| 1 | // Random number extensions -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2012-2018 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file ext/random |
| 26 | * This file is a GNU extension to the Standard C++ Library. |
| 27 | */ |
| 28 | |
| 29 | #ifndef _EXT_RANDOM |
| 30 | #define _EXT_RANDOM 1 |
| 31 | |
| 32 | #pragma GCC system_header |
| 33 | |
| 34 | #if __cplusplus < 201103L |
| 35 | # include <bits/c++0x_warning.h> |
| 36 | #else |
| 37 | |
| 38 | #include <random> |
| 39 | #include <algorithm> |
| 40 | #include <array> |
| 41 | #include <ext/cmath> |
| 42 | #ifdef __SSE2__ |
| 43 | # include <emmintrin.h> |
| 44 | #endif |
| 45 | |
| 46 | #if defined(_GLIBCXX_USE_C99_STDINT_TR1) && defined(UINT32_C) |
| 47 | |
| 48 | namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| 49 | { |
| 50 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 51 | |
| 52 | #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 53 | |
| 54 | /* Mersenne twister implementation optimized for vector operations. |
| 55 | * |
| 56 | * Reference: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/ |
| 57 | */ |
| 58 | template<typename _UIntType, size_t __m, |
| 59 | size_t __pos1, size_t __sl1, size_t __sl2, |
| 60 | size_t __sr1, size_t __sr2, |
| 61 | uint32_t __msk1, uint32_t __msk2, |
| 62 | uint32_t __msk3, uint32_t __msk4, |
| 63 | uint32_t __parity1, uint32_t __parity2, |
| 64 | uint32_t __parity3, uint32_t __parity4> |
| 65 | class simd_fast_mersenne_twister_engine |
| 66 | { |
| 67 | static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| 68 | "substituting _UIntType not an unsigned integral type" ); |
| 69 | static_assert(__sr1 < 32, "first right shift too large" ); |
| 70 | static_assert(__sr2 < 16, "second right shift too large" ); |
| 71 | static_assert(__sl1 < 32, "first left shift too large" ); |
| 72 | static_assert(__sl2 < 16, "second left shift too large" ); |
| 73 | |
| 74 | public: |
| 75 | typedef _UIntType result_type; |
| 76 | |
| 77 | private: |
| 78 | static constexpr size_t m_w = sizeof(result_type) * 8; |
| 79 | static constexpr size_t _M_nstate = __m / 128 + 1; |
| 80 | static constexpr size_t _M_nstate32 = _M_nstate * 4; |
| 81 | |
| 82 | static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| 83 | "substituting _UIntType not an unsigned integral type" ); |
| 84 | static_assert(__pos1 < _M_nstate, "POS1 not smaller than state size" ); |
| 85 | static_assert(16 % sizeof(_UIntType) == 0, |
| 86 | "UIntType size must divide 16" ); |
| 87 | |
| 88 | public: |
| 89 | static constexpr size_t state_size = _M_nstate * (16 |
| 90 | / sizeof(result_type)); |
| 91 | static constexpr result_type default_seed = 5489u; |
| 92 | |
| 93 | // constructors and member function |
| 94 | explicit |
| 95 | simd_fast_mersenne_twister_engine(result_type __sd = default_seed) |
| 96 | { seed(__sd); } |
| 97 | |
| 98 | template<typename _Sseq, typename = typename |
| 99 | std::enable_if<!std::is_same<_Sseq, |
| 100 | simd_fast_mersenne_twister_engine>::value> |
| 101 | ::type> |
| 102 | explicit |
| 103 | simd_fast_mersenne_twister_engine(_Sseq& __q) |
| 104 | { seed(__q); } |
| 105 | |
| 106 | void |
| 107 | seed(result_type __sd = default_seed); |
| 108 | |
| 109 | template<typename _Sseq> |
| 110 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
| 111 | seed(_Sseq& __q); |
| 112 | |
| 113 | static constexpr result_type |
| 114 | min() |
| 115 | { return 0; } |
| 116 | |
| 117 | static constexpr result_type |
| 118 | max() |
| 119 | { return std::numeric_limits<result_type>::max(); } |
| 120 | |
| 121 | void |
| 122 | discard(unsigned long long __z); |
| 123 | |
| 124 | result_type |
| 125 | operator()() |
| 126 | { |
| 127 | if (__builtin_expect(_M_pos >= state_size, 0)) |
| 128 | _M_gen_rand(); |
| 129 | |
| 130 | return _M_stateT[_M_pos++]; |
| 131 | } |
| 132 | |
| 133 | template<typename _UIntType_2, size_t __m_2, |
| 134 | size_t __pos1_2, size_t __sl1_2, size_t __sl2_2, |
| 135 | size_t __sr1_2, size_t __sr2_2, |
| 136 | uint32_t __msk1_2, uint32_t __msk2_2, |
| 137 | uint32_t __msk3_2, uint32_t __msk4_2, |
| 138 | uint32_t __parity1_2, uint32_t __parity2_2, |
| 139 | uint32_t __parity3_2, uint32_t __parity4_2> |
| 140 | friend bool |
| 141 | operator==(const simd_fast_mersenne_twister_engine<_UIntType_2, |
| 142 | __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 143 | __msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 144 | __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __lhs, |
| 145 | const simd_fast_mersenne_twister_engine<_UIntType_2, |
| 146 | __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 147 | __msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 148 | __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __rhs); |
| 149 | |
| 150 | template<typename _UIntType_2, size_t __m_2, |
| 151 | size_t __pos1_2, size_t __sl1_2, size_t __sl2_2, |
| 152 | size_t __sr1_2, size_t __sr2_2, |
| 153 | uint32_t __msk1_2, uint32_t __msk2_2, |
| 154 | uint32_t __msk3_2, uint32_t __msk4_2, |
| 155 | uint32_t __parity1_2, uint32_t __parity2_2, |
| 156 | uint32_t __parity3_2, uint32_t __parity4_2, |
| 157 | typename _CharT, typename _Traits> |
| 158 | friend std::basic_ostream<_CharT, _Traits>& |
| 159 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 160 | const __gnu_cxx::simd_fast_mersenne_twister_engine |
| 161 | <_UIntType_2, |
| 162 | __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 163 | __msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 164 | __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x); |
| 165 | |
| 166 | template<typename _UIntType_2, size_t __m_2, |
| 167 | size_t __pos1_2, size_t __sl1_2, size_t __sl2_2, |
| 168 | size_t __sr1_2, size_t __sr2_2, |
| 169 | uint32_t __msk1_2, uint32_t __msk2_2, |
| 170 | uint32_t __msk3_2, uint32_t __msk4_2, |
| 171 | uint32_t __parity1_2, uint32_t __parity2_2, |
| 172 | uint32_t __parity3_2, uint32_t __parity4_2, |
| 173 | typename _CharT, typename _Traits> |
| 174 | friend std::basic_istream<_CharT, _Traits>& |
| 175 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 176 | __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType_2, |
| 177 | __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2, |
| 178 | __msk1_2, __msk2_2, __msk3_2, __msk4_2, |
| 179 | __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x); |
| 180 | |
| 181 | private: |
| 182 | union |
| 183 | { |
| 184 | #ifdef __SSE2__ |
| 185 | __m128i _M_state[_M_nstate]; |
| 186 | #endif |
| 187 | #ifdef __ARM_NEON |
| 188 | #ifdef __aarch64__ |
| 189 | __Uint32x4_t _M_state[_M_nstate]; |
| 190 | #endif |
| 191 | #endif |
| 192 | uint32_t _M_state32[_M_nstate32]; |
| 193 | result_type _M_stateT[state_size]; |
| 194 | } __attribute__ ((__aligned__ (16))); |
| 195 | size_t _M_pos; |
| 196 | |
| 197 | void _M_gen_rand(void); |
| 198 | void _M_period_certification(); |
| 199 | }; |
| 200 | |
| 201 | |
| 202 | template<typename _UIntType, size_t __m, |
| 203 | size_t __pos1, size_t __sl1, size_t __sl2, |
| 204 | size_t __sr1, size_t __sr2, |
| 205 | uint32_t __msk1, uint32_t __msk2, |
| 206 | uint32_t __msk3, uint32_t __msk4, |
| 207 | uint32_t __parity1, uint32_t __parity2, |
| 208 | uint32_t __parity3, uint32_t __parity4> |
| 209 | inline bool |
| 210 | operator!=(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 211 | __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3, |
| 212 | __msk4, __parity1, __parity2, __parity3, __parity4>& __lhs, |
| 213 | const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType, |
| 214 | __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3, |
