| 1 | /* |
| 2 | * Copyright 2011-present Facebook, Inc. |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * For high-level documentation and usage examples see |
| 19 | * folly/docs/small_vector.md |
| 20 | * |
| 21 | * @author Jordan DeLong <delong.j@fb.com> |
| 22 | */ |
| 23 | |
| 24 | #pragma once |
| 25 | |
| 26 | #include <algorithm> |
| 27 | #include <cassert> |
| 28 | #include <cstdlib> |
| 29 | #include <cstring> |
| 30 | #include <iterator> |
| 31 | #include <stdexcept> |
| 32 | #include <type_traits> |
| 33 | #include <utility> |
| 34 | |
| 35 | #include <boost/mpl/count.hpp> |
| 36 | #include <boost/mpl/empty.hpp> |
| 37 | #include <boost/mpl/eval_if.hpp> |
| 38 | #include <boost/mpl/filter_view.hpp> |
| 39 | #include <boost/mpl/front.hpp> |
| 40 | #include <boost/mpl/identity.hpp> |
| 41 | #include <boost/mpl/if.hpp> |
| 42 | #include <boost/mpl/placeholders.hpp> |
| 43 | #include <boost/mpl/size.hpp> |
| 44 | #include <boost/mpl/vector.hpp> |
| 45 | #include <boost/operators.hpp> |
| 46 | |
| 47 | #include <folly/ConstexprMath.h> |
| 48 | #include <folly/FormatTraits.h> |
| 49 | #include <folly/Likely.h> |
| 50 | #include <folly/Portability.h> |
| 51 | #include <folly/ScopeGuard.h> |
| 52 | #include <folly/Traits.h> |
| 53 | #include <folly/lang/Assume.h> |
| 54 | #include <folly/lang/Exception.h> |
| 55 | #include <folly/memory/Malloc.h> |
| 56 | #include <folly/portability/Malloc.h> |
| 57 | |
| 58 | #if (FOLLY_X64 || FOLLY_PPC64) |
| 59 | #define FOLLY_SV_PACK_ATTR FOLLY_PACK_ATTR |
| 60 | #define FOLLY_SV_PACK_PUSH FOLLY_PACK_PUSH |
| 61 | #define FOLLY_SV_PACK_POP FOLLY_PACK_POP |
| 62 | #else |
| 63 | #define FOLLY_SV_PACK_ATTR |
| 64 | #define FOLLY_SV_PACK_PUSH |
| 65 | #define FOLLY_SV_PACK_POP |
| 66 | #endif |
| 67 | |
| 68 | // Ignore shadowing warnings within this file, so includers can use -Wshadow. |
| 69 | FOLLY_PUSH_WARNING |
| 70 | FOLLY_GNU_DISABLE_WARNING("-Wshadow" ) |
| 71 | |
| 72 | namespace folly { |
| 73 | |
| 74 | ////////////////////////////////////////////////////////////////////// |
| 75 | |
| 76 | namespace small_vector_policy { |
| 77 | |
| 78 | ////////////////////////////////////////////////////////////////////// |
| 79 | |
| 80 | /* |
| 81 | * A flag which makes us refuse to use the heap at all. If we |
| 82 | * overflow the in situ capacity we throw an exception. |
| 83 | */ |
| 84 | struct NoHeap; |
| 85 | |
| 86 | ////////////////////////////////////////////////////////////////////// |
| 87 | |
| 88 | } // namespace small_vector_policy |
| 89 | |
| 90 | ////////////////////////////////////////////////////////////////////// |
| 91 | |
| 92 | template <class T, std::size_t M, class A, class B, class C> |
| 93 | class small_vector; |
| 94 | |
| 95 | ////////////////////////////////////////////////////////////////////// |
| 96 | |
| 97 | namespace detail { |
| 98 | |
| 99 | /* |
| 100 | * Move objects in memory to the right into some uninitialized |
| 101 | * memory, where the region overlaps. This doesn't just use |
| 102 | * std::move_backward because move_backward only works if all the |
| 103 | * memory is initialized to type T already. |
| 104 | */ |
| 105 | template <class T> |
| 106 | typename std::enable_if< |
| 107 | std::is_default_constructible<T>::value && |
| 108 | !folly::is_trivially_copyable<T>::value>::type |
| 109 | moveObjectsRight(T* first, T* lastConstructed, T* realLast) { |
| 110 | if (lastConstructed == realLast) { |
| 111 | return; |
| 112 | } |
| 113 | |
| 114 | T* end = first - 1; // Past the end going backwards. |
| 115 | T* out = realLast - 1; |
| 116 | T* in = lastConstructed - 1; |
| 117 | { |
| 118 | auto rollback = makeGuard([&] { |
| 119 | // We want to make sure the same stuff is uninitialized memory |
| 120 | // if we exit via an exception (this is to make sure we provide |
| 121 | // the basic exception safety guarantee for insert functions). |
| 122 | if (out < lastConstructed) { |
| 123 | out = lastConstructed - 1; |
| 124 | } |
| 125 | for (auto it = out + 1; it != realLast; ++it) { |
| 126 | it->~T(); |
| 127 | } |
| 128 | }); |
| 129 | for (; in != end && out >= lastConstructed; --in, --out) { |
| 130 | new (out) T(std::move(*in)); |
| 131 | } |
| 132 | for (; in != end; --in, --out) { |
| 133 | *out = std::move(*in); |
| 134 | } |
| 135 | for (; out >= lastConstructed; --out) { |
| 136 | new (out) T(); |
| 137 | } |
| 138 | rollback.dismiss(); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | // Specialization for trivially copyable types. The call to |
| 143 | // std::move_backward here will just turn into a memmove. (TODO: |
| 144 | // change to std::is_trivially_copyable when that works.) |
| 145 | template <class T> |
| 146 | typename std::enable_if< |
| 147 | !std::is_default_constructible<T>::value || |
| 148 | folly::is_trivially_copyable<T>::value>::type |
| 149 | moveObjectsRight(T* first, T* lastConstructed, T* realLast) { |
| 150 | std::move_backward(first, lastConstructed, realLast); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Populate a region of memory using `op' to construct elements. If |
| 155 | * anything throws, undo what we did. |
| 156 | */ |
| 157 | template <class T, class Function> |
| 158 | void populateMemForward(T* mem, std::size_t n, Function const& op) { |
| 159 | std::size_t idx = 0; |
| 160 | { |
| 161 | auto rollback = makeGuard([&] { |
