insertion fails due to running out of space for |
| 151 | // submaps. |
| 152 | struct FOLLY_EXPORT AtomicHashMapFullError : std::runtime_error { |
| 153 | explicit AtomicHashMapFullError() |
| 154 | : std::runtime_error("AtomicHashMap is full" ) {} |
| 155 | }; |
| 156 | |
| 157 | template < |
| 158 | class KeyT, |
| 159 | class ValueT, |
| 160 | class HashFcn, |
| 161 | class EqualFcn, |
| 162 | class Allocator, |
| 163 | class ProbeFcn, |
| 164 | class KeyConvertFcn> |
| 165 | class AtomicHashMap : boost::noncopyable { |
| 166 | typedef AtomicHashArray< |
| 167 | KeyT, |
| 168 | ValueT, |
| 169 | HashFcn, |
| 170 | EqualFcn, |
| 171 | Allocator, |
| 172 | ProbeFcn, |
| 173 | KeyConvertFcn> |
| 174 | SubMap; |
| 175 | |
| 176 | public: |
| 177 | typedef KeyT key_type; |
| 178 | typedef ValueT mapped_type; |
| 179 | typedef std::pair<const KeyT, ValueT> value_type; |
| 180 | typedef HashFcn hasher; |
| 181 | typedef EqualFcn key_equal; |
| 182 | typedef KeyConvertFcn key_convert; |
| 183 | typedef value_type* pointer; |
| 184 | typedef value_type& reference; |
| 185 | typedef const value_type& const_reference; |
| 186 | typedef std::ptrdiff_t difference_type; |
| 187 | typedef std::size_t size_type; |
| 188 | typedef typename SubMap::Config Config; |
| 189 | |
| 190 | template <class ContT, class IterVal, class SubIt> |
| 191 | struct ahm_iterator; |
| 192 | |
| 193 | typedef ahm_iterator< |
| 194 | const AtomicHashMap, |
| 195 | const value_type, |
| 196 | typename SubMap::const_iterator> |
| 197 | const_iterator; |
| 198 | typedef ahm_iterator<AtomicHashMap, value_type, typename SubMap::iterator> |
| 199 | iterator; |
| 200 | |
| 201 | public: |
| 202 | const float kGrowthFrac_; // How much to grow when we run out of capacity. |
| 203 | |
| 204 | // The constructor takes a finalSizeEst which is the optimal |
| 205 | // number of elements to maximize space utilization and performance, |
| 206 | // and a Config object to specify more advanced options. |
| 207 | explicit AtomicHashMap(size_t finalSizeEst, const Config& c = Config()); |
| 208 | |
| 209 | ~AtomicHashMap() { |
| 210 | const unsigned int numMaps = |
| 211 | numMapsAllocated_.load(std::memory_order_relaxed); |
| 212 | FOR_EACH_RANGE (i, 0, numMaps) { |
| 213 | SubMap* thisMap = subMaps_[i].load(std::memory_order_relaxed); |
| 214 | DCHECK(thisMap); |
| 215 | SubMap::destroy(thisMap); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | key_equal key_eq() const { |
| 220 | return key_equal(); |
| 221 | } |
| 222 | hasher hash_function() const { |
| 223 | return hasher(); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * insert -- |
| 228 | * |
| 229 | * Returns a pair with iterator to the element at r.first and |
| 230 | * success. Retrieve the index with ret.first.getIndex(). |
| 231 | * |
| 232 | * Does not overwrite on key collision, but returns an iterator to |
| 233 | * the existing element (since this could due to a race with |
| 234 | * another thread, it is often important to check this return |
| 235 | * value). |
| 236 | * |
| 237 | * Allocates new sub maps as the existing ones become full. If |
| 238 | * all sub maps are full, no element is inserted, and |
| 239 | * AtomicHashMapFullError is thrown. |
| 240 | */ |
| 241 | std::pair<iterator, bool> insert(const value_type& r) { |