| 215 | __msk4, __parity1, __parity2, __parity3, __parity4>& __rhs) |
| 216 | { return !(__lhs == __rhs); } |
| 217 | |
| 218 | |
| 219 | /* Definitions for the SIMD-oriented Fast Mersenne Twister as defined |
| 220 | * in the C implementation by Daito and Matsumoto, as both a 32-bit |
| 221 | * and 64-bit version. |
| 222 | */ |
| 223 | typedef simd_fast_mersenne_twister_engine<uint32_t, 607, 2, |
| 224 | 15, 3, 13, 3, |
| 225 | 0xfdff37ffU, 0xef7f3f7dU, |
| 226 | 0xff777b7dU, 0x7ff7fb2fU, |
| 227 | 0x00000001U, 0x00000000U, |
| 228 | 0x00000000U, 0x5986f054U> |
| 229 | sfmt607; |
| 230 | |
| 231 | typedef simd_fast_mersenne_twister_engine<uint64_t, 607, 2, |
| 232 | 15, 3, 13, 3, |
| 233 | 0xfdff37ffU, 0xef7f3f7dU, |
| 234 | 0xff777b7dU, 0x7ff7fb2fU, |
| 235 | 0x00000001U, 0x00000000U, |
| 236 | 0x00000000U, 0x5986f054U> |
| 237 | sfmt607_64; |
| 238 | |
| 239 | |
| 240 | typedef simd_fast_mersenne_twister_engine<uint32_t, 1279, 7, |
| 241 | 14, 3, 5, 1, |
| 242 | 0xf7fefffdU, 0x7fefcfffU, |
| 243 | 0xaff3ef3fU, 0xb5ffff7fU, |
| 244 | 0x00000001U, 0x00000000U, |
| 245 | 0x00000000U, 0x20000000U> |
| 246 | sfmt1279; |
| 247 | |
| 248 | typedef simd_fast_mersenne_twister_engine<uint64_t, 1279, 7, |
| 249 | 14, 3, 5, 1, |
| 250 | 0xf7fefffdU, 0x7fefcfffU, |
| 251 | 0xaff3ef3fU, 0xb5ffff7fU, |
| 252 | 0x00000001U, 0x00000000U, |
| 253 | 0x00000000U, 0x20000000U> |
| 254 | sfmt1279_64; |
| 255 | |
| 256 | |
| 257 | typedef simd_fast_mersenne_twister_engine<uint32_t, 2281, 12, |
| 258 | 19, 1, 5, 1, |
| 259 | 0xbff7ffbfU, 0xfdfffffeU, |
| 260 | 0xf7ffef7fU, 0xf2f7cbbfU, |
| 261 | 0x00000001U, 0x00000000U, |
| 262 | 0x00000000U, 0x41dfa600U> |
| 263 | sfmt2281; |
| 264 | |
| 265 | typedef simd_fast_mersenne_twister_engine<uint64_t, 2281, 12, |
| 266 | 19, 1, 5, 1, |
| 267 | 0xbff7ffbfU, 0xfdfffffeU, |
| 268 | 0xf7ffef7fU, 0xf2f7cbbfU, |
| 269 | 0x00000001U, 0x00000000U, |
| 270 | 0x00000000U, 0x41dfa600U> |
| 271 | sfmt2281_64; |
| 272 | |
| 273 | |
| 274 | typedef simd_fast_mersenne_twister_engine<uint32_t, 4253, 17, |
| 275 | 20, 1, 7, 1, |
| 276 | 0x9f7bffffU, 0x9fffff5fU, |
| 277 | 0x3efffffbU, 0xfffff7bbU, |
| 278 | 0xa8000001U, 0xaf5390a3U, |
| 279 | 0xb740b3f8U, 0x6c11486dU> |
| 280 | sfmt4253; |
| 281 | |
| 282 | typedef simd_fast_mersenne_twister_engine<uint64_t, 4253, 17, |
| 283 | 20, 1, 7, 1, |
| 284 | 0x9f7bffffU, 0x9fffff5fU, |
| 285 | 0x3efffffbU, 0xfffff7bbU, |
| 286 | 0xa8000001U, 0xaf5390a3U, |
| 287 | 0xb740b3f8U, 0x6c11486dU> |
| 288 | sfmt4253_64; |
| 289 | |
| 290 | |
| 291 | typedef simd_fast_mersenne_twister_engine<uint32_t, 11213, 68, |
| 292 | 14, 3, 7, 3, |
| 293 | 0xeffff7fbU, 0xffffffefU, |
| 294 | 0xdfdfbfffU, 0x7fffdbfdU, |
| 295 | 0x00000001U, 0x00000000U, |
| 296 | 0xe8148000U, 0xd0c7afa3U> |
| 297 | sfmt11213; |
| 298 | |
| 299 | typedef simd_fast_mersenne_twister_engine<uint64_t, 11213, 68, |
| 300 | 14, 3, 7, 3, |
| 301 | 0xeffff7fbU, 0xffffffefU, |
| 302 | 0xdfdfbfffU, 0x7fffdbfdU, |
| 303 | 0x00000001U, 0x00000000U, |
| 304 | 0xe8148000U, 0xd0c7afa3U> |
| 305 | sfmt11213_64; |
| 306 | |
| 307 | |
| 308 | typedef simd_fast_mersenne_twister_engine<uint32_t, 19937, 122, |
| 309 | 18, 1, 11, 1, |
| 310 | 0xdfffffefU, 0xddfecb7fU, |
| 311 | 0xbffaffffU, 0xbffffff6U, |
| 312 | 0x00000001U, 0x00000000U, |
| 313 | 0x00000000U, 0x13c9e684U> |
| 314 | sfmt19937; |
| 315 | |
| 316 | typedef simd_fast_mersenne_twister_engine<uint64_t, 19937, 122, |
| 317 | 18, 1, 11, 1, |
| 318 | 0xdfffffefU, 0xddfecb7fU, |
| 319 | 0xbffaffffU, 0xbffffff6U, |
| 320 | 0x00000001U, 0x00000000U, |
| 321 | 0x00000000U, 0x13c9e684U> |
| 322 | sfmt19937_64; |
| 323 | |
| 324 | |
| 325 | typedef simd_fast_mersenne_twister_engine<uint32_t, 44497, 330, |
| 326 | 5, 3, 9, 3, |
| 327 | 0xeffffffbU, 0xdfbebfffU, |
| 328 | 0xbfbf7befU, 0x9ffd7bffU, |
| 329 | 0x00000001U, 0x00000000U, |
| 330 | 0xa3ac4000U, 0xecc1327aU> |
| 331 | sfmt44497; |
| 332 | |
| 333 | typedef simd_fast_mersenne_twister_engine<uint64_t, 44497, 330, |
| 334 | 5, 3, 9, 3, |
| 335 | 0xeffffffbU, 0xdfbebfffU, |
| 336 | 0xbfbf7befU, 0x9ffd7bffU, |
| 337 | 0x00000001U, 0x00000000U, |
| 338 | 0xa3ac4000U, 0xecc1327aU> |
| 339 | sfmt44497_64; |
| 340 | |
| 341 | |
| 342 | typedef simd_fast_mersenne_twister_engine<uint32_t, 86243, 366, |
| 343 | 6, 7, 19, 1, |
| 344 | 0xfdbffbffU, 0xbff7ff3fU, |
| 345 | 0xfd77efffU, 0xbf9ff3ffU, |
| 346 | 0x00000001U, 0x00000000U, |
| 347 | 0x00000000U, 0xe9528d85U> |
| 348 | sfmt86243; |
| 349 | |
| 350 | typedef simd_fast_mersenne_twister_engine<uint64_t, 86243, 366, |
| 351 | 6, 7, 19, 1, |
| 352 | 0xfdbffbffU, 0xbff7ff3fU, |
| 353 | 0xfd77efffU, 0xbf9ff3ffU, |
| 354 | 0x00000001U, 0x00000000U, |
| 355 | 0x00000000U, 0xe9528d85U> |
| 356 | sfmt86243_64; |
| 357 | |
| 358 | |
| 359 | typedef simd_fast_mersenne_twister_engine<uint32_t, 132049, 110, |
| 360 | 19, 1, 21, 1, |
| 361 | 0xffffbb5fU, 0xfb6ebf95U, |
| 362 | 0xfffefffaU, 0xcff77fffU, |
| 363 | 0x00000001U, 0x00000000U, |
| 364 | 0xcb520000U, 0xc7e91c7dU> |
| 365 | sfmt132049; |
| 366 | |
| 367 | typedef simd_fast_mersenne_twister_engine<uint64_t, 132049, 110, |
| 368 | 19, 1, 21, 1, |
| 369 | 0xffffbb5fU, 0xfb6ebf95U, |
| 370 | 0xfffefffaU, 0xcff77fffU, |
| 371 | 0x00000001U, 0x00000000U, |
| 372 | 0xcb520000U, 0xc7e91c7dU> |
| 373 | sfmt132049_64; |
| 374 | |
| 375 | |
| 376 | typedef simd_fast_mersenne_twister_engine<uint32_t, 216091, 627, |
| 377 | 11, 3, 10, 1, |
| 378 | 0xbff7bff7U, 0xbfffffffU, |
| 379 | 0xbffffa7fU, 0xffddfbfbU, |
| 380 | 0xf8000001U, 0x89e80709U, |
| 381 | 0x3bd2b64bU, 0x0c64b1e4U> |
| 382 | sfmt216091; |
| 383 | |
| 384 | typedef simd_fast_mersenne_twister_engine<uint64_t, 216091, 627, |
| 385 | 11, 3, 10, 1, |
| 386 | 0xbff7bff7U, 0xbfffffffU, |
| 387 | 0xbffffa7fU, 0xffddfbfbU, |
| 388 | 0xf8000001U, 0x89e80709U, |
| 389 | 0x3bd2b64bU, 0x0c64b1e4U> |
| 390 | sfmt216091_64; |
| 391 | |
| 392 | #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| 393 | |
| 394 | /** |
| 395 | * @brief A beta continuous distribution for random numbers. |
| 396 | * |
| 397 | * The formula for the beta probability density function is: |
| 398 | * @f[ |
| 399 | * p(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} |
| 400 | * x^{\alpha - 1} (1 - x)^{\beta - 1} |
| 401 | * @f] |
| 402 | */ |
| 403 | template<typename _RealType = double> |
| 404 | class beta_distribution |
| 405 | { |
| 406 | static_assert(std::is_floating_point<_RealType>::value, |
| 407 | "template argument not a floating point type" ); |
| 408 | |
| 409 | public: |
| 410 | /** The type of the range of the distribution. */ |
| 411 | typedef _RealType result_type; |
| 412 | |
| 413 | /** Parameter type. */ |
| 414 | struct param_type |
| 415 | { |
| 416 | typedef beta_distribution<_RealType> distribution_type; |
| 417 | friend class beta_distribution<_RealType>; |
| 418 | |
| 419 | explicit |
| 420 | param_type(_RealType __alpha_val = _RealType(1), |
| 421 | _RealType __beta_val = _RealType(1)) |
| 422 | : _M_alpha(__alpha_val), _M_beta(__beta_val) |
| 423 | { |
| 424 | __glibcxx_assert(_M_alpha > _RealType(0)); |
| 425 | __glibcxx_assert(_M_beta > _RealType(0)); |
| 426 | } |
| 427 | |
| 428 | _RealType |
| 429 | alpha() const |
| 430 | { return _M_alpha; } |
| 431 | |
| 432 | _RealType |
| 433 | beta() const |
| 434 | { return _M_beta; } |
| 435 | |
| 436 | friend bool |
| 437 | operator==(const param_type& __p1, const param_type& __p2) |
| 438 | { return (__p1._M_alpha == __p2._M_alpha |
| 439 | && __p1._M_beta == __p2._M_beta); } |
| 440 | |
| 441 | friend bool |
| 442 | operator!=(const param_type& __p1, const param_type& __p2) |
| 443 | { return !(__p1 == __p2); } |