| 162 | for (std::size_t i = 0; i < idx; ++i) { |
| 163 | mem[i].~T(); |
| 164 | } |
| 165 | }); |
| 166 | for (size_t i = 0; i < n; ++i) { |
| 167 | op(&mem[idx]); |
| 168 | ++idx; |
| 169 | } |
| 170 | rollback.dismiss(); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | template <class SizeType, bool ShouldUseHeap> |
| 175 | struct IntegralSizePolicyBase { |
| 176 | typedef SizeType InternalSizeType; |
| 177 | |
| 178 | IntegralSizePolicyBase() : size_(0) {} |
| 179 | |
| 180 | protected: |
| 181 | static constexpr std::size_t policyMaxSize() { |
| 182 | return SizeType(~kExternMask); |
| 183 | } |
| 184 | |
| 185 | std::size_t doSize() const { |
| 186 | return size_ & ~kExternMask; |
| 187 | } |
| 188 | |
| 189 | std::size_t isExtern() const { |
| 190 | return kExternMask & size_; |
| 191 | } |
| 192 | |
| 193 | void setExtern(bool b) { |
| 194 | if (b) { |
| 195 | size_ |= kExternMask; |
| 196 | } else { |
| 197 | size_ &= ~kExternMask; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void setSize(std::size_t sz) { |
| 202 | assert(sz <= policyMaxSize()); |
| 203 | size_ = (kExternMask & size_) | SizeType(sz); |
| 204 | } |
| 205 | |
| 206 | void swapSizePolicy(IntegralSizePolicyBase& o) { |
| 207 | std::swap(size_, o.size_); |
| 208 | } |
| 209 | |
| 210 | protected: |
| 211 | static bool constexpr kShouldUseHeap = ShouldUseHeap; |
| 212 | |
| 213 | private: |
| 214 | static SizeType constexpr kExternMask = |
| 215 | kShouldUseHeap ? SizeType(1) << (sizeof(SizeType) * 8 - 1) : 0; |
| 216 | |
| 217 | SizeType size_; |
| 218 | }; |
| 219 | |
| 220 | template <class SizeType, bool ShouldUseHeap> |
| 221 | struct IntegralSizePolicy; |
| 222 | |
| 223 | template <class SizeType> |
| 224 | struct IntegralSizePolicy<SizeType, true> |
| 225 | : public IntegralSizePolicyBase<SizeType, true> { |
| 226 | public: |
| 227 | /* |
| 228 | * Move a range to a range of uninitialized memory. Assumes the |
| 229 | * ranges don't overlap. |
| 230 | */ |
| 231 | template <class T> |
| 232 | typename std::enable_if<!folly::is_trivially_copyable<T>::value>::type |
| 233 | moveToUninitialized(T* first, T* last, T* out) { |
| 234 | std::size_t idx = 0; |
| 235 | { |
| 236 | auto rollback = makeGuard([&] { |
| 237 | // Even for callers trying to give the strong guarantee |
| 238 | // (e.g. push_back) it's ok to assume here that we don't have to |
| 239 | // move things back and that it was a copy constructor that |
| 240 | // threw: if someone throws from a move constructor the effects |
| 241 | // are unspecified. |
| 242 | for (std::size_t i = 0; i < idx; ++i) { |
| 243 | out[i].~T(); |
| 244 | } |
| 245 | }); |
| 246 | for (; first != last; ++first, ++idx) { |
| 247 | new (&out[idx]) T(std::move(*first)); |
| 248 | } |
| 249 | rollback.dismiss(); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | // Specialization for trivially copyable types. |
| 254 | template <class T> |
| 255 | typename std::enable_if<folly::is_trivially_copyable<T>::value>::type |
| 256 | moveToUninitialized(T* first, T* last, T* out) { |
| 257 | std::memmove( |
| 258 | static_cast<void*>(out), |
| 259 | static_cast<void const*>(first), |
| 260 | (last - first) * sizeof *first); |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Move a range to a range of uninitialized memory. Assumes the |
| 265 | * ranges don't overlap. Inserts an element at out + pos using |
| 266 | * emplaceFunc(). out will contain (end - begin) + 1 elements on success and |
| 267 | * none on failure. If emplaceFunc() throws [begin, end) is unmodified. |
| 268 | */ |
| 269 | template <class T, class EmplaceFunc> |
| 270 | void moveToUninitializedEmplace( |
| 271 | T* begin, |
| 272 | T* end, |
| 273 | T* out, |
| 274 | SizeType pos, |
| 275 | EmplaceFunc&& emplaceFunc) { |
| 276 | // Must be called first so that if it throws [begin, end) is unmodified. |
| 277 | // We have to support the strong exception guarantee for emplace_back(). |
| 278 | emplaceFunc(out + pos); |
| 279 | // move old elements to the left of the new one |
| 280 | { |
| 281 | auto rollback = makeGuard([&] { // |
| 282 | out[pos].~T(); |
| 283 | }); |
| 284 | this->moveToUninitialized(begin, begin + pos, out); |
| 285 | rollback.dismiss(); |
| 286 | } |
| 287 | // move old elements to the right of the new one |
| 288 | { |
| 289 | auto rollback = makeGuard([&] { |
| 290 | for (SizeType i = 0; i <= pos; ++i) { |
| 291 | out[i].~T(); |
| 292 | } |
| 293 | }); |
| 294 | if (begin + pos < end) { |
| 295 | this->moveToUninitialized(begin + pos, end, out + pos + 1); |
| 296 | } |
| 297 | rollback.dismiss(); |
| 298 | } |
| 299 | } |
| 300 | }; |
| 301 | |
| 302 | template <class SizeType> |
| 303 | struct IntegralSizePolicy<SizeType, false> |
| 304 | : public IntegralSizePolicyBase<SizeType, false> { |
| 305 | public: |
| 306 | template <class T> |
| 307 | void moveToUninitialized(T* /*first*/, T* /*last*/, T* /*out*/) { |
| 308 | assume_unreachable(); |
| 309 | } |
| 310 | template <class T, class EmplaceFunc> |
| 311 | void moveToUninitializedEmplace( |
| 312 | T* /* begin */, |
| 313 | T* /* end */, |
| 314 | T* /* out */, |
| 315 | SizeType /* pos */, |
| 316 | EmplaceFunc&& /* emplaceFunc */) { |
| 317 | assume_unreachable(); |
| 318 | } |
| 319 | }; |
| 320 | |
| 321 | /* |
| 322 | * If you're just trying to use this class, ignore everything about |
