| 1 | /* boost random/binomial_distribution.hpp header file |
| 2 | * |
| 3 | * Copyright Steven Watanabe 2010 |
| 4 | * Distributed under the Boost Software License, Version 1.0. (See |
| 5 | * accompanying file LICENSE_1_0.txt or copy at |
| 6 | * http://www.boost.org/LICENSE_1_0.txt) |
| 7 | * |
| 8 | * See http://www.boost.org for most recent version including documentation. |
| 9 | * |
| 10 | * $Id$ |
| 11 | */ |
| 12 | |
| 13 | #ifndef BOOST_RANDOM_BINOMIAL_DISTRIBUTION_HPP_INCLUDED |
| 14 | #define BOOST_RANDOM_BINOMIAL_DISTRIBUTION_HPP_INCLUDED |
| 15 | |
| 16 | #include <boost/config/no_tr1/cmath.hpp> |
| 17 | #include <cstdlib> |
| 18 | #include <iosfwd> |
| 19 | |
| 20 | #include <boost/random/detail/config.hpp> |
| 21 | #include <boost/random/uniform_01.hpp> |
| 22 | |
| 23 | #include <boost/random/detail/disable_warnings.hpp> |
| 24 | |
| 25 | namespace boost { |
| 26 | namespace random { |
| 27 | |
| 28 | namespace detail { |
| 29 | |
| 30 | template<class RealType> |
| 31 | struct binomial_table { |
| 32 | static const RealType table[10]; |
| 33 | }; |
| 34 | |
| 35 | template<class RealType> |
| 36 | const RealType binomial_table<RealType>::table[10] = { |
| 37 | 0.08106146679532726, |
| 38 | 0.04134069595540929, |
| 39 | 0.02767792568499834, |
| 40 | 0.02079067210376509, |
| 41 | 0.01664469118982119, |
| 42 | 0.01387612882307075, |
| 43 | 0.01189670994589177, |
| 44 | 0.01041126526197209, |
| 45 | 0.009255462182712733, |
| 46 | 0.008330563433362871 |
| 47 | }; |
| 48 | |
| 49 | } |
| 50 | |
| 51 | /** |
| 52 | * The binomial distribution is an integer valued distribution with |
| 53 | * two parameters, @c t and @c p. The values of the distribution |
| 54 | * are within the range [0,t]. |
| 55 | * |
| 56 | * The distribution function is |
| 57 | * \f$\displaystyle P(k) = {t \choose k}p^k(1-p)^{t-k}\f$. |
| 58 | * |
| 59 | * The algorithm used is the BTRD algorithm described in |
| 60 | * |
| 61 | * @blockquote |
| 62 | * "The generation of binomial random variates", Wolfgang Hormann, |
| 63 | * Journal of Statistical Computation and Simulation, Volume 46, |
| 64 | * Issue 1 & 2 April 1993 , pages 101 - 110 |
| 65 | * @endblockquote |
| 66 | */ |
| 67 | template<class IntType = int, class RealType = double> |
| 68 | class binomial_distribution { |
| 69 | public: |
| 70 | typedef IntType result_type; |
| 71 | typedef RealType input_type; |
| 72 | |
| 73 | class param_type { |
| 74 | public: |
| 75 | typedef binomial_distribution distribution_type; |
| 76 | /** |
| 77 | * Construct a param_type object. @c t and @c p |
| 78 | * are the parameters of the distribution. |
| 79 | * |
| 80 | * Requires: t >=0 && 0 <= p <= 1 |
| 81 | */ |
| 82 | explicit param_type(IntType t_arg = 1, RealType p_arg = RealType (0.5)) |
| 83 | : _t(t_arg), _p(p_arg) |
| 84 | {} |
| 85 | /** Returns the @c t parameter of the distribution. */ |
| 86 | IntType t() const { return _t; } |
| 87 | /** Returns the @c p parameter of the distribution. */ |
| 88 | RealType p() const { return _p; } |
| 89 | #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS |
| 90 | /** Writes the parameters of the distribution to a @c std::ostream. */ |
| 91 | template<class CharT, class Traits> |
| 92 | friend std::basic_ostream<CharT,Traits>& |
| 93 | operator<<(std::basic_ostream<CharT,Traits>& os, |
| 94 | const param_type& parm) |
| 95 | { |
| 96 | os << parm._p << " " << parm._t; |
| 97 | return os; |
| 98 | } |
| 99 | |
| 100 | /** Reads the parameters of the distribution from a @c std::istream. */ |
