| 1 | /* boost random/poisson_distribution.hpp header file |
| 2 | * |
| 3 | * Copyright Jens Maurer 2002 |
| 4 | * Copyright Steven Watanabe 2010 |
| 5 | * Distributed under the Boost Software License, Version 1.0. (See |
| 6 | * accompanying file LICENSE_1_0.txt or copy at |
| 7 | * http://www.boost.org/LICENSE_1_0.txt) |
| 8 | * |
| 9 | * See http://www.boost.org for most recent version including documentation. |
| 10 | * |
| 11 | * $Id$ |
| 12 | * |
| 13 | */ |
| 14 | |
| 15 | #ifndef BOOST_RANDOM_POISSON_DISTRIBUTION_HPP |
| 16 | #define BOOST_RANDOM_POISSON_DISTRIBUTION_HPP |
| 17 | |
| 18 | #include <boost/config/no_tr1/cmath.hpp> |
| 19 | #include <cstdlib> |
| 20 | #include <iosfwd> |
| 21 | #include <boost/assert.hpp> |
| 22 | #include <boost/limits.hpp> |
| 23 | #include <boost/random/uniform_01.hpp> |
| 24 | #include <boost/random/detail/config.hpp> |
| 25 | |
| 26 | #include <boost/random/detail/disable_warnings.hpp> |
| 27 | |
| 28 | namespace boost { |
| 29 | namespace random { |
| 30 | |
| 31 | namespace detail { |
| 32 | |
| 33 | template<class RealType> |
| 34 | struct poisson_table { |
| 35 | static RealType value[10]; |
| 36 | }; |
| 37 | |
| 38 | template<class RealType> |
| 39 | RealType poisson_table<RealType>::value[10] = { |
| 40 | 0.0, |
| 41 | 0.0, |
| 42 | 0.69314718055994529, |
| 43 | 1.7917594692280550, |
| 44 | 3.1780538303479458, |
| 45 | 4.7874917427820458, |
| 46 | 6.5792512120101012, |
| 47 | 8.5251613610654147, |
| 48 | 10.604602902745251, |
| 49 | 12.801827480081469 |
| 50 | }; |
| 51 | |
| 52 | } |
| 53 | |
| 54 | /** |
| 55 | * An instantiation of the class template @c poisson_distribution is a |
| 56 | * model of \random_distribution. The poisson distribution has |
| 57 | * \f$p(i) = \frac{e^{-\lambda}\lambda^i}{i!}\f$ |
| 58 | * |
| 59 | * This implementation is based on the PTRD algorithm described |
| 60 | * |
| 61 | * @blockquote |
| 62 | * "The transformed rejection method for generating Poisson random variables", |
| 63 | * Wolfgang Hormann, Insurance: Mathematics and Economics |
| 64 | * Volume 12, Issue 1, February 1993, Pages 39-45 |
| 65 | * @endblockquote |
| 66 | */ |
| 67 | template<class IntType = int, class RealType = double> |
| 68 | class poisson_distribution { |
| 69 | public: |
| 70 | typedef IntType result_type; |
| 71 | typedef RealType input_type; |
| 72 | |
| 73 | class param_type { |
| 74 | public: |
| 75 | typedef poisson_distribution distribution_type; |
| 76 | /** |
| 77 | * Construct a param_type object with the parameter "mean" |
| 78 | * |
| 79 | * Requires: mean > 0 |
| 80 | */ |
| 81 | explicit param_type(RealType mean_arg = RealType(1)) |
| 82 | : _mean(mean_arg) |
| 83 | { |
| 84 | BOOST_ASSERT(_mean > 0); |
| 85 | } |
| 86 | /* Returns the "mean" parameter of the distribution. */ |
| 87 | RealType mean() const { return _mean; } |
| 88 | #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS |
| 89 | /** Writes the parameters of the distribution to a @c std::ostream. */ |
| 90 | template<class CharT, class Traits> |
| 91 | friend std::basic_ostream<CharT, Traits>& |
| 92 | operator<<(std::basic_ostream<CharT, Traits>& os, |
| 93 | const param_type& parm) |
| 94 | { |
| 95 | os << parm._mean; |
| 96 | return os; |
| 97 | } |
| 98 | |
| 99 | /** Reads the parameters of the distribution from a @c std::istream. */ |
| 100 | template<class CharT, class Traits> |
| 101 | friend std::basic_istream<CharT, Traits>& |
| 102 | operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm) |
| 103 | { |
| 104 | is >> parm._mean; |
| 105 | return is; |
| 106 | } |
| 107 | #endif |
| 108 | /** Returns true if the parameters have the same values. */ |
| 109 | friend bool operator==(const param_type& lhs, const param_type& rhs) |
| 110 | { |
| 111 | return lhs._mean == rhs._mean; |