| 323 | * this next small_vector_base class thing. |
| 324 | * |
| 325 | * The purpose of this junk is to minimize sizeof(small_vector<>) |
| 326 | * and allow specifying the template parameters in whatever order is |
| 327 | * convenient for the user. There's a few extra steps here to try |
| 328 | * to keep the error messages at least semi-reasonable. |
| 329 | * |
| 330 | * Apologies for all the black magic. |
| 331 | */ |
| 332 | namespace mpl = boost::mpl; |
| 333 | template < |
| 334 | class Value, |
| 335 | std::size_t RequestedMaxInline, |
| 336 | class InPolicyA, |
| 337 | class InPolicyB, |
| 338 | class InPolicyC> |
| 339 | struct small_vector_base { |
| 340 | typedef mpl::vector<InPolicyA, InPolicyB, InPolicyC> PolicyList; |
| 341 | |
| 342 | /* |
| 343 | * Determine the size type |
| 344 | */ |
| 345 | typedef typename mpl::filter_view< |
| 346 | PolicyList, |
| 347 | std::is_integral<mpl::placeholders::_1>>::type Integrals; |
| 348 | typedef typename mpl::eval_if< |
| 349 | mpl::empty<Integrals>, |
| 350 | mpl::identity<std::size_t>, |
| 351 | mpl::front<Integrals>>::type SizeType; |
| 352 | |
| 353 | static_assert( |
| 354 | std::is_unsigned<SizeType>::value, |
| 355 | "Size type should be an unsigned integral type" ); |
| 356 | static_assert( |
| 357 | mpl::size<Integrals>::value == 0 || mpl::size<Integrals>::value == 1, |
| 358 | "Multiple size types specified in small_vector<>" ); |
| 359 | |
| 360 | /* |
| 361 | * Determine whether we should allow spilling to the heap or not. |
| 362 | */ |
| 363 | typedef typename mpl::count<PolicyList, small_vector_policy::NoHeap>::type |
| 364 | HasNoHeap; |
| 365 | |
| 366 | static_assert( |
| 367 | HasNoHeap::value == 0 || HasNoHeap::value == 1, |
| 368 | "Multiple copies of small_vector_policy::NoHeap " |
| 369 | "supplied; this is probably a mistake" ); |
| 370 | |
| 371 | /* |
| 372 | * Make the real policy base classes. |
| 373 | */ |
| 374 | typedef IntegralSizePolicy<SizeType, !HasNoHeap::value> ActualSizePolicy; |
| 375 | |
| 376 | /* |
| 377 | * Now inherit from them all. This is done in such a convoluted |
| 378 | * way to make sure we get the empty base optimizaton on all these |
| 379 | * types to keep sizeof(small_vector<>) minimal. |
| 380 | */ |
| 381 | typedef boost::totally_ordered1< |
| 382 | small_vector<Value, RequestedMaxInline, InPolicyA, InPolicyB, InPolicyC>, |
| 383 | ActualSizePolicy> |
| 384 | type; |
| 385 | }; |
| 386 | |
| 387 | template <class T> |
| 388 | T* pointerFlagSet(T* p) { |
| 389 | return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(p) | 1); |
| 390 | } |
| 391 | template <class T> |
| 392 | bool pointerFlagGet(T* p) { |
| 393 | return reinterpret_cast<uintptr_t>(p) & 1; |
| 394 | } |
| 395 | template <class T> |
| 396 | T* pointerFlagClear(T* p) { |
| 397 | return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(p) & ~uintptr_t(1)); |
| 398 | } |
| 399 | inline void* shiftPointer(void* p, size_t sizeBytes) { |
| 400 | return static_cast<char*>(p) + sizeBytes; |
| 401 | } |
| 402 | } // namespace detail |
| 403 | |
| 404 | ////////////////////////////////////////////////////////////////////// |
| 405 | FOLLY_SV_PACK_PUSH |
| 406 | template < |
| 407 | class Value, |
| 408 | std::size_t RequestedMaxInline = 1, |
| 409 | class PolicyA = void, |
| 410 | class PolicyB = void, |
| 411 | class PolicyC = void> |
| 412 | class small_vector : public detail::small_vector_base< |
| 413 | Value, |
| 414 | RequestedMaxInline, |
| 415 | PolicyA, |
| 416 | PolicyB, |
| 417 | PolicyC>::type { |
| 418 | typedef typename detail:: |
| 419 | small_vector_base<Value, RequestedMaxInline, PolicyA, PolicyB, PolicyC>:: |
| 420 | type BaseType; |
| 421 | typedef typename BaseType::InternalSizeType InternalSizeType; |
| 422 | |
| 423 | /* |
| 424 | * Figure out the max number of elements we should inline. (If |
| 425 | * the user asks for less inlined elements than we can fit unioned |
| 426 | * into our value_type*, we will inline more than they asked.) |
| 427 | */ |
| 428 | static constexpr std::size_t MaxInline{ |
| 429 | constexpr_max(sizeof(Value*) / sizeof(Value), RequestedMaxInline)}; |
| 430 | |
| 431 | public: |
| 432 | typedef std::size_t size_type; |
| 433 | typedef Value value_type; |
| 434 | typedef value_type& reference; |
| 435 | typedef value_type const& const_reference; |
| 436 | typedef value_type* iterator; |
| 437 | typedef value_type* pointer; |
| 438 | typedef value_type const* const_iterator; |
| 439 | typedef value_type const* const_pointer; |
| 440 | typedef std::ptrdiff_t difference_type; |
| 441 | |
| 442 | typedef std::reverse_iterator<iterator> reverse_iterator; |
| 443 | typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
| 444 | |
| 445 | small_vector() = default; |
| 446 | // Allocator is unused here. It is taken in for compatibility with std::vector |
| 447 | // interface, but it will be ignored. |
| 448 | small_vector(const std::allocator<Value>&) {} |
| 449 | |
| 450 | small_vector(small_vector const& o) { |
| 451 | auto n = o.size(); |
| 452 | makeSize(n); |
| 453 | { |
| 454 | auto rollback = makeGuard([&] { |
| 455 | if (this->isExtern()) { |
| 456 | u.freeHeap(); |
| 457 | } |
| 458 | }); |
| 459 | std::uninitialized_copy(o.begin(), o.end(), begin()); |
| 460 | rollback.dismiss(); |
| 461 | } |
| 462 | this->setSize(n); |
| 463 | } |
| 464 | |