| 101 | template<class CharT, class Traits> |
| 102 | friend std::basic_istream<CharT,Traits>& |
| 103 | operator>>(std::basic_istream<CharT,Traits>& is, param_type& parm) |
| 104 | { |
| 105 | is >> parm._p >> std::ws >> parm._t; |
| 106 | return is; |
| 107 | } |
| 108 | #endif |
| 109 | /** Returns true if the parameters have the same values. */ |
| 110 | friend bool operator==(const param_type& lhs, const param_type& rhs) |
| 111 | { |
| 112 | return lhs._t == rhs._t && lhs._p == rhs._p; |
| 113 | } |
| 114 | /** Returns true if the parameters have different values. */ |
| 115 | friend bool operator!=(const param_type& lhs, const param_type& rhs) |
| 116 | { |
| 117 | return !(lhs == rhs); |
| 118 | } |
| 119 | private: |
| 120 | IntType _t; |
| 121 | RealType _p; |
| 122 | }; |
| 123 | |
| 124 | /** |
| 125 | * Construct a @c binomial_distribution object. @c t and @c p |
| 126 | * are the parameters of the distribution. |
| 127 | * |
| 128 | * Requires: t >=0 && 0 <= p <= 1 |
| 129 | */ |
| 130 | explicit binomial_distribution(IntType t_arg = 1, |
| 131 | RealType p_arg = RealType(0.5)) |
| 132 | : _t(t_arg), _p(p_arg) |
| 133 | { |
| 134 | init(); |
| 135 | } |
| 136 | |
| 137 | /** |
| 138 | * Construct an @c binomial_distribution object from the |
| 139 | * parameters. |
| 140 | */ |
| 141 | explicit binomial_distribution(const param_type& parm) |
| 142 | : _t(parm.t()), _p(parm.p()) |
| 143 | { |
| 144 | init(); |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * Returns a random variate distributed according to the |
| 149 | * binomial distribution. |
| 150 | */ |
| 151 | template<class URNG> |
| 152 | IntType operator()(URNG& urng) const |
| 153 | { |
| 154 | if(use_inversion()) { |
| 155 | if(0.5 < _p) { |
| 156 | return _t - invert(_t, 1-_p, urng); |
| 157 | } else { |
| 158 | return invert(_t, _p, urng); |
| 159 | } |
| 160 | } else if(0.5 < _p) { |
| 161 | return _t - generate(urng); |
| 162 | } else { |
| 163 | return generate(urng); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | /** |
| 168 | * Returns a random variate distributed according to the |
| 169 | * binomial distribution with parameters specified by @c param. |
| 170 | */ |
| 171 | template<class URNG> |
| 172 | IntType operator()(URNG& urng, const param_type& parm) const |
| 173 | { |
| 174 | return binomial_distribution(parm)(urng); |
| 175 | } |
| 176 | |
| 177 | /** Returns the @c t parameter of the distribution. */ |
| 178 | IntType t() const { return _t; } |
| 179 | /** Returns the @c p parameter of the distribution. */ |
| 180 | RealType p() const { return _p; } |
| 181 | |
| 182 | /** Returns the smallest value that the distribution can produce. */ |
| 183 | IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; } |
| 184 | /** Returns the largest value that the distribution can produce. */ |
| 185 | IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const { return _t; } |
| 186 | |
| 187 | /** Returns the parameters of the distribution. */ |
| 188 | param_type param() const { return param_type(_t, _p); } |
| 189 | /** Sets parameters of the distribution. */ |
| 190 | void param(const param_type& parm) |
| 191 | { |
| 192 | _t = parm.t(); |
| 193 | _p = parm.p(); |
| 194 | init(); |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | * Effects: Subsequent uses of the distribution do not depend |
| 199 | * on values produced by any engine prior to invoking reset. |
| 200 | */ |
| 201 | void reset() { } |
| 202 | |