| 444 | |
| 445 | private: |
| 446 | void |
| 447 | _M_initialize(); |
| 448 | |
| 449 | _RealType _M_alpha; |
| 450 | _RealType _M_beta; |
| 451 | }; |
| 452 | |
| 453 | public: |
| 454 | /** |
| 455 | * @brief Constructs a beta distribution with parameters |
| 456 | * @f$\alpha@f$ and @f$\beta@f$. |
| 457 | */ |
| 458 | explicit |
| 459 | beta_distribution(_RealType __alpha_val = _RealType(1), |
| 460 | _RealType __beta_val = _RealType(1)) |
| 461 | : _M_param(__alpha_val, __beta_val) |
| 462 | { } |
| 463 | |
| 464 | explicit |
| 465 | beta_distribution(const param_type& __p) |
| 466 | : _M_param(__p) |
| 467 | { } |
| 468 | |
| 469 | /** |
| 470 | * @brief Resets the distribution state. |
| 471 | */ |
| 472 | void |
| 473 | reset() |
| 474 | { } |
| 475 | |
| 476 | /** |
| 477 | * @brief Returns the @f$\alpha@f$ of the distribution. |
| 478 | */ |
| 479 | _RealType |
| 480 | alpha() const |
| 481 | { return _M_param.alpha(); } |
| 482 | |
| 483 | /** |
| 484 | * @brief Returns the @f$\beta@f$ of the distribution. |
| 485 | */ |
| 486 | _RealType |
| 487 | beta() const |
| 488 | { return _M_param.beta(); } |
| 489 | |
| 490 | /** |
| 491 | * @brief Returns the parameter set of the distribution. |
| 492 | */ |
| 493 | param_type |
| 494 | param() const |
| 495 | { return _M_param; } |
| 496 | |
| 497 | /** |
| 498 | * @brief Sets the parameter set of the distribution. |
| 499 | * @param __param The new parameter set of the distribution. |
| 500 | */ |
| 501 | void |
| 502 | param(const param_type& __param) |
| 503 | { _M_param = __param; } |
| 504 | |
| 505 | /** |
| 506 | * @brief Returns the greatest lower bound value of the distribution. |
| 507 | */ |
| 508 | result_type |
| 509 | min() const |
| 510 | { return result_type(0); } |
| 511 | |
| 512 | /** |
| 513 | * @brief Returns the least upper bound value of the distribution. |
| 514 | */ |
| 515 | result_type |
| 516 | max() const |
| 517 | { return result_type(1); } |
| 518 | |
| 519 | /** |
| 520 | * @brief Generating functions. |
| 521 | */ |
| 522 | template<typename _UniformRandomNumberGenerator> |
| 523 | result_type |
| 524 | operator()(_UniformRandomNumberGenerator& __urng) |
| 525 | { return this->operator()(__urng, _M_param); } |
| 526 | |
| 527 | template<typename _UniformRandomNumberGenerator> |
| 528 | result_type |
| 529 | operator()(_UniformRandomNumberGenerator& __urng, |
| 530 | const param_type& __p); |
| 531 | |
| 532 | template<typename _ForwardIterator, |
| 533 | typename _UniformRandomNumberGenerator> |
| 534 | void |
| 535 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 536 | _UniformRandomNumberGenerator& __urng) |
| 537 | { this->__generate(__f, __t, __urng, _M_param); } |
| 538 | |
| 539 | template<typename _ForwardIterator, |
| 540 | typename _UniformRandomNumberGenerator> |
| 541 | void |
| 542 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 543 | _UniformRandomNumberGenerator& __urng, |
| 544 | const param_type& __p) |
| 545 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 546 | |
| 547 | template<typename _UniformRandomNumberGenerator> |
| 548 | void |
| 549 | __generate(result_type* __f, result_type* __t, |
| 550 | _UniformRandomNumberGenerator& __urng, |
| 551 | const param_type& __p) |
| 552 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 553 | |
| 554 | /** |
| 555 | * @brief Return true if two beta distributions have the same |
| 556 | * parameters and the sequences that would be generated |
| 557 | * are equal. |
| 558 | */ |
| 559 | friend bool |
| 560 | operator==(const beta_distribution& __d1, |
| 561 | const beta_distribution& __d2) |
| 562 | { return __d1._M_param == __d2._M_param; } |
| 563 | |
| 564 | /** |
| 565 | * @brief Inserts a %beta_distribution random number distribution |
| 566 | * @p __x into the output stream @p __os. |
| 567 | * |
| 568 | * @param __os An output stream. |
| 569 | * @param __x A %beta_distribution random number distribution. |
| 570 | * |
| 571 | * @returns The output stream with the state of @p __x inserted or in |
| 572 | * an error state. |
| 573 | */ |
| 574 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 575 | friend std::basic_ostream<_CharT, _Traits>& |
| 576 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 577 | const __gnu_cxx::beta_distribution<_RealType1>& __x); |
| 578 | |
| 579 | /** |
| 580 | * @brief Extracts a %beta_distribution random number distribution |
| 581 | * @p __x from the input stream @p __is. |
| 582 | * |
| 583 | * @param __is An input stream. |
| 584 | * @param __x A %beta_distribution random number generator engine. |
| 585 | * |
| 586 | * @returns The input stream with @p __x extracted or in an error state. |
| 587 | */ |
| 588 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 589 | friend std::basic_istream<_CharT, _Traits>& |
| 590 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 591 | __gnu_cxx::beta_distribution<_RealType1>& __x); |
| 592 | |
| 593 | private: |
| 594 | template<typename _ForwardIterator, |
| 595 | typename _UniformRandomNumberGenerator> |
| 596 | void |
| 597 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 598 | _UniformRandomNumberGenerator& __urng, |
| 599 | const param_type& __p); |
| 600 | |
| 601 | param_type _M_param; |
| 602 | }; |
| 603 | |
| 604 | /** |
| 605 | * @brief Return true if two beta distributions are different. |
| 606 | */ |
| 607 | template<typename _RealType> |
| 608 | inline bool |
| 609 | operator!=(const __gnu_cxx::beta_distribution<_RealType>& __d1, |
| 610 | const __gnu_cxx::beta_distribution<_RealType>& __d2) |
| 611 | { return !(__d1 == __d2); } |
| 612 | |
| 613 | |
| 614 | /** |
| 615 | * @brief A multi-variate normal continuous distribution for random numbers. |
| 616 | * |
| 617 | * The formula for the normal probability density function is |
| 618 | * @f[ |
| 619 | * p(\overrightarrow{x}|\overrightarrow{\mu },\Sigma) = |
| 620 | * \frac{1}{\sqrt{(2\pi )^k\det(\Sigma))}} |
| 621 | * e^{-\frac{1}{2}(\overrightarrow{x}-\overrightarrow{\mu})^\text{T} |
| 622 | * \Sigma ^{-1}(\overrightarrow{x}-\overrightarrow{\mu})} |
| 623 | * @f] |
| 624 | * |
| 625 | * where @f$\overrightarrow{x}@f$ and @f$\overrightarrow{\mu}@f$ are |
| 626 | * vectors of dimension @f$k@f$ and @f$\Sigma@f$ is the covariance |
| 627 | * matrix (which must be positive-definite). |
| 628 | */ |
| 629 | template<std::size_t _Dimen, typename _RealType = double> |
| 630 | class normal_mv_distribution |
| 631 | { |
| 632 | static_assert(std::is_floating_point<_RealType>::value, |
| 633 | "template argument not a floating point type" ); |
| 634 | static_assert(_Dimen != 0, "dimension is zero" ); |
| 635 | |
| 636 | public: |
| 637 | /** The type of the range of the distribution. */ |
| 638 | typedef std::array<_RealType, _Dimen> result_type; |
| 639 | /** Parameter type. */ |
| 640 | class param_type |
| 641 | { |
| 642 | static constexpr size_t _M_t_size = _Dimen * (_Dimen + 1) / 2; |
| 643 | |
| 644 | public: |
| 645 | typedef normal_mv_distribution<_Dimen, _RealType> distribution_type; |
| 646 | friend class normal_mv_distribution<_Dimen, _RealType>; |
| 647 | |
| 648 | param_type() |
| 649 | { |
| 650 | std::fill(_M_mean.begin(), _M_mean.end(), _RealType(0)); |
| 651 | auto __it = _M_t.begin(); |
| 652 | for (size_t __i = 0; __i < _Dimen; ++__i) |
| 653 | { |
| 654 | std::fill_n(__it, __i, _RealType(0)); |
| 655 | __it += __i; |
| 656 | *__it++ = _RealType(1); |
| 657 | } |
| 658 | } |
| 659 | |
| 660 | template<typename _ForwardIterator1, typename _ForwardIterator2> |
| 661 | param_type(_ForwardIterator1 __meanbegin, |
| 662 | _ForwardIterator1 __meanend, |