| 242 | return emplace(r.first, r.second); |
| 243 | } |
| 244 | std::pair<iterator, bool> insert(key_type k, const mapped_type& v) { |
| 245 | return emplace(k, v); |
| 246 | } |
| 247 | std::pair<iterator, bool> insert(value_type&& r) { |
| 248 | return emplace(r.first, std::move(r.second)); |
| 249 | } |
| 250 | std::pair<iterator, bool> insert(key_type k, mapped_type&& v) { |
| 251 | return emplace(k, std::move(v)); |
| 252 | } |
| 253 | |
| 254 | /* |
| 255 | * emplace -- |
| 256 | * |
| 257 | * Same contract as insert(), but performs in-place construction |
| 258 | * of the value type using the specified arguments. |
| 259 | * |
| 260 | * Also, like find(), this method optionally allows 'key_in' to have a type |
| 261 | * different from that stored in the table; see find(). If and only if no |
| 262 | * equal key is already present, this method converts 'key_in' to a key of |
| 263 | * type KeyT using the provided LookupKeyToKeyFcn. |
| 264 | */ |
| 265 | template < |
| 266 | typename LookupKeyT = key_type, |
| 267 | typename LookupHashFcn = hasher, |
| 268 | typename LookupEqualFcn = key_equal, |
| 269 | typename LookupKeyToKeyFcn = key_convert, |
| 270 | typename... ArgTs> |
| 271 | std::pair<iterator, bool> emplace(LookupKeyT k, ArgTs&&... vCtorArg); |
| 272 | |
| 273 | /* |
| 274 | * find -- |
| 275 | * |
| 276 | * Returns the iterator to the element if found, otherwise end(). |
| 277 | * |
| 278 | * As an optional feature, the type of the key to look up (LookupKeyT) is |
| 279 | * allowed to be different from the type of keys actually stored (KeyT). |
| 280 | * |
| 281 | * This enables use cases where materializing the key is costly and usually |
| 282 | * redudant, e.g., canonicalizing/interning a set of strings and being able |
| 283 | * to look up by StringPiece. To use this feature, LookupHashFcn must take |
| 284 | * a LookupKeyT, and LookupEqualFcn must take KeyT and LookupKeyT as first |
| 285 | * and second parameter, respectively. |
| 286 | * |
| 287 | * See folly/test/ArrayHashMapTest.cpp for sample usage. |
| 288 | */ |
| 289 | template < |
| 290 | typename LookupKeyT = key_type, |
| 291 | typename LookupHashFcn = hasher, |
| 292 | typename LookupEqualFcn = key_equal> |
| 293 | iterator find(LookupKeyT k); |
| 294 | |
| 295 | template < |
| 296 | typename LookupKeyT = key_type, |
| 297 | typename LookupHashFcn = hasher, |
| 298 | typename LookupEqualFcn = key_equal> |
| 299 | const_iterator find(LookupKeyT k) const; |
| 300 | |
| 301 | /* |
| 302 | * erase -- |
| 303 | * |
| 304 | * Erases key k from the map |
| 305 | * |
| 306 | * Returns 1 iff the key is found and erased, and 0 otherwise. |
| 307 | */ |
| 308 | size_type erase(key_type k); |
| 309 | |
| 310 | /* |
| 311 | * clear -- |
| 312 | * |
| 313 | * Wipes all keys and values from primary map and destroys all secondary |
| 314 | * maps. Primary map remains allocated and thus the memory can be reused |
| 315 | * in place. Not thread safe. |
| 316 | * |
| 317 | */ |
| 318 | void clear(); |
| 319 | |
| 320 | /* |
| 321 | * size -- |
| 322 | * |
| 323 | * Returns the exact size of the map. Note this is not as cheap as typical |
| 324 | * size() implementations because, for each AtomicHashArray in this AHM, we |
| 325 | * need to grab a lock and accumulate the values from all the thread local |