| 465 | small_vector(small_vector&& o) noexcept( |
| 466 | std::is_nothrow_move_constructible<Value>::value) { |
| 467 | if (o.isExtern()) { |
| 468 | swap(o); |
| 469 | } else { |
| 470 | std::uninitialized_copy( |
| 471 | std::make_move_iterator(o.begin()), |
| 472 | std::make_move_iterator(o.end()), |
| 473 | begin()); |
| 474 | this->setSize(o.size()); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | small_vector(std::initializer_list<value_type> il) { |
| 479 | constructImpl(il.begin(), il.end(), std::false_type()); |
| 480 | } |
| 481 | |
| 482 | explicit small_vector(size_type n) { |
| 483 | doConstruct(n, [&](void* p) { new (p) value_type(); }); |
| 484 | } |
| 485 | |
| 486 | small_vector(size_type n, value_type const& t) { |
| 487 | doConstruct(n, [&](void* p) { new (p) value_type(t); }); |
| 488 | } |
| 489 | |
| 490 | template <class Arg> |
| 491 | explicit small_vector(Arg arg1, Arg arg2) { |
| 492 | // Forward using std::is_arithmetic to get to the proper |
| 493 | // implementation; this disambiguates between the iterators and |
| 494 | // (size_t, value_type) meaning for this constructor. |
| 495 | constructImpl(arg1, arg2, std::is_arithmetic<Arg>()); |
| 496 | } |
| 497 | |
| 498 | ~small_vector() { |
| 499 | for (auto& t : *this) { |
| 500 | (&t)->~value_type(); |
| 501 | } |
| 502 | if (this->isExtern()) { |
| 503 | u.freeHeap(); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | small_vector& operator=(small_vector const& o) { |
| 508 | if (FOLLY_LIKELY(this != &o)) { |
| 509 | assign(o.begin(), o.end()); |
| 510 | } |
| 511 | return *this; |
| 512 | } |
| 513 | |
| 514 | small_vector& operator=(small_vector&& o) { |
| 515 | // TODO: optimization: |
| 516 | // if both are internal, use move assignment where possible |
| 517 | if (FOLLY_LIKELY(this != &o)) { |
| 518 | clear(); |
| 519 | swap(o); |
| 520 | } |
| 521 | return *this; |
| 522 | } |
| 523 | |
| 524 | bool operator==(small_vector const& o) const { |
| 525 | return size() == o.size() && std::equal(begin(), end(), o.begin()); |
| 526 | } |
| 527 | |
| 528 | bool operator<(small_vector const& o) const { |
| 529 | return std::lexicographical_compare(begin(), end(), o.begin(), o.end()); |
| 530 | } |
| 531 | |
| 532 | static constexpr size_type max_size() { |
| 533 | return !BaseType::kShouldUseHeap ? static_cast<size_type>(MaxInline) |
| 534 | : BaseType::policyMaxSize(); |
| 535 | } |
| 536 | |
| 537 | size_type size() const { |
| 538 | return this->doSize(); |
| 539 | } |
| 540 | bool empty() const { |
| 541 | return !size(); |
| 542 | } |
| 543 | |
| 544 | iterator begin() { |
| 545 | return data(); |
| 546 | } |
| 547 | iterator end() { |
| 548 | return data() + size(); |
| 549 | } |
| 550 | const_iterator begin() const { |
| 551 | return data(); |
| 552 | } |
| 553 | const_iterator end() const { |
| 554 | return data() + size(); |
| 555 | } |
| 556 | const_iterator cbegin() const { |
| 557 | return begin(); |
| 558 | } |
| 559 | const_iterator cend() const { |
| 560 | return end(); |
| 561 | } |
| 562 | |
| 563 | reverse_iterator rbegin() { |
| 564 | return reverse_iterator(end()); |
| 565 | } |
| 566 | reverse_iterator rend() { |
| 567 | return reverse_iterator(begin()); |
| 568 | } |
| 569 | |
| 570 | const_reverse_iterator rbegin() const { |
| 571 | return const_reverse_iterator(end()); |
| 572 | } |
| 573 | |
| 574 | const_reverse_iterator rend() const { |
| 575 | return const_reverse_iterator(begin()); |
| 576 | } |
| 577 | |
| 578 | const_reverse_iterator crbegin() const { |
| 579 | return rbegin(); |
| 580 | } |
| 581 | const_reverse_iterator crend() const { |
| 582 | return rend(); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * Usually one of the simplest functions in a Container-like class |
| 587 | * but a bit more complex here. We have to handle all combinations |
| 588 | * of in-place vs. heap between this and o. |
| 589 | * |
| 590 | * Basic guarantee only. Provides the nothrow guarantee iff our |
| 591 | * value_type has a nothrow move or copy constructor. |
| 592 | */ |
| 593 | void swap(small_vector& o) { |
| 594 | using std::swap; // Allow ADL on swap for our value_type. |
| 595 | |
| 596 | if (this->isExtern() && o.isExtern()) { |
| 597 | this->swapSizePolicy(o); |
| 598 | |
| 599 | auto thisCapacity = this->capacity(); |
| 600 | auto oCapacity = o.capacity(); |
| 601 | |
| 602 | auto* tmp = u.pdata_.heap_; |
| 603 | u.pdata_.heap_ = o.u.pdata_.heap_; |
| 604 | o.u.pdata_.heap_ = tmp; |
| 605 | |
| 606 | this->setCapacity(oCapacity); |
| 607 | o.setCapacity(thisCapacity); |
| 608 | |
| 609 | return; |
| 610 | } |
| 611 | |
| 612 | if (!this->isExtern() && !o.isExtern()) { |
| 613 | auto& oldSmall = size() < o.size() ? *this : o; |
| 614 | auto& oldLarge = size() < o.size() ? o : *this; |
| 615 | |
| 616 | for (size_type i = 0; i < oldSmall.size(); ++i) { |
| 617 | swap(oldSmall[i], oldLarge[i]); |
| 618 | } |
| 619 | |
| 620 | size_type i = oldSmall.size(); |
| 621 | const size_type ci = i; |
| 622 | { |
| 623 | auto rollback = makeGuard([&] { |
| 624 | oldSmall.setSize(i); |
| 625 | for (; i < oldLarge.size(); ++i) { |
| 626 | oldLarge[i].~value_type(); |
| 627 | } |
| 628 | oldLarge.setSize(ci); |
| 629 | }); |
| 630 | for (; i < oldLarge.size(); ++i) { |
| 631 | auto addr = oldSmall.begin() + i; |
| 632 | new (addr) value_type(std::move(oldLarge[i])); |