| 112 | } |
| 113 | /** Returns true if the parameters have different values. */ |
| 114 | friend bool operator!=(const param_type& lhs, const param_type& rhs) |
| 115 | { |
| 116 | return !(lhs == rhs); |
| 117 | } |
| 118 | private: |
| 119 | RealType _mean; |
| 120 | }; |
| 121 | |
| 122 | /** |
| 123 | * Constructs a @c poisson_distribution with the parameter @c mean. |
| 124 | * |
| 125 | * Requires: mean > 0 |
| 126 | */ |
| 127 | explicit poisson_distribution(RealType mean_arg = RealType(1)) |
| 128 | : _mean(mean_arg) |
| 129 | { |
| 130 | BOOST_ASSERT(_mean > 0); |
| 131 | init(); |
| 132 | } |
| 133 | |
| 134 | /** |
| 135 | * Construct an @c poisson_distribution object from the |
| 136 | * parameters. |
| 137 | */ |
| 138 | explicit poisson_distribution(const param_type& parm) |
| 139 | : _mean(parm.mean()) |
| 140 | { |
| 141 | init(); |
| 142 | } |
| 143 | |
| 144 | /** |
| 145 | * Returns a random variate distributed according to the |
| 146 | * poisson distribution. |
| 147 | */ |
| 148 | template<class URNG> |
| 149 | IntType operator()(URNG& urng) const |
| 150 | { |
| 151 | if(use_inversion()) { |
| 152 | return invert(urng); |
| 153 | } else { |
| 154 | return generate(urng); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * Returns a random variate distributed according to the |
| 160 | * poisson distribution with parameters specified by param. |
| 161 | */ |
| 162 | template<class URNG> |
| 163 | IntType operator()(URNG& urng, const param_type& parm) const |
| 164 | { |
| 165 | return poisson_distribution(parm)(urng); |
| 166 | } |
| 167 | |
| 168 | /** Returns the "mean" parameter of the distribution. */ |
| 169 | RealType mean() const { return _mean; } |
| 170 | |
| 171 | /** Returns the smallest value that the distribution can produce. */ |
| 172 | IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; } |
| 173 | /** Returns the largest value that the distribution can produce. */ |
| 174 | IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const |
| 175 | { return (std::numeric_limits<IntType>::max)(); } |
| 176 | |
| 177 | /** Returns the parameters of the distribution. */ |
| 178 | param_type param() const { return param_type(_mean); } |
| 179 | /** Sets parameters of the distribution. */ |
| 180 | void param(const param_type& parm) |
| 181 | { |
| 182 | _mean = parm.mean(); |
| 183 | init(); |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * Effects: Subsequent uses of the distribution do not depend |
| 188 | * on values produced by any engine prior to invoking reset. |
| 189 | */ |
| 190 | void reset() { } |
| 191 | |
| 192 | #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS |
| 193 | /** Writes the parameters of the distribution to a @c std::ostream. */ |
| 194 | template<class CharT, class Traits> |
| 195 | friend std::basic_ostream<CharT,Traits>& |
| 196 | operator<<(std::basic_ostream<CharT,Traits>& os, |
| 197 | const poisson_distribution& pd) |
| 198 | { |
| 199 | os << pd.param(); |
| 200 | return os; |
| 201 | } |
| 202 | |
| 203 | /** Reads the parameters of the distribution from a @c std::istream. */ |
| 204 | template<class CharT, class Traits> |
| 205 | friend std::basic_istream<CharT,Traits>& |
| 206 | operator>>(std::basic_istream<CharT,Traits>& is, poisson_distribution& pd) |
| 207 | { |
| 208 | pd.read(is); |
| 209 | return is; |
| 210 | } |
| 211 | #endif |
| 212 | |
| 213 | /** Returns true if the two distributions will produce the same |
| 214 | sequence of values, given equal generators. */ |
| 215 | friend bool operator==(const poisson_distribution& lhs, |
| 216 | const poisson_distribution& rhs) |
| 217 | { |
| 218 | return lhs._mean == rhs._mean; |
| 219 | } |
| 220 | /** Returns true if the two distributions could produce different |