| 326 | * counters. See folly/ThreadCachedInt.h for more details. |
| 327 | */ |
| 328 | size_t size() const; |
| 329 | |
| 330 | bool empty() const { |
| 331 | return size() == 0; |
| 332 | } |
| 333 | |
| 334 | size_type count(key_type k) const { |
| 335 | return find(k) == end() ? 0 : 1; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * findAt -- |
| 340 | * |
| 341 | * Returns an iterator into the map. |
| 342 | * |
| 343 | * idx should only be an unmodified value returned by calling getIndex() on |
| 344 | * a valid iterator returned by find() or insert(). If idx is invalid you |
| 345 | * have a bug and the process aborts. |
| 346 | */ |
| 347 | iterator findAt(uint32_t idx) { |
| 348 | SimpleRetT ret = findAtInternal(idx); |
| 349 | DCHECK_LT(ret.i, numSubMaps()); |
| 350 | return iterator( |
| 351 | this, |
| 352 | ret.i, |
| 353 | subMaps_[ret.i].load(std::memory_order_relaxed)->makeIter(ret.j)); |
| 354 | } |
| 355 | const_iterator findAt(uint32_t idx) const { |
| 356 | return const_cast<AtomicHashMap*>(this)->findAt(idx); |
| 357 | } |
| 358 | |
| 359 | // Total capacity - summation of capacities of all submaps. |
| 360 | size_t capacity() const; |
| 361 | |
| 362 | // Number of new insertions until current submaps are all at max load factor. |
| 363 | size_t spaceRemaining() const; |
| 364 | |
| 365 | void setEntryCountThreadCacheSize(int32_t newSize) { |
| 366 | const int numMaps = numMapsAllocated_.load(std::memory_order_acquire); |
| 367 | for (int i = 0; i < numMaps; ++i) { |
| 368 | SubMap* map = subMaps_[i].load(std::memory_order_relaxed); |
| 369 | map->setEntryCountThreadCacheSize(newSize); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | // Number of sub maps allocated so far to implement this map. The more there |
| 374 | // are, the worse the performance. |
| 375 | int numSubMaps() const { |
| 376 | return numMapsAllocated_.load(std::memory_order_acquire); |
| 377 | } |
| 378 | |
| 379 | iterator begin() { |
| 380 | iterator it(this, 0, subMaps_[0].load(std::memory_order_relaxed)->begin()); |
| 381 | it.checkAdvanceToNextSubmap(); |
| 382 | return it; |
| 383 | } |
| 384 | |
| 385 | const_iterator begin() const { |
| 386 | const_iterator it( |
| 387 | this, 0, subMaps_[0].load(std::memory_order_relaxed)->begin()); |
| 388 | it.checkAdvanceToNextSubmap(); |
| 389 | return it; |
| 390 | } |
| 391 | |
| 392 | iterator end() { |
| 393 | return iterator(); |
| 394 | } |
| 395 | |
| 396 | const_iterator end() const { |
| 397 | return const_iterator(); |
| 398 | } |
| 399 | |
| 400 | /* Advanced functions for direct access: */ |
| 401 | |
| 402 | inline uint32_t recToIdx(const value_type& r, bool mayInsert = true) { |
| 403 | SimpleRetT ret = |
| 404 | mayInsert ? insertInternal(r.first, r.second) : findInternal(r.first); |
| 405 | return encodeIndex(ret.i, ret.j); |
| 406 | } |
| 407 | |
| 408 | inline uint32_t recToIdx(value_type&& r, bool mayInsert = true) { |
| 409 | SimpleRetT ret = mayInsert ? insertInternal(r.first, std::move(r.second)) |
| 410 | : findInternal(r.first); |
| 411 | return encodeIndex(ret.i, ret.j); |
| 412 | } |
| 413 | |
| 414 | inline uint32_t |
| 415 | recToIdx(key_type k, const mapped_type& v, bool mayInsert = true) { |