| 633 | oldLarge[i].~value_type(); |
| 634 | } |
| 635 | rollback.dismiss(); |
| 636 | } |
| 637 | oldSmall.setSize(i); |
| 638 | oldLarge.setSize(ci); |
| 639 | return; |
| 640 | } |
| 641 | |
| 642 | // isExtern != o.isExtern() |
| 643 | auto& oldExtern = o.isExtern() ? o : *this; |
| 644 | auto& oldIntern = o.isExtern() ? *this : o; |
| 645 | |
| 646 | auto oldExternCapacity = oldExtern.capacity(); |
| 647 | auto oldExternHeap = oldExtern.u.pdata_.heap_; |
| 648 | |
| 649 | auto buff = oldExtern.u.buffer(); |
| 650 | size_type i = 0; |
| 651 | { |
| 652 | auto rollback = makeGuard([&] { |
| 653 | for (size_type kill = 0; kill < i; ++kill) { |
| 654 | buff[kill].~value_type(); |
| 655 | } |
| 656 | for (; i < oldIntern.size(); ++i) { |
| 657 | oldIntern[i].~value_type(); |
| 658 | } |
| 659 | oldIntern.setSize(0); |
| 660 | oldExtern.u.pdata_.heap_ = oldExternHeap; |
| 661 | oldExtern.setCapacity(oldExternCapacity); |
| 662 | }); |
| 663 | for (; i < oldIntern.size(); ++i) { |
| 664 | new (&buff[i]) value_type(std::move(oldIntern[i])); |
| 665 | oldIntern[i].~value_type(); |
| 666 | } |
| 667 | rollback.dismiss(); |
| 668 | } |
| 669 | oldIntern.u.pdata_.heap_ = oldExternHeap; |
| 670 | this->swapSizePolicy(o); |
| 671 | oldIntern.setCapacity(oldExternCapacity); |
| 672 | } |
| 673 | |
| 674 | void resize(size_type sz) { |
| 675 | if (sz < size()) { |
| 676 | erase(begin() + sz, end()); |
| 677 | return; |
| 678 | } |
| 679 | makeSize(sz); |
| 680 | detail::populateMemForward( |
| 681 | begin() + size(), sz - size(), [&](void* p) { new (p) value_type(); }); |
| 682 | this->setSize(sz); |
| 683 | } |
| 684 | |
| 685 | void resize(size_type sz, value_type const& v) { |
| 686 | if (sz < size()) { |
| 687 | erase(begin() + sz, end()); |
| 688 | return; |
| 689 | } |
| 690 | makeSize(sz); |
| 691 | detail::populateMemForward( |
| 692 | begin() + size(), sz - size(), [&](void* p) { new (p) value_type(v); }); |
| 693 | this->setSize(sz); |
| 694 | } |
| 695 | |
| 696 | value_type* data() noexcept { |
| 697 | return this->isExtern() ? u.heap() : u.buffer(); |
| 698 | } |
| 699 | |
| 700 | value_type const* data() const noexcept { |
| 701 | return this->isExtern() ? u.heap() : u.buffer(); |
| 702 | } |
| 703 | |
| 704 | template <class... Args> |
| 705 | iterator emplace(const_iterator p, Args&&... args) { |
| 706 | if (p == cend()) { |
| 707 | emplace_back(std::forward<Args>(args)...); |
| 708 | return end() - 1; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * We implement emplace at places other than at the back with a |
| 713 | * temporary for exception safety reasons. It is possible to |
| 714 | * avoid having to do this, but it becomes hard to maintain the |
| 715 | * basic exception safety guarantee (unless you respond to a copy |
| 716 | * constructor throwing by clearing the whole vector). |
| 717 | * |
| 718 | * The reason for this is that otherwise you have to destruct an |
| 719 | * element before constructing this one in its place---if the |
| 720 | * constructor throws, you either need a nothrow default |
| 721 | * constructor or a nothrow copy/move to get something back in the |
| 722 | * "gap", and the vector requirements don't guarantee we have any |
| 723 | * of these. Clearing the whole vector is a legal response in |
| 724 | * this situation, but it seems like this implementation is easy |
| 725 | * enough and probably better. |
| 726 | */ |
| 727 | return insert(p, value_type(std::forward<Args>(args)...)); |
| 728 | } |
| 729 | |
| 730 | void reserve(size_type sz) { |
| 731 | makeSize(sz); |
| 732 | } |
| 733 | |
| 734 | size_type capacity() const { |
| 735 | if (this->isExtern()) { |
| 736 | if (u.hasCapacity()) { |
| 737 | return u.getCapacity(); |
| 738 | } |
| 739 | return malloc_usable_size(u.pdata_.heap_) / sizeof(value_type); |
| 740 | } |
| 741 | return MaxInline; |
| 742 | } |
| 743 | |
| 744 | void shrink_to_fit() { |
| 745 | if (!this->isExtern()) { |
| 746 | return; |
| 747 | } |
| 748 | |
| 749 | small_vector tmp(begin(), end()); |
| 750 | tmp.swap(*this); |
| 751 | } |
| 752 | |
| 753 | template <class... Args> |
| 754 | void emplace_back(Args&&... args) { |
| 755 | if (capacity() == size()) { |
| 756 | // Any of args may be references into the vector. |
| 757 | // When we are reallocating, we have to be careful to construct the new |
| 758 | // element before modifying the data in the old buffer. |
| 759 | makeSize( |
| 760 | size() + 1, |
| 761 | [&](void* p) { new (p) value_type(std::forward<Args>(args)...); }, |
| 762 | size()); |
| 763 | } else { |
| 764 | new (end()) value_type(std::forward<Args>(args)...); |
| 765 | } |
| 766 | this->setSize(size() + 1); |
| 767 | } |
| 768 | |
| 769 | void push_back(value_type&& t) { |
| 770 | return emplace_back(std::move(t)); |
| 771 | } |
| 772 | |
| 773 | void push_back(value_type const& t) { |
| 774 | emplace_back(t); |
| 775 | } |
| 776 | |
| 777 | void pop_back() { |
| 778 | erase(end() - 1); |
| 779 | } |
| 780 | |
| 781 | iterator insert(const_iterator constp, value_type&& t) { |
| 782 | iterator p = unconst(constp); |
| 783 | |
| 784 | if (p == end()) { |
| 785 | push_back(std::move(t)); |
| 786 | return end() - 1; |
| 787 | } |
| 788 | |
| 789 | auto offset = p - begin(); |
| 790 | |
| 791 | if (capacity() == size()) { |
| 792 | makeSize( |
| 793 | size() + 1, |