| 663 | _ForwardIterator2 __varcovbegin, |
| 664 | _ForwardIterator2 __varcovend) |
| 665 | { |
| 666 | __glibcxx_function_requires(_ForwardIteratorConcept< |
| 667 | _ForwardIterator1>) |
| 668 | __glibcxx_function_requires(_ForwardIteratorConcept< |
| 669 | _ForwardIterator2>) |
| 670 | _GLIBCXX_DEBUG_ASSERT(std::distance(__meanbegin, __meanend) |
| 671 | <= _Dimen); |
| 672 | const auto __dist = std::distance(__varcovbegin, __varcovend); |
| 673 | _GLIBCXX_DEBUG_ASSERT(__dist == _Dimen * _Dimen |
| 674 | || __dist == _Dimen * (_Dimen + 1) / 2 |
| 675 | || __dist == _Dimen); |
| 676 | |
| 677 | if (__dist == _Dimen * _Dimen) |
| 678 | _M_init_full(__meanbegin, __meanend, __varcovbegin, __varcovend); |
| 679 | else if (__dist == _Dimen * (_Dimen + 1) / 2) |
| 680 | _M_init_lower(__meanbegin, __meanend, __varcovbegin, __varcovend); |
| 681 | else |
| 682 | { |
| 683 | __glibcxx_assert(__dist == _Dimen); |
| 684 | _M_init_diagonal(__meanbegin, __meanend, |
| 685 | __varcovbegin, __varcovend); |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | param_type(std::initializer_list<_RealType> __mean, |
| 690 | std::initializer_list<_RealType> __varcov) |
| 691 | { |
| 692 | _GLIBCXX_DEBUG_ASSERT(__mean.size() <= _Dimen); |
| 693 | _GLIBCXX_DEBUG_ASSERT(__varcov.size() == _Dimen * _Dimen |
| 694 | || __varcov.size() == _Dimen * (_Dimen + 1) / 2 |
| 695 | || __varcov.size() == _Dimen); |
| 696 | |
| 697 | if (__varcov.size() == _Dimen * _Dimen) |
| 698 | _M_init_full(__mean.begin(), __mean.end(), |
| 699 | __varcov.begin(), __varcov.end()); |
| 700 | else if (__varcov.size() == _Dimen * (_Dimen + 1) / 2) |
| 701 | _M_init_lower(__mean.begin(), __mean.end(), |
| 702 | __varcov.begin(), __varcov.end()); |
| 703 | else |
| 704 | { |
| 705 | __glibcxx_assert(__varcov.size() == _Dimen); |
| 706 | _M_init_diagonal(__mean.begin(), __mean.end(), |
| 707 | __varcov.begin(), __varcov.end()); |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | std::array<_RealType, _Dimen> |
| 712 | mean() const |
| 713 | { return _M_mean; } |
| 714 | |
| 715 | std::array<_RealType, _M_t_size> |
| 716 | varcov() const |
| 717 | { return _M_t; } |
| 718 | |
| 719 | friend bool |
| 720 | operator==(const param_type& __p1, const param_type& __p2) |
| 721 | { return __p1._M_mean == __p2._M_mean && __p1._M_t == __p2._M_t; } |
| 722 | |
| 723 | friend bool |
| 724 | operator!=(const param_type& __p1, const param_type& __p2) |
| 725 | { return !(__p1 == __p2); } |
| 726 | |
| 727 | private: |
| 728 | template <typename _InputIterator1, typename _InputIterator2> |
| 729 | void _M_init_full(_InputIterator1 __meanbegin, |
| 730 | _InputIterator1 __meanend, |
| 731 | _InputIterator2 __varcovbegin, |
| 732 | _InputIterator2 __varcovend); |
| 733 | template <typename _InputIterator1, typename _InputIterator2> |
| 734 | void _M_init_lower(_InputIterator1 __meanbegin, |
| 735 | _InputIterator1 __meanend, |
| 736 | _InputIterator2 __varcovbegin, |
| 737 | _InputIterator2 __varcovend); |
| 738 | template <typename _InputIterator1, typename _InputIterator2> |
| 739 | void _M_init_diagonal(_InputIterator1 __meanbegin, |
| 740 | _InputIterator1 __meanend, |
| 741 | _InputIterator2 __varbegin, |
| 742 | _InputIterator2 __varend); |
| 743 | |
| 744 | std::array<_RealType, _Dimen> _M_mean; |
| 745 | std::array<_RealType, _M_t_size> _M_t; |
| 746 | }; |
| 747 | |
| 748 | public: |
| 749 | normal_mv_distribution() |
| 750 | : _M_param(), _M_nd() |
| 751 | { } |
| 752 | |
| 753 | template<typename _ForwardIterator1, typename _ForwardIterator2> |
| 754 | normal_mv_distribution(_ForwardIterator1 __meanbegin, |
| 755 | _ForwardIterator1 __meanend, |
| 756 | _ForwardIterator2 __varcovbegin, |
| 757 | _ForwardIterator2 __varcovend) |
| 758 | : _M_param(__meanbegin, __meanend, __varcovbegin, __varcovend), |
| 759 | _M_nd() |
| 760 | { } |
| 761 | |
| 762 | normal_mv_distribution(std::initializer_list<_RealType> __mean, |
| 763 | std::initializer_list<_RealType> __varcov) |
| 764 | : _M_param(__mean, __varcov), _M_nd() |
| 765 | { } |
| 766 | |
| 767 | explicit |
| 768 | normal_mv_distribution(const param_type& __p) |
| 769 | : _M_param(__p), _M_nd() |
| 770 | { } |
| 771 | |
| 772 | /** |
| 773 | * @brief Resets the distribution state. |
| 774 | */ |
| 775 | void |
| 776 | reset() |
| 777 | { _M_nd.reset(); } |
| 778 | |
| 779 | /** |
| 780 | * @brief Returns the mean of the distribution. |
| 781 | */ |
| 782 | result_type |
| 783 | mean() const |
| 784 | { return _M_param.mean(); } |
| 785 | |
| 786 | /** |
| 787 | * @brief Returns the compact form of the variance/covariance |
| 788 | * matrix of the distribution. |
| 789 | */ |
| 790 | std::array<_RealType, _Dimen * (_Dimen + 1) / 2> |
| 791 | varcov() const |
| 792 | { return _M_param.varcov(); } |
| 793 | |
| 794 | /** |
| 795 | * @brief Returns the parameter set of the distribution. |
| 796 | */ |
| 797 | param_type |
| 798 | param() const |
| 799 | { return _M_param; } |
| 800 | |
| 801 | /** |
| 802 | * @brief Sets the parameter set of the distribution. |
| 803 | * @param __param The new parameter set of the distribution. |
| 804 | */ |
| 805 | void |
| 806 | param(const param_type& __param) |
| 807 | { _M_param = __param; } |
| 808 | |
| 809 | /** |
| 810 | * @brief Returns the greatest lower bound value of the distribution. |
| 811 | */ |
| 812 | result_type |
| 813 | min() const |
| 814 | { result_type __res; |
| 815 | __res.fill(std::numeric_limits<_RealType>::lowest()); |
| 816 | return __res; } |
| 817 | |
| 818 | /** |
| 819 | * @brief Returns the least upper bound value of the distribution. |
| 820 | */ |
| 821 | result_type |
| 822 | max() const |
| 823 | { result_type __res; |
| 824 | __res.fill(std::numeric_limits<_RealType>::max()); |
| 825 | return __res; } |
| 826 | |
| 827 | /** |
| 828 | * @brief Generating functions. |
| 829 | */ |
| 830 | template<typename _UniformRandomNumberGenerator> |
| 831 | result_type |
| 832 | operator()(_UniformRandomNumberGenerator& __urng) |
| 833 | { return this->operator()(__urng, _M_param); } |
| 834 | |
| 835 | template<typename _UniformRandomNumberGenerator> |
| 836 | result_type |
| 837 | operator()(_UniformRandomNumberGenerator& __urng, |
| 838 | const param_type& __p); |
| 839 | |
| 840 | template<typename _ForwardIterator, |
| 841 | typename _UniformRandomNumberGenerator> |
| 842 | void |
| 843 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 844 | _UniformRandomNumberGenerator& __urng) |
| 845 | { return this->__generate_impl(__f, __t, __urng, _M_param); } |
| 846 | |
| 847 | template<typename _ForwardIterator, |
| 848 | typename _UniformRandomNumberGenerator> |
| 849 | void |
| 850 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 851 | _UniformRandomNumberGenerator& __urng, |
| 852 | const param_type& __p) |
| 853 | { return this->__generate_impl(__f, __t, __urng, __p); } |
| 854 | |
| 855 | /** |
| 856 | * @brief Return true if two multi-variant normal distributions have |
| 857 | * the same parameters and the sequences that would |
| 858 | * be generated are equal. |
| 859 | */ |
| 860 | template<size_t _Dimen1, typename _RealType1> |
| 861 | friend bool |
| 862 | operator==(const |
| 863 | __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 864 | __d1, |
| 865 | const |
| 866 | __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 867 | __d2); |
| 868 | |
| 869 | /** |
| 870 | * @brief Inserts a %normal_mv_distribution random number distribution |
| 871 | * @p __x into the output stream @p __os. |
| 872 | * |
| 873 | * @param __os An output stream. |
| 874 | * @param __x A %normal_mv_distribution random number distribution. |