| 221 | sequences of values, given equal generators. */ |
| 222 | friend bool operator!=(const poisson_distribution& lhs, |
| 223 | const poisson_distribution& rhs) |
| 224 | { |
| 225 | return !(lhs == rhs); |
| 226 | } |
| 227 | |
| 228 | private: |
| 229 | |
| 230 | /// @cond show_private |
| 231 | |
| 232 | template<class CharT, class Traits> |
| 233 | void read(std::basic_istream<CharT, Traits>& is) { |
| 234 | param_type parm; |
| 235 | if(is >> parm) { |
| 236 | param(parm); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | bool use_inversion() const |
| 241 | { |
| 242 | return _mean < 10; |
| 243 | } |
| 244 | |
| 245 | static RealType log_factorial(IntType k) |
| 246 | { |
| 247 | BOOST_ASSERT(k >= 0); |
| 248 | BOOST_ASSERT(k < 10); |
| 249 | return detail::poisson_table<RealType>::value[k]; |
| 250 | } |
| 251 | |
| 252 | void init() |
| 253 | { |
| 254 | using std::sqrt; |
| 255 | using std::exp; |
| 256 | |
| 257 | if(use_inversion()) { |
| 258 | _exp_mean = exp(-_mean); |
| 259 | } else { |
| 260 | _ptrd.smu = sqrt(_mean); |
| 261 | _ptrd.b = 0.931 + 2.53 * _ptrd.smu; |
| 262 | _ptrd.a = -0.059 + 0.02483 * _ptrd.b; |
| 263 | _ptrd.inv_alpha = 1.1239 + 1.1328 / (_ptrd.b - 3.4); |
| 264 | _ptrd.v_r = 0.9277 - 3.6224 / (_ptrd.b - 2); |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | template<class URNG> |
| 269 | IntType generate(URNG& urng) const |
| 270 | { |
| 271 | using std::floor; |
| 272 | using std::abs; |
| 273 | using std::log; |
| 274 | |
| 275 | while(true) { |
| 276 | RealType u; |
| 277 | RealType v = uniform_01<RealType>()(urng); |
| 278 | if(v <= 0.86 * _ptrd.v_r) { |
| 279 | u = v / _ptrd.v_r - 0.43; |
| 280 | return static_cast<IntType>(floor( |
| 281 | (2*_ptrd.a/(0.5-abs(u)) + _ptrd.b)*u + _mean + 0.445)); |
| 282 | } |
| 283 | |
| 284 | if(v >= _ptrd.v_r) { |
| 285 | u = uniform_01<RealType>()(urng) - 0.5; |
| 286 | } else { |
| 287 | u = v/_ptrd.v_r - 0.93; |
| 288 | u = ((u < 0)? -0.5 : 0.5) - u; |
| 289 | v = uniform_01<RealType>()(urng) * _ptrd.v_r; |
| 290 | } |
| 291 | |
| 292 | RealType us = 0.5 - abs(u); |
| 293 | if(us < 0.013 && v > us) { |
| 294 | continue; |
| 295 | } |
| 296 | |
| 297 | RealType k = floor((2*_ptrd.a/us + _ptrd.b)*u+_mean+0.445); |
| 298 | v = v*_ptrd.inv_alpha/(_ptrd.a/(us*us) + _ptrd.b); |
| 299 | |
| 300 | RealType log_sqrt_2pi = 0.91893853320467267; |
| 301 | |
| 302 | if(k >= 10) { |
| 303 | if(log(v*_ptrd.smu) <= (k + 0.5)*log(_mean/k) |
| 304 | - _mean |
| 305 | - log_sqrt_2pi |
| 306 | + k |
| 307 | - (1/12. - (1/360. - 1/(1260.*k*k))/(k*k))/k) { |
| 308 | return static_cast<IntType>(k); |
| 309 | } |
| 310 | } else if(k >= 0) { |
| 311 | if(log(v) <= k*log(_mean) |
| 312 | - _mean |
| 313 | - log_factorial(static_cast<IntType>(k))) { |
| 314 | return static_cast<IntType>(k); |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | template<class URNG> |
| 321 | IntType invert(URNG& urng) const |
| 322 | { |
| 323 | RealType p = _exp_mean; |
| 324 | IntType x = 0; |
| 325 | RealType u = uniform_01<RealType>()(urng); |
| 326 | while(u > p) { |
| 327 | u = u - p; |
| 328 | ++x; |
| 329 | p = _mean * p / x; |
| 330 | } |
| 331 | return x; |
| 332 | } |
| 333 | |
| 334 | RealType _mean; |
| 335 | |
| 336 | union { |
| 337 | // for ptrd |
| 338 | struct { |
| 339 | RealType v_r; |
| 340 | RealType a; |
| 341 | RealType b; |
| 342 | RealType smu; |
| 343 | RealType inv_alpha; |
| 344 | } _ptrd; |
| 345 | // for inversion |
| 346 | RealType _exp_mean; |
| 347 | }; |
| 348 | |
| 349 | /// @endcond |
| 350 | }; |
| 351 | |
| 352 | } // namespace random |
| 353 | |
| 354 | using random::poisson_distribution; |
| 355 | |
| 356 | } // namespace boost |
| 357 | |
| 358 | #include <boost/random/detail/enable_warnings.hpp> |
| 359 | |
| 360 | #endif // BOOST_RANDOM_POISSON_DISTRIBUTION_HPP |
| 361 | |