| 203 | #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS |
| 204 | /** Writes the parameters of the distribution to a @c std::ostream. */ |
| 205 | template<class CharT, class Traits> |
| 206 | friend std::basic_ostream<CharT,Traits>& |
| 207 | operator<<(std::basic_ostream<CharT,Traits>& os, |
| 208 | const binomial_distribution& bd) |
| 209 | { |
| 210 | os << bd.param(); |
| 211 | return os; |
| 212 | } |
| 213 | |
| 214 | /** Reads the parameters of the distribution from a @c std::istream. */ |
| 215 | template<class CharT, class Traits> |
| 216 | friend std::basic_istream<CharT,Traits>& |
| 217 | operator>>(std::basic_istream<CharT,Traits>& is, binomial_distribution& bd) |
| 218 | { |
| 219 | bd.read(is); |
| 220 | return is; |
| 221 | } |
| 222 | #endif |
| 223 | |
| 224 | /** Returns true if the two distributions will produce the same |
| 225 | sequence of values, given equal generators. */ |
| 226 | friend bool operator==(const binomial_distribution& lhs, |
| 227 | const binomial_distribution& rhs) |
| 228 | { |
| 229 | return lhs._t == rhs._t && lhs._p == rhs._p; |
| 230 | } |
| 231 | /** Returns true if the two distributions could produce different |
| 232 | sequences of values, given equal generators. */ |
| 233 | friend bool operator!=(const binomial_distribution& lhs, |
| 234 | const binomial_distribution& rhs) |
| 235 | { |
| 236 | return !(lhs == rhs); |
| 237 | } |
| 238 | |
| 239 | private: |
| 240 | |
| 241 | /// @cond show_private |
| 242 | |
| 243 | template<class CharT, class Traits> |
| 244 | void read(std::basic_istream<CharT, Traits>& is) { |
| 245 | param_type parm; |
| 246 | if(is >> parm) { |
| 247 | param(parm); |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | bool use_inversion() const |
| 252 | { |
| 253 | // BTRD is safe when np >= 10 |
| 254 | return m < 11; |
| 255 | } |
| 256 | |
| 257 | // computes the correction factor for the Stirling approximation |
| 258 | // for log(k!) |
| 259 | static RealType fc(IntType k) |
| 260 | { |
| 261 | if(k < 10) return detail::binomial_table<RealType>::table[k]; |
| 262 | else { |
| 263 | RealType ikp1 = RealType(1) / (k + 1); |
| 264 | return (RealType(1)/12 |
| 265 | - (RealType(1)/360 |
| 266 | - (RealType(1)/1260)*(ikp1*ikp1))*(ikp1*ikp1))*ikp1; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | void init() |
| 271 | { |
| 272 | using std::sqrt; |
| 273 | using std::pow; |
| 274 | |
| 275 | RealType p = (0.5 < _p)? (1 - _p) : _p; |
| 276 | IntType t = _t; |
| 277 | |
| 278 | m = static_cast<IntType>((t+1)*p); |
| 279 | |
| 280 | if(use_inversion()) { |
| 281 | q_n = pow((1 - p), static_cast<RealType>(t)); |
| 282 | } else { |
| 283 | btrd.r = p/(1-p); |
| 284 | btrd.nr = (t+1)*btrd.r; |
| 285 | btrd.npq = t*p*(1-p); |
| 286 | RealType sqrt_npq = sqrt(btrd.npq); |
| 287 | btrd.b = 1.15 + 2.53 * sqrt_npq; |
| 288 | btrd.a = -0.0873 + 0.0248*btrd.b + 0.01*p; |
| 289 | btrd.c = t*p + 0.5; |
| 290 | btrd.alpha = (2.83 + 5.1/btrd.b) * sqrt_npq; |
| 291 | btrd.v_r = 0.92 - 4.2/btrd.b; |
| 292 | btrd.u_rv_r = 0.86*btrd.v_r; |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | template<class URNG> |
| 297 | result_type generate(URNG& urng) const |
| 298 | { |
| 299 | using std::floor; |
| 300 | using std::abs; |
| 301 | using std::log; |
| 302 | |
| 303 | while(true) { |
| 304 | RealType u; |
| 305 | RealType v = uniform_01<RealType>()(urng); |
| 306 | if(v <= btrd.u_rv_r) { |
| 307 | u = v/btrd.v_r - 0.43; |
| 308 | return static_cast<IntType>(floor( |
| 309 | (2*btrd.a/(0.5 - abs(u)) + btrd.b)*u + btrd.c)); |