| 875 | * |
| 876 | * @returns The output stream with the state of @p __x inserted or in |
| 877 | * an error state. |
| 878 | */ |
| 879 | template<size_t _Dimen1, typename _RealType1, |
| 880 | typename _CharT, typename _Traits> |
| 881 | friend std::basic_ostream<_CharT, _Traits>& |
| 882 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 883 | const |
| 884 | __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 885 | __x); |
| 886 | |
| 887 | /** |
| 888 | * @brief Extracts a %normal_mv_distribution random number distribution |
| 889 | * @p __x from the input stream @p __is. |
| 890 | * |
| 891 | * @param __is An input stream. |
| 892 | * @param __x A %normal_mv_distribution random number generator engine. |
| 893 | * |
| 894 | * @returns The input stream with @p __x extracted or in an error |
| 895 | * state. |
| 896 | */ |
| 897 | template<size_t _Dimen1, typename _RealType1, |
| 898 | typename _CharT, typename _Traits> |
| 899 | friend std::basic_istream<_CharT, _Traits>& |
| 900 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 901 | __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>& |
| 902 | __x); |
| 903 | |
| 904 | private: |
| 905 | template<typename _ForwardIterator, |
| 906 | typename _UniformRandomNumberGenerator> |
| 907 | void |
| 908 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 909 | _UniformRandomNumberGenerator& __urng, |
| 910 | const param_type& __p); |
| 911 | |
| 912 | param_type _M_param; |
| 913 | std::normal_distribution<_RealType> _M_nd; |
| 914 | }; |
| 915 | |
| 916 | /** |
| 917 | * @brief Return true if two multi-variate normal distributions are |
| 918 | * different. |
| 919 | */ |
| 920 | template<size_t _Dimen, typename _RealType> |
| 921 | inline bool |
| 922 | operator!=(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| 923 | __d1, |
| 924 | const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& |
| 925 | __d2) |
| 926 | { return !(__d1 == __d2); } |
| 927 | |
| 928 | |
| 929 | /** |
| 930 | * @brief A Rice continuous distribution for random numbers. |
| 931 | * |
| 932 | * The formula for the Rice probability density function is |
| 933 | * @f[ |
| 934 | * p(x|\nu,\sigma) = \frac{x}{\sigma^2} |
| 935 | * \exp\left(-\frac{x^2+\nu^2}{2\sigma^2}\right) |
| 936 | * I_0\left(\frac{x \nu}{\sigma^2}\right) |
| 937 | * @f] |
| 938 | * where @f$I_0(z)@f$ is the modified Bessel function of the first kind |
| 939 | * of order 0 and @f$\nu >= 0@f$ and @f$\sigma > 0@f$. |
| 940 | * |
| 941 | * <table border=1 cellpadding=10 cellspacing=0> |
| 942 | * <caption align=top>Distribution Statistics</caption> |
| 943 | * <tr><td>Mean</td><td>@f$\sqrt{\pi/2}L_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr> |
| 944 | * <tr><td>Variance</td><td>@f$2\sigma^2 + \nu^2 |
| 945 | * + (\pi\sigma^2/2)L^2_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr> |
| 946 | * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 947 | * </table> |
| 948 | * where @f$L_{1/2}(x)@f$ is the Laguerre polynomial of order 1/2. |
| 949 | */ |
| 950 | template<typename _RealType = double> |
| 951 | class |
| 952 | rice_distribution |
| 953 | { |
| 954 | static_assert(std::is_floating_point<_RealType>::value, |
| 955 | "template argument not a floating point type" ); |
| 956 | public: |
| 957 | /** The type of the range of the distribution. */ |
| 958 | typedef _RealType result_type; |
| 959 | |
| 960 | /** Parameter type. */ |
| 961 | struct param_type |
| 962 | { |
| 963 | typedef rice_distribution<result_type> distribution_type; |
| 964 | |
| 965 | param_type(result_type __nu_val = result_type(0), |
| 966 | result_type __sigma_val = result_type(1)) |
| 967 | : _M_nu(__nu_val), _M_sigma(__sigma_val) |
| 968 | { |
| 969 | __glibcxx_assert(_M_nu >= result_type(0)); |
| 970 | __glibcxx_assert(_M_sigma > result_type(0)); |
| 971 | } |
| 972 | |
| 973 | result_type |
| 974 | nu() const |
| 975 | { return _M_nu; } |
| 976 | |
| 977 | result_type |
| 978 | sigma() const |
| 979 | { return _M_sigma; } |
| 980 | |
| 981 | friend bool |
| 982 | operator==(const param_type& __p1, const param_type& __p2) |
| 983 | { return __p1._M_nu == __p2._M_nu && __p1._M_sigma == __p2._M_sigma; } |
| 984 | |
| 985 | friend bool |
| 986 | operator!=(const param_type& __p1, const param_type& __p2) |
| 987 | { return !(__p1 == __p2); } |
| 988 | |
| 989 | private: |
| 990 | void _M_initialize(); |
| 991 | |
| 992 | result_type _M_nu; |
| 993 | result_type _M_sigma; |
| 994 | }; |
| 995 | |
| 996 | /** |
| 997 | * @brief Constructors. |
| 998 | */ |
| 999 | explicit |
| 1000 | rice_distribution(result_type __nu_val = result_type(0), |
| 1001 | result_type __sigma_val = result_type(1)) |
| 1002 | : _M_param(__nu_val, __sigma_val), |
| 1003 | _M_ndx(__nu_val, __sigma_val), |
| 1004 | _M_ndy(result_type(0), __sigma_val) |
| 1005 | { } |
| 1006 | |
| 1007 | explicit |
| 1008 | rice_distribution(const param_type& __p) |
| 1009 | : _M_param(__p), |
| 1010 | _M_ndx(__p.nu(), __p.sigma()), |
| 1011 | _M_ndy(result_type(0), __p.sigma()) |
| 1012 | { } |
| 1013 | |
| 1014 | /** |
| 1015 | * @brief Resets the distribution state. |
| 1016 | */ |
| 1017 | void |
| 1018 | reset() |
| 1019 | { |
| 1020 | _M_ndx.reset(); |
| 1021 | _M_ndy.reset(); |
| 1022 | } |
| 1023 | |
| 1024 | /** |
| 1025 | * @brief Return the parameters of the distribution. |
| 1026 | */ |
| 1027 | result_type |
| 1028 | nu() const |
| 1029 | { return _M_param.nu(); } |
| 1030 | |
| 1031 | result_type |
| 1032 | sigma() const |
| 1033 | { return _M_param.sigma(); } |
| 1034 | |
| 1035 | /** |
| 1036 | * @brief Returns the parameter set of the distribution. |
| 1037 | */ |
| 1038 | param_type |
| 1039 | param() const |
| 1040 | { return _M_param; } |
| 1041 | |
| 1042 | /** |
| 1043 | * @brief Sets the parameter set of the distribution. |
| 1044 | * @param __param The new parameter set of the distribution. |
| 1045 | */ |
| 1046 | void |
| 1047 | param(const param_type& __param) |
| 1048 | { _M_param = __param; } |
| 1049 | |
| 1050 | /** |
| 1051 | * @brief Returns the greatest lower bound value of the distribution. |
| 1052 | */ |
| 1053 | result_type |
| 1054 | min() const |
| 1055 | { return result_type(0); } |
| 1056 | |
| 1057 | /** |
| 1058 | * @brief Returns the least upper bound value of the distribution. |
| 1059 | */ |
| 1060 | result_type |
| 1061 | max() const |
| 1062 | { return std::numeric_limits<result_type>::max(); } |
| 1063 | |
| 1064 | /** |
| 1065 | * @brief Generating functions. |
| 1066 | */ |
| 1067 | template<typename _UniformRandomNumberGenerator> |
| 1068 | result_type |
| 1069 | operator()(_UniformRandomNumberGenerator& __urng) |
| 1070 | { |
| 1071 | result_type __x = this->_M_ndx(__urng); |
| 1072 | result_type __y = this->_M_ndy(__urng); |
| 1073 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 1074 | return std::hypot(__x, __y); |
| 1075 | #else |
| 1076 | return std::sqrt(__x * __x + __y * __y); |
| 1077 | #endif |
| 1078 | } |
| 1079 | |
| 1080 | template<typename _UniformRandomNumberGenerator> |
| 1081 | result_type |
| 1082 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1083 | const param_type& __p) |
| 1084 | { |
| 1085 | typename std::normal_distribution<result_type>::param_type |
| 1086 | __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma()); |
| 1087 | result_type __x = this->_M_ndx(__px, __urng); |
| 1088 | result_type __y = this->_M_ndy(__py, __urng); |
| 1089 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 1090 | return std::hypot(__x, __y); |
| 1091 | #else |
| 1092 | return std::sqrt(__x * __x + __y * __y); |
| 1093 | #endif |
| 1094 | } |
| 1095 | |