| 794 | [&t](void* ptr) { new (ptr) value_type(std::move(t)); }, |
| 795 | offset); |
| 796 | this->setSize(this->size() + 1); |
| 797 | } else { |
| 798 | detail::moveObjectsRight( |
| 799 | data() + offset, data() + size(), data() + size() + 1); |
| 800 | this->setSize(size() + 1); |
| 801 | data()[offset] = std::move(t); |
| 802 | } |
| 803 | return begin() + offset; |
| 804 | } |
| 805 | |
| 806 | iterator insert(const_iterator p, value_type const& t) { |
| 807 | // Make a copy and forward to the rvalue value_type&& overload |
| 808 | // above. |
| 809 | return insert(p, value_type(t)); |
| 810 | } |
| 811 | |
| 812 | iterator insert(const_iterator pos, size_type n, value_type const& val) { |
| 813 | auto offset = pos - begin(); |
| 814 | makeSize(size() + n); |
| 815 | detail::moveObjectsRight( |
| 816 | data() + offset, data() + size(), data() + size() + n); |
| 817 | this->setSize(size() + n); |
| 818 | std::generate_n(begin() + offset, n, [&] { return val; }); |
| 819 | return begin() + offset; |
| 820 | } |
| 821 | |
| 822 | template <class Arg> |
| 823 | iterator insert(const_iterator p, Arg arg1, Arg arg2) { |
| 824 | // Forward using std::is_arithmetic to get to the proper |
| 825 | // implementation; this disambiguates between the iterators and |
| 826 | // (size_t, value_type) meaning for this function. |
| 827 | return insertImpl(unconst(p), arg1, arg2, std::is_arithmetic<Arg>()); |
| 828 | } |
| 829 | |
| 830 | iterator insert(const_iterator p, std::initializer_list<value_type> il) { |
| 831 | return insert(p, il.begin(), il.end()); |
| 832 | } |
| 833 | |
| 834 | iterator erase(const_iterator q) { |
| 835 | std::move(unconst(q) + 1, end(), unconst(q)); |
| 836 | (data() + size() - 1)->~value_type(); |
| 837 | this->setSize(size() - 1); |
| 838 | return unconst(q); |
| 839 | } |
| 840 | |
| 841 | iterator erase(const_iterator q1, const_iterator q2) { |
| 842 | if (q1 == q2) { |
| 843 | return unconst(q1); |
| 844 | } |
| 845 | std::move(unconst(q2), end(), unconst(q1)); |
| 846 | for (auto it = (end() - std::distance(q1, q2)); it != end(); ++it) { |
| 847 | it->~value_type(); |
| 848 | } |
| 849 | this->setSize(size() - (q2 - q1)); |
| 850 | return unconst(q1); |
| 851 | } |
| 852 | |
| 853 | void clear() { |
| 854 | erase(begin(), end()); |
| 855 | } |
| 856 | |
| 857 | template <class Arg> |
| 858 | void assign(Arg first, Arg last) { |
| 859 | clear(); |
| 860 | insert(end(), first, last); |
| 861 | } |
| 862 | |
| 863 | void assign(std::initializer_list<value_type> il) { |
| 864 | assign(il.begin(), il.end()); |
| 865 | } |
| 866 | |
| 867 | void assign(size_type n, const value_type& t) { |
| 868 | clear(); |
| 869 | insert(end(), n, t); |
| 870 | } |
| 871 | |
| 872 | reference front() { |
| 873 | assert(!empty()); |
| 874 | return *begin(); |
| 875 | } |
| 876 | reference back() { |
| 877 | assert(!empty()); |
| 878 | return *(end() - 1); |
| 879 | } |
| 880 | const_reference front() const { |
| 881 | assert(!empty()); |
| 882 | return *begin(); |
| 883 | } |
| 884 | const_reference back() const { |
| 885 | assert(!empty()); |
| 886 | return *(end() - 1); |
| 887 | } |
| 888 | |
| 889 | reference operator[](size_type i) { |
| 890 | assert(i < size()); |
| 891 | return *(begin() + i); |
| 892 | } |
| 893 | |
| 894 | const_reference operator[](size_type i) const { |
| 895 | assert(i < size()); |
| 896 | return *(begin() + i); |
| 897 | } |
| 898 | |
| 899 | reference at(size_type i) { |
| 900 | if (i >= size()) { |
| 901 | throw_exception<std::out_of_range>("index out of range" ); |
| 902 | } |
| 903 | return (*this)[i]; |
| 904 | } |
| 905 | |
| 906 | const_reference at(size_type i) const { |
| 907 | if (i >= size()) { |
| 908 | throw_exception<std::out_of_range>("index out of range" ); |
| 909 | } |
| 910 | return (*this)[i]; |
| 911 | } |
| 912 | |
| 913 | private: |
| 914 | static iterator unconst(const_iterator it) { |
| 915 | return const_cast<iterator>(it); |
| 916 | } |
| 917 | |
| 918 | // The std::false_type argument is part of disambiguating the |
| 919 | // iterator insert functions from integral types (see insert().) |
| 920 | template <class It> |
| 921 | iterator insertImpl(iterator pos, It first, It last, std::false_type) { |
| 922 | typedef typename std::iterator_traits<It>::iterator_category categ; |
| 923 | if (std::is_same<categ, std::input_iterator_tag>::value) { |
| 924 | auto offset = pos - begin(); |
| 925 | while (first != last) { |
| 926 | pos = insert(pos, *first++); |
| 927 | ++pos; |
| 928 | } |
| 929 | return begin() + offset; |
| 930 | } |
| 931 | |
| 932 | auto distance = std::distance(first, last); |
| 933 | auto offset = pos - begin(); |
| 934 | makeSize(size() + distance); |
| 935 | detail::moveObjectsRight( |
| 936 | data() + offset, data() + size(), data() + size() + distance); |
| 937 | this->setSize(size() + distance); |
| 938 | std::copy_n(first, distance, begin() + offset); |
| 939 | return begin() + offset; |
| 940 | } |
| 941 | |
| 942 | iterator |
| 943 | insertImpl(iterator pos, size_type n, const value_type& val, std::true_type) { |
| 944 | // The true_type means this should call the size_t,value_type |
| 945 | // overload. (See insert().) |
| 946 | return insert(pos, n, val); |
| 947 | } |
| 948 | |
| 949 | // The std::false_type argument came from std::is_arithmetic as part |
| 950 | // of disambiguating an overload (see the comment in the |