| 310 | } |
| 311 | |
| 312 | if(v >= btrd.v_r) { |
| 313 | u = uniform_01<RealType>()(urng) - 0.5; |
| 314 | } else { |
| 315 | u = v/btrd.v_r - 0.93; |
| 316 | u = ((u < 0)? -0.5 : 0.5) - u; |
| 317 | v = uniform_01<RealType>()(urng) * btrd.v_r; |
| 318 | } |
| 319 | |
| 320 | RealType us = 0.5 - abs(u); |
| 321 | IntType k = static_cast<IntType>(floor((2*btrd.a/us + btrd.b)*u + btrd.c)); |
| 322 | if(k < 0 || k > _t) continue; |
| 323 | v = v*btrd.alpha/(btrd.a/(us*us) + btrd.b); |
| 324 | RealType km = abs(k - m); |
| 325 | if(km <= 15) { |
| 326 | RealType f = 1; |
| 327 | if(m < k) { |
| 328 | IntType i = m; |
| 329 | do { |
| 330 | ++i; |
| 331 | f = f*(btrd.nr/i - btrd.r); |
| 332 | } while(i != k); |
| 333 | } else if(m > k) { |
| 334 | IntType i = k; |
| 335 | do { |
| 336 | ++i; |
| 337 | v = v*(btrd.nr/i - btrd.r); |
| 338 | } while(i != m); |
| 339 | } |
| 340 | if(v <= f) return k; |
| 341 | else continue; |
| 342 | } else { |
| 343 | // final acceptance/rejection |
| 344 | v = log(v); |
| 345 | RealType rho = |
| 346 | (km/btrd.npq)*(((km/3. + 0.625)*km + 1./6)/btrd.npq + 0.5); |
| 347 | RealType t = -km*km/(2*btrd.npq); |
| 348 | if(v < t - rho) return k; |
| 349 | if(v > t + rho) continue; |
| 350 | |
| 351 | IntType nm = _t - m + 1; |
| 352 | RealType h = (m + 0.5)*log((m + 1)/(btrd.r*nm)) |
| 353 | + fc(m) + fc(_t - m); |
| 354 | |
| 355 | IntType nk = _t - k + 1; |
| 356 | if(v <= h + (_t+1)*log(static_cast<RealType>(nm)/nk) |
| 357 | + (k + 0.5)*log(nk*btrd.r/(k+1)) |
| 358 | - fc(k) |
| 359 | - fc(_t - k)) |
| 360 | { |
| 361 | return k; |
| 362 | } else { |
| 363 | continue; |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | template<class URNG> |
| 370 | IntType invert(IntType t, RealType p, URNG& urng) const |
| 371 | { |
| 372 | RealType q = 1 - p; |
| 373 | RealType s = p / q; |
| 374 | RealType a = (t + 1) * s; |
| 375 | RealType r = q_n; |
| 376 | RealType u = uniform_01<RealType>()(urng); |
| 377 | IntType x = 0; |
| 378 | while(u > r) { |
| 379 | u = u - r; |
| 380 | ++x; |
| 381 | RealType r1 = ((a/x) - s) * r; |
| 382 | // If r gets too small then the round-off error |
| 383 | // becomes a problem. At this point, p(i) is |
| 384 | // decreasing exponentially, so if we just call |
| 385 | // it 0, it's close enough. Note that the |
| 386 | // minimum value of q_n is about 1e-7, so we |
| 387 | // may need to be a little careful to make sure that |
| 388 | // we don't terminate the first time through the loop |
| 389 | // for float. (Hence the test that r is decreasing) |
| 390 | if(r1 < std::numeric_limits<RealType>::epsilon() && r1 < r) { |
| 391 | break; |
| 392 | } |
| 393 | r = r1; |
| 394 | } |
| 395 | return x; |
| 396 | } |
| 397 | |
| 398 | // parameters |
| 399 | IntType _t; |
| 400 | RealType _p; |
| 401 | |
| 402 | // common data |
| 403 | IntType m; |
| 404 | |
| 405 | union { |
| 406 | // for btrd |
| 407 | struct { |
| 408 | RealType r; |
| 409 | RealType nr; |
| 410 | RealType npq; |
| 411 | RealType b; |
| 412 | RealType a; |
| 413 | RealType c; |
| 414 | RealType alpha; |
| 415 | RealType v_r; |
| 416 | RealType u_rv_r; |
| 417 | } btrd; |
| 418 | // for inversion |
| 419 | RealType q_n; |
| 420 | }; |
| 421 | |
| 422 | /// @endcond |
| 423 | }; |
| 424 | |
| 425 | } |
| 426 | |
| 427 | // backwards compatibility |
| 428 | using random::binomial_distribution; |
| 429 | |
| 430 | } |
| 431 | |
| 432 | #include <boost/random/detail/enable_warnings.hpp> |
| 433 | |
| 434 | #endif |
| 435 | |