| 1096 | template<typename _ForwardIterator, |
| 1097 | typename _UniformRandomNumberGenerator> |
| 1098 | void |
| 1099 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1100 | _UniformRandomNumberGenerator& __urng) |
| 1101 | { this->__generate(__f, __t, __urng, _M_param); } |
| 1102 | |
| 1103 | template<typename _ForwardIterator, |
| 1104 | typename _UniformRandomNumberGenerator> |
| 1105 | void |
| 1106 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1107 | _UniformRandomNumberGenerator& __urng, |
| 1108 | const param_type& __p) |
| 1109 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1110 | |
| 1111 | template<typename _UniformRandomNumberGenerator> |
| 1112 | void |
| 1113 | __generate(result_type* __f, result_type* __t, |
| 1114 | _UniformRandomNumberGenerator& __urng, |
| 1115 | const param_type& __p) |
| 1116 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1117 | |
| 1118 | /** |
| 1119 | * @brief Return true if two Rice distributions have |
| 1120 | * the same parameters and the sequences that would |
| 1121 | * be generated are equal. |
| 1122 | */ |
| 1123 | friend bool |
| 1124 | operator==(const rice_distribution& __d1, |
| 1125 | const rice_distribution& __d2) |
| 1126 | { return (__d1._M_param == __d2._M_param |
| 1127 | && __d1._M_ndx == __d2._M_ndx |
| 1128 | && __d1._M_ndy == __d2._M_ndy); } |
| 1129 | |
| 1130 | /** |
| 1131 | * @brief Inserts a %rice_distribution random number distribution |
| 1132 | * @p __x into the output stream @p __os. |
| 1133 | * |
| 1134 | * @param __os An output stream. |
| 1135 | * @param __x A %rice_distribution random number distribution. |
| 1136 | * |
| 1137 | * @returns The output stream with the state of @p __x inserted or in |
| 1138 | * an error state. |
| 1139 | */ |
| 1140 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1141 | friend std::basic_ostream<_CharT, _Traits>& |
| 1142 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1143 | const rice_distribution<_RealType1>&); |
| 1144 | |
| 1145 | /** |
| 1146 | * @brief Extracts a %rice_distribution random number distribution |
| 1147 | * @p __x from the input stream @p __is. |
| 1148 | * |
| 1149 | * @param __is An input stream. |
| 1150 | * @param __x A %rice_distribution random number |
| 1151 | * generator engine. |
| 1152 | * |
| 1153 | * @returns The input stream with @p __x extracted or in an error state. |
| 1154 | */ |
| 1155 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1156 | friend std::basic_istream<_CharT, _Traits>& |
| 1157 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1158 | rice_distribution<_RealType1>&); |
| 1159 | |
| 1160 | private: |
| 1161 | template<typename _ForwardIterator, |
| 1162 | typename _UniformRandomNumberGenerator> |
| 1163 | void |
| 1164 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1165 | _UniformRandomNumberGenerator& __urng, |
| 1166 | const param_type& __p); |
| 1167 | |
| 1168 | param_type _M_param; |
| 1169 | |
| 1170 | std::normal_distribution<result_type> _M_ndx; |
| 1171 | std::normal_distribution<result_type> _M_ndy; |
| 1172 | }; |
| 1173 | |
| 1174 | /** |
| 1175 | * @brief Return true if two Rice distributions are not equal. |
| 1176 | */ |
| 1177 | template<typename _RealType1> |
| 1178 | inline bool |
| 1179 | operator!=(const rice_distribution<_RealType1>& __d1, |
| 1180 | const rice_distribution<_RealType1>& __d2) |
| 1181 | { return !(__d1 == __d2); } |
| 1182 | |
| 1183 | |
| 1184 | /** |
| 1185 | * @brief A Nakagami continuous distribution for random numbers. |
| 1186 | * |
| 1187 | * The formula for the Nakagami probability density function is |
| 1188 | * @f[ |
| 1189 | * p(x|\mu,\omega) = \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu} |
| 1190 | * x^{2\mu-1}e^{-\mu x / \omega} |
| 1191 | * @f] |
| 1192 | * where @f$\Gamma(z)@f$ is the gamma function and @f$\mu >= 0.5@f$ |
| 1193 | * and @f$\omega > 0@f$. |
| 1194 | */ |
| 1195 | template<typename _RealType = double> |
| 1196 | class |
| 1197 | nakagami_distribution |
| 1198 | { |
| 1199 | static_assert(std::is_floating_point<_RealType>::value, |
| 1200 | "template argument not a floating point type" ); |
| 1201 | |
| 1202 | public: |
| 1203 | /** The type of the range of the distribution. */ |
| 1204 | typedef _RealType result_type; |
| 1205 | |
| 1206 | /** Parameter type. */ |
| 1207 | struct param_type |
| 1208 | { |
| 1209 | typedef nakagami_distribution<result_type> distribution_type; |
| 1210 | |
| 1211 | param_type(result_type __mu_val = result_type(1), |
| 1212 | result_type __omega_val = result_type(1)) |
| 1213 | : _M_mu(__mu_val), _M_omega(__omega_val) |
| 1214 | { |
| 1215 | __glibcxx_assert(_M_mu >= result_type(0.5L)); |
| 1216 | __glibcxx_assert(_M_omega > result_type(0)); |
| 1217 | } |
| 1218 | |
| 1219 | result_type |
| 1220 | mu() const |
| 1221 | { return _M_mu; } |
| 1222 | |
| 1223 | result_type |
| 1224 | omega() const |
| 1225 | { return _M_omega; } |
| 1226 | |
| 1227 | friend bool |
| 1228 | operator==(const param_type& __p1, const param_type& __p2) |
| 1229 | { return __p1._M_mu == __p2._M_mu && __p1._M_omega == __p2._M_omega; } |
| 1230 | |
| 1231 | friend bool |
| 1232 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1233 | { return !(__p1 == __p2); } |
| 1234 | |
| 1235 | private: |
| 1236 | void _M_initialize(); |
| 1237 | |
| 1238 | result_type _M_mu; |
| 1239 | result_type _M_omega; |
| 1240 | }; |
| 1241 | |
| 1242 | /** |
| 1243 | * @brief Constructors. |
| 1244 | */ |
| 1245 | explicit |
| 1246 | nakagami_distribution(result_type __mu_val = result_type(1), |
| 1247 | result_type __omega_val = result_type(1)) |
| 1248 | : _M_param(__mu_val, __omega_val), |
| 1249 | _M_gd(__mu_val, __omega_val / __mu_val) |
| 1250 | { } |
| 1251 | |
| 1252 | explicit |
| 1253 | nakagami_distribution(const param_type& __p) |
| 1254 | : _M_param(__p), |
| 1255 | _M_gd(__p.mu(), __p.omega() / __p.mu()) |
| 1256 | { } |
| 1257 | |
| 1258 | /** |
| 1259 | * @brief Resets the distribution state. |
| 1260 | */ |
| 1261 | void |
| 1262 | reset() |
| 1263 | { _M_gd.reset(); } |
| 1264 | |
| 1265 | /** |
| 1266 | * @brief Return the parameters of the distribution. |
| 1267 | */ |
| 1268 | result_type |
| 1269 | mu() const |
| 1270 | { return _M_param.mu(); } |
| 1271 | |
| 1272 | result_type |
| 1273 | omega() const |
| 1274 | { return _M_param.omega(); } |
| 1275 | |
| 1276 | /** |
| 1277 | * @brief Returns the parameter set of the distribution. |
| 1278 | */ |
| 1279 | param_type |
| 1280 | param() const |
| 1281 | { return _M_param; } |
| 1282 | |
| 1283 | /** |
| 1284 | * @brief Sets the parameter set of the distribution. |
| 1285 | * @param __param The new parameter set of the distribution. |
| 1286 | */ |
| 1287 | void |
| 1288 | param(const param_type& __param) |
| 1289 | { _M_param = __param; } |
| 1290 | |
| 1291 | /** |
| 1292 | * @brief Returns the greatest lower bound value of the distribution. |
| 1293 | */ |
| 1294 | result_type |
| 1295 | min() const |
| 1296 | { return result_type(0); } |
| 1297 | |
| 1298 | /** |
| 1299 | * @brief Returns the least upper bound value of the distribution. |
| 1300 | */ |
| 1301 | result_type |
| 1302 | max() const |
| 1303 | { return std::numeric_limits<result_type>::max(); } |
| 1304 | |
| 1305 | /** |
| 1306 | * @brief Generating functions. |
| 1307 | */ |
| 1308 | template<typename _UniformRandomNumberGenerator> |
| 1309 | result_type |
| 1310 | operator()(_UniformRandomNumberGenerator& __urng) |
| 1311 | { return std::sqrt(this->_M_gd(__urng)); } |
| 1312 | |
| 1313 | template<typename _UniformRandomNumberGenerator> |
| 1314 | result_type |