| 951 | // constructor). |
| 952 | template <class It> |
| 953 | void constructImpl(It first, It last, std::false_type) { |
| 954 | typedef typename std::iterator_traits<It>::iterator_category categ; |
| 955 | if (std::is_same<categ, std::input_iterator_tag>::value) { |
| 956 | // With iterators that only allow a single pass, we can't really |
| 957 | // do anything sane here. |
| 958 | while (first != last) { |
| 959 | emplace_back(*first++); |
| 960 | } |
| 961 | return; |
| 962 | } |
| 963 | |
| 964 | auto distance = std::distance(first, last); |
| 965 | makeSize(distance); |
| 966 | this->setSize(distance); |
| 967 | { |
| 968 | auto rollback = makeGuard([&] { |
| 969 | if (this->isExtern()) { |
| 970 | u.freeHeap(); |
| 971 | } |
| 972 | }); |
| 973 | detail::populateMemForward( |
| 974 | data(), distance, [&](void* p) { new (p) value_type(*first++); }); |
| 975 | rollback.dismiss(); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | template <typename InitFunc> |
| 980 | void doConstruct(size_type n, InitFunc&& func) { |
| 981 | makeSize(n); |
| 982 | this->setSize(n); |
| 983 | { |
| 984 | auto rollback = makeGuard([&] { |
| 985 | if (this->isExtern()) { |
| 986 | u.freeHeap(); |
| 987 | } |
| 988 | }); |
| 989 | detail::populateMemForward(data(), n, std::forward<InitFunc>(func)); |
| 990 | rollback.dismiss(); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | // The true_type means we should forward to the size_t,value_type |
| 995 | // overload. |
| 996 | void constructImpl(size_type n, value_type const& val, std::true_type) { |
| 997 | doConstruct(n, [&](void* p) { new (p) value_type(val); }); |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | * Compute the size after growth. |
| 1002 | */ |
| 1003 | size_type computeNewSize() const { |
| 1004 | return std::min((3 * capacity()) / 2 + 1, max_size()); |
| 1005 | } |
| 1006 | |
| 1007 | void makeSize(size_type newSize) { |
| 1008 | makeSizeInternal(newSize, false, [](void*) { assume_unreachable(); }, 0); |
| 1009 | } |
| 1010 | |
| 1011 | template <typename EmplaceFunc> |
| 1012 | void makeSize(size_type newSize, EmplaceFunc&& emplaceFunc, size_type pos) { |
| 1013 | assert(size() == capacity()); |
| 1014 | makeSizeInternal( |
| 1015 | newSize, true, std::forward<EmplaceFunc>(emplaceFunc), pos); |
| 1016 | } |
| 1017 | |
| 1018 | /* |
| 1019 | * Ensure we have a large enough memory region to be size `newSize'. |
| 1020 | * Will move/copy elements if we are spilling to heap_ or needed to |
| 1021 | * allocate a new region, but if resized in place doesn't initialize |
| 1022 | * anything in the new region. In any case doesn't change size(). |
| 1023 | * Supports insertion of new element during reallocation by given |
| 1024 | * pointer to new element and position of new element. |
| 1025 | * NOTE: If reallocation is not needed, insert must be false, |
| 1026 | * because we only know how to emplace elements into new memory. |
| 1027 | */ |
| 1028 | template <typename EmplaceFunc> |
| 1029 | void makeSizeInternal( |
| 1030 | size_type newSize, |
| 1031 | bool insert, |
| 1032 | EmplaceFunc&& emplaceFunc, |
| 1033 | size_type pos) { |
| 1034 | if (newSize > max_size()) { |
| 1035 | throw_exception<std::length_error>("max_size exceeded in small_vector" ); |
| 1036 | } |
| 1037 | if (newSize <= capacity()) { |
| 1038 | assert(!insert); |
| 1039 | return; |
| 1040 | } |
| 1041 | |
| 1042 | assert(this->kShouldUseHeap); |
| 1043 | // This branch isn't needed for correctness, but allows the optimizer to |
| 1044 | // skip generating code for the rest of this function in NoHeap |
| 1045 | // small_vectors. |
| 1046 | if (!this->kShouldUseHeap) { |
| 1047 | return; |
| 1048 | } |
| 1049 | |
| 1050 | newSize = std::max(newSize, computeNewSize()); |
| 1051 | |
| 1052 | auto needBytes = newSize * sizeof(value_type); |
| 1053 | // If the capacity isn't explicitly stored inline, but the heap |
| 1054 | // allocation is grown to over some threshold, we should store |
| 1055 | // a capacity at the front of the heap allocation. |
| 1056 | bool heapifyCapacity = |
| 1057 | !kHasInlineCapacity && needBytes > kHeapifyCapacityThreshold; |
| 1058 | if (heapifyCapacity) { |
| 1059 | needBytes += kHeapifyCapacitySize; |
| 1060 | } |
| 1061 | auto const sizeBytes = goodMallocSize(needBytes); |
| 1062 | void* newh = checkedMalloc(sizeBytes); |
| 1063 | // We expect newh to be at least 2-aligned, because we want to |
| 1064 | // use its least significant bit as a flag. |
| 1065 | assert(!detail::pointerFlagGet(newh)); |
| 1066 | |
| 1067 | value_type* newp = static_cast<value_type*>( |
| 1068 | heapifyCapacity ? detail::shiftPointer(newh, kHeapifyCapacitySize) |
| 1069 | : newh); |
| 1070 | |
| 1071 | { |
| 1072 | auto rollback = makeGuard([&] { // |
| 1073 | free(newh); |
| 1074 | }); |
| 1075 | if (insert) { |
| 1076 | // move and insert the new element |
| 1077 | this->moveToUninitializedEmplace( |
| 1078 | begin(), end(), newp, pos, std::forward<EmplaceFunc>(emplaceFunc)); |
| 1079 | } else { |
| 1080 | // move without inserting new element |
| 1081 | this->moveToUninitialized(begin(), end(), newp); |
| 1082 | } |
| 1083 | rollback.dismiss(); |
| 1084 | } |
| 1085 | for (auto& val : *this) { |
| 1086 | val.~value_type(); |
| 1087 | } |
| 1088 | |
| 1089 | if (this->isExtern()) { |
| 1090 | u.freeHeap(); |