| 416 | SimpleRetT ret = mayInsert ? insertInternal(k, v) : findInternal(k); |
| 417 | return encodeIndex(ret.i, ret.j); |
| 418 | } |
| 419 | |
| 420 | inline uint32_t recToIdx(key_type k, mapped_type&& v, bool mayInsert = true) { |
| 421 | SimpleRetT ret = |
| 422 | mayInsert ? insertInternal(k, std::move(v)) : findInternal(k); |
| 423 | return encodeIndex(ret.i, ret.j); |
| 424 | } |
| 425 | |
| 426 | inline uint32_t keyToIdx(const KeyT k, bool mayInsert = false) { |
| 427 | return recToIdx(value_type(k), mayInsert); |
| 428 | } |
| 429 | |
| 430 | inline const value_type& idxToRec(uint32_t idx) const { |
| 431 | SimpleRetT ret = findAtInternal(idx); |
| 432 | return subMaps_[ret.i].load(std::memory_order_relaxed)->idxToRec(ret.j); |
| 433 | } |
| 434 | |
| 435 | /* Private data and helper functions... */ |
| 436 | |
| 437 | private: |
| 438 | // This limits primary submap size to 2^31 ~= 2 billion, secondary submap |
| 439 | // size to 2^(32 - kNumSubMapBits_ - 1) = 2^27 ~= 130 million, and num subMaps |
| 440 | // to 2^kNumSubMapBits_ = 16. |
| 441 | static const uint32_t kNumSubMapBits_ = 4; |
| 442 | static const uint32_t kSecondaryMapBit_ = 1u << 31; // Highest bit |
| 443 | static const uint32_t kSubMapIndexShift_ = 32 - kNumSubMapBits_ - 1; |
| 444 | static const uint32_t kSubMapIndexMask_ = (1 << kSubMapIndexShift_) - 1; |
| 445 | static const uint32_t kNumSubMaps_ = 1 << kNumSubMapBits_; |
| 446 | static const uintptr_t kLockedPtr_ = 0x88ULL << 48; // invalid pointer |
| 447 | |
| 448 | struct SimpleRetT { |
| 449 | uint32_t i; |
| 450 | size_t j; |
| 451 | bool success; |
| 452 | SimpleRetT(uint32_t ii, size_t jj, bool s) : i(ii), j(jj), success(s) {} |
| 453 | SimpleRetT() = default; |
| 454 | }; |
| 455 | |
| 456 | template < |
| 457 | typename LookupKeyT = key_type, |
| 458 | typename LookupHashFcn = hasher, |
| 459 | typename LookupEqualFcn = key_equal, |
| 460 | typename LookupKeyToKeyFcn = key_convert, |
| 461 | typename... ArgTs> |
| 462 | SimpleRetT insertInternal(LookupKeyT key, ArgTs&&... value); |
| 463 | |
| 464 | template < |
| 465 | typename LookupKeyT = key_type, |
| 466 | typename LookupHashFcn = hasher, |
| 467 | typename LookupEqualFcn = key_equal> |
| 468 | SimpleRetT findInternal(const LookupKeyT k) const; |
| 469 | |
| 470 | SimpleRetT findAtInternal(uint32_t idx) const; |
| 471 | |
| 472 | std::atomic<SubMap*> subMaps_[kNumSubMaps_]; |
| 473 | std::atomic<uint32_t> numMapsAllocated_; |
| 474 | |
| 475 | inline bool tryLockMap(unsigned int idx) { |
| 476 | SubMap* val = nullptr; |
| 477 | return subMaps_[idx].compare_exchange_strong( |
| 478 | val, (SubMap*)kLockedPtr_, std::memory_order_acquire); |
| 479 | } |
| 480 | |
| 481 | static inline uint32_t encodeIndex(uint32_t subMap, uint32_t subMapIdx); |
| 482 | |
| 483 | }; // AtomicHashMap |
| 484 | |
| 485 | template < |
| 486 | class KeyT, |
| 487 | class ValueT, |
| 488 | class HashFcn = std::hash<KeyT>, |
| 489 | class EqualFcn = std::equal_to<KeyT>, |
| 490 | class Allocator = std::allocator<char>> |
| 491 | using QuadraticProbingAtomicHashMap = AtomicHashMap< |
| 492 | KeyT, |
| 493 | ValueT, |
| 494 | HashFcn, |
| 495 | EqualFcn, |
| 496 | Allocator, |
| 497 | AtomicHashArrayQuadraticProbeFcn>; |
| 498 | } // namespace folly |
| 499 | |
| 500 | #include <folly/AtomicHashMap-inl.h> |
| 501 | |