| 1315 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1316 | const param_type& __p) |
| 1317 | { |
| 1318 | typename std::gamma_distribution<result_type>::param_type |
| 1319 | __pg(__p.mu(), __p.omega() / __p.mu()); |
| 1320 | return std::sqrt(this->_M_gd(__pg, __urng)); |
| 1321 | } |
| 1322 | |
| 1323 | template<typename _ForwardIterator, |
| 1324 | typename _UniformRandomNumberGenerator> |
| 1325 | void |
| 1326 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1327 | _UniformRandomNumberGenerator& __urng) |
| 1328 | { this->__generate(__f, __t, __urng, _M_param); } |
| 1329 | |
| 1330 | template<typename _ForwardIterator, |
| 1331 | typename _UniformRandomNumberGenerator> |
| 1332 | void |
| 1333 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1334 | _UniformRandomNumberGenerator& __urng, |
| 1335 | const param_type& __p) |
| 1336 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1337 | |
| 1338 | template<typename _UniformRandomNumberGenerator> |
| 1339 | void |
| 1340 | __generate(result_type* __f, result_type* __t, |
| 1341 | _UniformRandomNumberGenerator& __urng, |
| 1342 | const param_type& __p) |
| 1343 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1344 | |
| 1345 | /** |
| 1346 | * @brief Return true if two Nakagami distributions have |
| 1347 | * the same parameters and the sequences that would |
| 1348 | * be generated are equal. |
| 1349 | */ |
| 1350 | friend bool |
| 1351 | operator==(const nakagami_distribution& __d1, |
| 1352 | const nakagami_distribution& __d2) |
| 1353 | { return (__d1._M_param == __d2._M_param |
| 1354 | && __d1._M_gd == __d2._M_gd); } |
| 1355 | |
| 1356 | /** |
| 1357 | * @brief Inserts a %nakagami_distribution random number distribution |
| 1358 | * @p __x into the output stream @p __os. |
| 1359 | * |
| 1360 | * @param __os An output stream. |
| 1361 | * @param __x A %nakagami_distribution random number distribution. |
| 1362 | * |
| 1363 | * @returns The output stream with the state of @p __x inserted or in |
| 1364 | * an error state. |
| 1365 | */ |
| 1366 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1367 | friend std::basic_ostream<_CharT, _Traits>& |
| 1368 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1369 | const nakagami_distribution<_RealType1>&); |
| 1370 | |
| 1371 | /** |
| 1372 | * @brief Extracts a %nakagami_distribution random number distribution |
| 1373 | * @p __x from the input stream @p __is. |
| 1374 | * |
| 1375 | * @param __is An input stream. |
| 1376 | * @param __x A %nakagami_distribution random number |
| 1377 | * generator engine. |
| 1378 | * |
| 1379 | * @returns The input stream with @p __x extracted or in an error state. |
| 1380 | */ |
| 1381 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1382 | friend std::basic_istream<_CharT, _Traits>& |
| 1383 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1384 | nakagami_distribution<_RealType1>&); |
| 1385 | |
| 1386 | private: |
| 1387 | template<typename _ForwardIterator, |
| 1388 | typename _UniformRandomNumberGenerator> |
| 1389 | void |
| 1390 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1391 | _UniformRandomNumberGenerator& __urng, |
| 1392 | const param_type& __p); |
| 1393 | |
| 1394 | param_type _M_param; |
| 1395 | |
| 1396 | std::gamma_distribution<result_type> _M_gd; |
| 1397 | }; |
| 1398 | |
| 1399 | /** |
| 1400 | * @brief Return true if two Nakagami distributions are not equal. |
| 1401 | */ |
| 1402 | template<typename _RealType> |
| 1403 | inline bool |
| 1404 | operator!=(const nakagami_distribution<_RealType>& __d1, |
| 1405 | const nakagami_distribution<_RealType>& __d2) |
| 1406 | { return !(__d1 == __d2); } |
| 1407 | |
| 1408 | |
| 1409 | /** |
| 1410 | * @brief A Pareto continuous distribution for random numbers. |
| 1411 | * |
| 1412 | * The formula for the Pareto cumulative probability function is |
| 1413 | * @f[ |
| 1414 | * P(x|\alpha,\mu) = 1 - \left(\frac{\mu}{x}\right)^\alpha |
| 1415 | * @f] |
| 1416 | * The formula for the Pareto probability density function is |
| 1417 | * @f[ |
| 1418 | * p(x|\alpha,\mu) = \frac{\alpha + 1}{\mu} |
| 1419 | * \left(\frac{\mu}{x}\right)^{\alpha + 1} |
| 1420 | * @f] |
| 1421 | * where @f$x >= \mu@f$ and @f$\mu > 0@f$, @f$\alpha > 0@f$. |
| 1422 | * |
| 1423 | * <table border=1 cellpadding=10 cellspacing=0> |
| 1424 | * <caption align=top>Distribution Statistics</caption> |
| 1425 | * <tr><td>Mean</td><td>@f$\alpha \mu / (\alpha - 1)@f$ |
| 1426 | * for @f$\alpha > 1@f$</td></tr> |
| 1427 | * <tr><td>Variance</td><td>@f$\alpha \mu^2 / [(\alpha - 1)^2(\alpha - 2)]@f$ |
| 1428 | * for @f$\alpha > 2@f$</td></tr> |
| 1429 | * <tr><td>Range</td><td>@f$[\mu, \infty)@f$</td></tr> |
| 1430 | * </table> |
| 1431 | */ |
| 1432 | template<typename _RealType = double> |
| 1433 | class |
| 1434 | pareto_distribution |
| 1435 | { |
| 1436 | static_assert(std::is_floating_point<_RealType>::value, |
| 1437 | "template argument not a floating point type" ); |
| 1438 | |
| 1439 | public: |
| 1440 | /** The type of the range of the distribution. */ |
| 1441 | typedef _RealType result_type; |
| 1442 | |
| 1443 | /** Parameter type. */ |
| 1444 | struct param_type |
| 1445 | { |
| 1446 | typedef pareto_distribution<result_type> distribution_type; |
| 1447 | |
| 1448 | param_type(result_type __alpha_val = result_type(1), |
| 1449 | result_type __mu_val = result_type(1)) |
| 1450 | : _M_alpha(__alpha_val), _M_mu(__mu_val) |
| 1451 | { |
| 1452 | __glibcxx_assert(_M_alpha > result_type(0)); |
| 1453 | __glibcxx_assert(_M_mu > result_type(0)); |
| 1454 | } |
| 1455 | |
| 1456 | result_type |
| 1457 | alpha() const |
| 1458 | { return _M_alpha; } |
| 1459 | |
| 1460 | result_type |
| 1461 | mu() const |
| 1462 | { return _M_mu; } |
| 1463 | |
| 1464 | friend bool |
| 1465 | operator==(const param_type& __p1, const param_type& __p2) |
| 1466 | { return __p1._M_alpha == __p2._M_alpha && __p1._M_mu == __p2._M_mu; } |
| 1467 | |
| 1468 | friend bool |
| 1469 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1470 | { return !(__p1 == __p2); } |
| 1471 | |
| 1472 | private: |
| 1473 | void _M_initialize(); |
| 1474 | |
| 1475 | result_type _M_alpha; |
| 1476 | result_type _M_mu; |
| 1477 | }; |
| 1478 | |
| 1479 | /** |
| 1480 | * @brief Constructors. |
| 1481 | */ |
| 1482 | explicit |
| 1483 | pareto_distribution(result_type __alpha_val = result_type(1), |
| 1484 | result_type __mu_val = result_type(1)) |
| 1485 | : _M_param(__alpha_val, __mu_val), |
| 1486 | _M_ud() |
| 1487 | { } |
| 1488 | |
| 1489 | explicit |
| 1490 | pareto_distribution(const param_type& __p) |
| 1491 | : _M_param(__p), |
| 1492 | _M_ud() |
| 1493 | { } |
| 1494 | |
| 1495 | /** |
| 1496 | * @brief Resets the distribution state. |
| 1497 | */ |
| 1498 | void |
| 1499 | reset() |
| 1500 | { |
| 1501 | _M_ud.reset(); |
| 1502 | } |
| 1503 | |
| 1504 | /** |
| 1505 | * @brief Return the parameters of the distribution. |
| 1506 | */ |
| 1507 | result_type |
| 1508 | alpha() const |
| 1509 | { return _M_param.alpha(); } |
| 1510 | |
| 1511 | result_type |
| 1512 | mu() const |
| 1513 | { return _M_param.mu(); } |
| 1514 | |
| 1515 | /** |
| 1516 | * @brief Returns the parameter set of the distribution. |
| 1517 | */ |
| 1518 | param_type |
| 1519 | param() const |
| 1520 | { return _M_param; } |
| 1521 | |
| 1522 | /** |
| 1523 | * @brief Sets the parameter set of the distribution. |
| 1524 | * @param __param The new parameter set of the distribution. |
| 1525 | */ |
| 1526 | void |
| 1527 | param(const param_type& __param) |
| 1528 | { _M_param = __param; } |
| 1529 | |
| 1530 | /** |
| 1531 | * @brief Returns the greatest lower bound value of the distribution. |