| 1091 | } |
| 1092 | auto availableSizeBytes = sizeBytes; |
| 1093 | if (heapifyCapacity) { |
| 1094 | u.pdata_.heap_ = detail::pointerFlagSet(newh); |
| 1095 | availableSizeBytes -= kHeapifyCapacitySize; |
| 1096 | } else { |
| 1097 | u.pdata_.heap_ = newh; |
| 1098 | } |
| 1099 | this->setExtern(true); |
| 1100 | this->setCapacity(availableSizeBytes / sizeof(value_type)); |
| 1101 | } |
| 1102 | |
| 1103 | /* |
| 1104 | * This will set the capacity field, stored inline in the storage_ field |
| 1105 | * if there is sufficient room to store it. |
| 1106 | */ |
| 1107 | void setCapacity(size_type newCapacity) { |
| 1108 | assert(this->isExtern()); |
| 1109 | if (u.hasCapacity()) { |
| 1110 | assert(newCapacity < std::numeric_limits<InternalSizeType>::max()); |
| 1111 | u.setCapacity(newCapacity); |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | private: |
| 1116 | struct HeapPtrWithCapacity { |
| 1117 | void* heap_; |
| 1118 | InternalSizeType capacity_; |
| 1119 | |
| 1120 | InternalSizeType getCapacity() const { |
| 1121 | return capacity_; |
| 1122 | } |
| 1123 | void setCapacity(InternalSizeType c) { |
| 1124 | capacity_ = c; |
| 1125 | } |
| 1126 | } FOLLY_SV_PACK_ATTR; |
| 1127 | |
| 1128 | struct HeapPtr { |
| 1129 | // Lower order bit of heap_ is used as flag to indicate whether capacity is |
| 1130 | // stored at the front of the heap allocation. |
| 1131 | void* heap_; |
| 1132 | |
| 1133 | InternalSizeType getCapacity() const { |
| 1134 | assert(detail::pointerFlagGet(heap_)); |
| 1135 | return *static_cast<InternalSizeType*>(detail::pointerFlagClear(heap_)); |
| 1136 | } |
| 1137 | void setCapacity(InternalSizeType c) { |
| 1138 | *static_cast<InternalSizeType*>(detail::pointerFlagClear(heap_)) = c; |
| 1139 | } |
| 1140 | } FOLLY_SV_PACK_ATTR; |
| 1141 | |
| 1142 | typedef aligned_storage_for_t<value_type[MaxInline]> InlineStorageDataType; |
| 1143 | |
| 1144 | typedef typename std::conditional< |
| 1145 | sizeof(value_type) * MaxInline != 0, |
| 1146 | InlineStorageDataType, |
| 1147 | void*>::type InlineStorageType; |
| 1148 | |
| 1149 | static bool constexpr kHasInlineCapacity = |
| 1150 | sizeof(HeapPtrWithCapacity) < sizeof(InlineStorageType); |
| 1151 | |
| 1152 | // This value should we multiple of word size. |
| 1153 | static size_t constexpr kHeapifyCapacitySize = sizeof( |
| 1154 | typename std:: |
| 1155 | aligned_storage<sizeof(InternalSizeType), alignof(value_type)>::type); |
| 1156 | |
| 1157 | // Threshold to control capacity heapifying. |
| 1158 | static size_t constexpr kHeapifyCapacityThreshold = |
| 1159 | 100 * kHeapifyCapacitySize; |
| 1160 | |
| 1161 | typedef typename std:: |
| 1162 | conditional<kHasInlineCapacity, HeapPtrWithCapacity, HeapPtr>::type |
| 1163 | PointerType; |
| 1164 | |
| 1165 | union Data { |
| 1166 | explicit Data() { |
| 1167 | pdata_.heap_ = nullptr; |
| 1168 | } |
| 1169 | |
| 1170 | PointerType pdata_; |
| 1171 | InlineStorageType storage_; |
| 1172 | |
| 1173 | value_type* buffer() noexcept { |
| 1174 | void* vp = &storage_; |
| 1175 | return static_cast<value_type*>(vp); |
| 1176 | } |
| 1177 | value_type const* buffer() const noexcept { |
| 1178 | return const_cast<Data*>(this)->buffer(); |
| 1179 | } |
| 1180 | value_type* heap() noexcept { |
| 1181 | if (kHasInlineCapacity || !detail::pointerFlagGet(pdata_.heap_)) { |
| 1182 | return static_cast<value_type*>(pdata_.heap_); |
| 1183 | } else { |
| 1184 | return static_cast<value_type*>(detail::shiftPointer( |
| 1185 | detail::pointerFlagClear(pdata_.heap_), kHeapifyCapacitySize)); |
| 1186 | } |
| 1187 | } |
| 1188 | value_type const* heap() const noexcept { |
| 1189 | return const_cast<Data*>(this)->heap(); |
| 1190 | } |
| 1191 | |
| 1192 | bool hasCapacity() const { |
| 1193 | return kHasInlineCapacity || detail::pointerFlagGet(pdata_.heap_); |
| 1194 | } |
| 1195 | InternalSizeType getCapacity() const { |
| 1196 | return pdata_.getCapacity(); |
| 1197 | } |
| 1198 | void setCapacity(InternalSizeType c) { |
| 1199 | pdata_.setCapacity(c); |
| 1200 | } |
| 1201 | |
| 1202 | void freeHeap() { |
| 1203 | auto vp = detail::pointerFlagClear(pdata_.heap_); |
| 1204 | free(vp); |
| 1205 | } |
| 1206 | } u; |
| 1207 | }; |
| 1208 | FOLLY_SV_PACK_POP |
| 1209 | |
| 1210 | ////////////////////////////////////////////////////////////////////// |
| 1211 | |
| 1212 | // Basic guarantee only, or provides the nothrow guarantee iff T has a |
| 1213 | // nothrow move or copy constructor. |
| 1214 | template <class T, std::size_t MaxInline, class A, class B, class C> |
| 1215 | void swap( |
| 1216 | small_vector<T, MaxInline, A, B, C>& a, |
| 1217 | small_vector<T, MaxInline, A, B, C>& b) { |
| 1218 | a.swap(b); |
| 1219 | } |
| 1220 | |
| 1221 | ////////////////////////////////////////////////////////////////////// |
| 1222 | |
| 1223 | namespace detail { |
| 1224 | |
| 1225 | // Format support. |
| 1226 | template <class T, size_t M, class A, class B, class C> |
| 1227 | struct IndexableTraits<small_vector<T, M, A, B, C>> |
| 1228 | : public IndexableTraitsSeq<small_vector<T, M, A, B, C>> {}; |
| 1229 | |
| 1230 | } // namespace detail |
| 1231 | |
| 1232 | } // namespace folly |
| 1233 | |
| 1234 | FOLLY_POP_WARNING |
| 1235 | |
| 1236 | #undef FOLLY_SV_PACK_ATTR |
| 1237 | #undef FOLLY_SV_PACK_PUSH |
| 1238 | #undef FOLLY_SV_PACK_POP |
| 1239 | |