| 1532 | */ |
| 1533 | result_type |
| 1534 | min() const |
| 1535 | { return this->mu(); } |
| 1536 | |
| 1537 | /** |
| 1538 | * @brief Returns the least upper bound value of the distribution. |
| 1539 | */ |
| 1540 | result_type |
| 1541 | max() const |
| 1542 | { return std::numeric_limits<result_type>::max(); } |
| 1543 | |
| 1544 | /** |
| 1545 | * @brief Generating functions. |
| 1546 | */ |
| 1547 | template<typename _UniformRandomNumberGenerator> |
| 1548 | result_type |
| 1549 | operator()(_UniformRandomNumberGenerator& __urng) |
| 1550 | { |
| 1551 | return this->mu() * std::pow(this->_M_ud(__urng), |
| 1552 | -result_type(1) / this->alpha()); |
| 1553 | } |
| 1554 | |
| 1555 | template<typename _UniformRandomNumberGenerator> |
| 1556 | result_type |
| 1557 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1558 | const param_type& __p) |
| 1559 | { |
| 1560 | return __p.mu() * std::pow(this->_M_ud(__urng), |
| 1561 | -result_type(1) / __p.alpha()); |
| 1562 | } |
| 1563 | |
| 1564 | template<typename _ForwardIterator, |
| 1565 | typename _UniformRandomNumberGenerator> |
| 1566 | void |
| 1567 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1568 | _UniformRandomNumberGenerator& __urng) |
| 1569 | { this->__generate(__f, __t, __urng, _M_param); } |
| 1570 | |
| 1571 | template<typename _ForwardIterator, |
| 1572 | typename _UniformRandomNumberGenerator> |
| 1573 | void |
| 1574 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1575 | _UniformRandomNumberGenerator& __urng, |
| 1576 | const param_type& __p) |
| 1577 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1578 | |
| 1579 | template<typename _UniformRandomNumberGenerator> |
| 1580 | void |
| 1581 | __generate(result_type* __f, result_type* __t, |
| 1582 | _UniformRandomNumberGenerator& __urng, |
| 1583 | const param_type& __p) |
| 1584 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1585 | |
| 1586 | /** |
| 1587 | * @brief Return true if two Pareto distributions have |
| 1588 | * the same parameters and the sequences that would |
| 1589 | * be generated are equal. |
| 1590 | */ |
| 1591 | friend bool |
| 1592 | operator==(const pareto_distribution& __d1, |
| 1593 | const pareto_distribution& __d2) |
| 1594 | { return (__d1._M_param == __d2._M_param |
| 1595 | && __d1._M_ud == __d2._M_ud); } |
| 1596 | |
| 1597 | /** |
| 1598 | * @brief Inserts a %pareto_distribution random number distribution |
| 1599 | * @p __x into the output stream @p __os. |
| 1600 | * |
| 1601 | * @param __os An output stream. |
| 1602 | * @param __x A %pareto_distribution random number distribution. |
| 1603 | * |
| 1604 | * @returns The output stream with the state of @p __x inserted or in |
| 1605 | * an error state. |
| 1606 | */ |
| 1607 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1608 | friend std::basic_ostream<_CharT, _Traits>& |
| 1609 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1610 | const pareto_distribution<_RealType1>&); |
| 1611 | |
| 1612 | /** |
| 1613 | * @brief Extracts a %pareto_distribution random number distribution |
| 1614 | * @p __x from the input stream @p __is. |
| 1615 | * |
| 1616 | * @param __is An input stream. |
| 1617 | * @param __x A %pareto_distribution random number |
| 1618 | * generator engine. |
| 1619 | * |
| 1620 | * @returns The input stream with @p __x extracted or in an error state. |
| 1621 | */ |
| 1622 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1623 | friend std::basic_istream<_CharT, _Traits>& |
| 1624 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1625 | pareto_distribution<_RealType1>&); |
| 1626 | |
| 1627 | private: |
| 1628 | template<typename _ForwardIterator, |
| 1629 | typename _UniformRandomNumberGenerator> |
| 1630 | void |
| 1631 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1632 | _UniformRandomNumberGenerator& __urng, |
| 1633 | const param_type& __p); |
| 1634 | |
| 1635 | param_type _M_param; |
| 1636 | |
| 1637 | std::uniform_real_distribution<result_type> _M_ud; |
| 1638 | }; |
| 1639 | |
| 1640 | /** |
| 1641 | * @brief Return true if two Pareto distributions are not equal. |
| 1642 | */ |
| 1643 | template<typename _RealType> |
| 1644 | inline bool |
| 1645 | operator!=(const pareto_distribution<_RealType>& __d1, |
| 1646 | const pareto_distribution<_RealType>& __d2) |
| 1647 | { return !(__d1 == __d2); } |
| 1648 | |
| 1649 | |
| 1650 | /** |
| 1651 | * @brief A K continuous distribution for random numbers. |
| 1652 | * |
| 1653 | * The formula for the K probability density function is |
| 1654 | * @f[ |
| 1655 | * p(x|\lambda, \mu, \nu) = \frac{2}{x} |
| 1656 | * \left(\frac{\lambda\nu x}{\mu}\right)^{\frac{\lambda + \nu}{2}} |
| 1657 | * \frac{1}{\Gamma(\lambda)\Gamma(\nu)} |
| 1658 | * K_{\nu - \lambda}\left(2\sqrt{\frac{\lambda\nu x}{\mu}}\right) |
| 1659 | * @f] |
| 1660 | * where @f$I_0(z)@f$ is the modified Bessel function of the second kind |
| 1661 | * of order @f$\nu - \lambda@f$ and @f$\lambda > 0@f$, @f$\mu > 0@f$ |
| 1662 | * and @f$\nu > 0@f$. |
| 1663 | * |
| 1664 | * <table border=1 cellpadding=10 cellspacing=0> |
| 1665 | * <caption align=top>Distribution Statistics</caption> |
| 1666 | * <tr><td>Mean</td><td>@f$\mu@f$</td></tr> |
| 1667 | * <tr><td>Variance</td><td>@f$\mu^2\frac{\lambda + \nu + 1}{\lambda\nu}@f$</td></tr> |
| 1668 | * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 1669 | * </table> |
| 1670 | */ |
| 1671 | template<typename _RealType = double> |
| 1672 | class |
| 1673 | k_distribution |
| 1674 | { |
| 1675 | static_assert(std::is_floating_point<_RealType>::value, |
| 1676 | "template argument not a floating point type" ); |
| 1677 | |
| 1678 | public: |
| 1679 | /** The type of the range of the distribution. */ |
| 1680 | typedef _RealType result_type; |
| 1681 | |
| 1682 | /** Parameter type. */ |
| 1683 | struct param_type |
| 1684 | { |
| 1685 | typedef k_distribution<result_type> distribution_type; |
| 1686 | |
| 1687 | param_type(result_type __lambda_val = result_type(1), |
| 1688 | result_type __mu_val = result_type(1), |
| 1689 | result_type __nu_val = result_type(1)) |
| 1690 | : _M_lambda(__lambda_val), _M_mu(__mu_val), _M_nu(__nu_val) |
| 1691 | { |
| 1692 | __glibcxx_assert(_M_lambda > result_type(0)); |
| 1693 | __glibcxx_assert(_M_mu > result_type(0)); |
| 1694 | __glibcxx_assert(_M_nu > result_type(0)); |
| 1695 | } |
| 1696 | |
| 1697 | result_type |
| 1698 | lambda() const |
| 1699 | { return _M_lambda; } |
| 1700 | |
| 1701 | result_type |
| 1702 | mu() const |
| 1703 | { return _M_mu; } |
| 1704 | |
| 1705 | result_type |
| 1706 | nu() const |
| 1707 | { return _M_nu; } |
| 1708 | |
| 1709 | friend bool |
| 1710 | operator==(const param_type& __p1, const param_type& __p2) |
| 1711 | { |
| 1712 | return __p1._M_lambda == __p2._M_lambda |
| 1713 | && __p1._M_mu == __p2._M_mu |
| 1714 | && __p1._M_nu == __p2._M_nu; |
| 1715 | } |
| 1716 | |
| 1717 | friend bool |
| 1718 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1719 | { return !(__p1 == __p2); } |
| 1720 | |
| 1721 | private: |
| 1722 | void _M_initialize(); |
| 1723 | |
| 1724 | result_type _M_lambda; |
| 1725 | result_type _M_mu; |
| 1726 | result_type _M_nu; |
| 1727 | }; |
| 1728 | |
| 1729 | /** |
| 1730 | * @brief Constructors. |
| 1731 | */ |
| 1732 | explicit |
| 1733 | k_distribution(result_type __lambda_val = result_type(1), |
| 1734 | result_type __mu_val = result_type(1), |
| 1735 | result_type __nu_val = result_type(1)) |
| 1736 | : _M_param(__lambda_val, __mu_val, __nu_val), |
| 1737 | _M_gd1(__lambda_val, result_type(1) / __lambda_val), |
| 1738 | _M_gd2(__nu_val, __mu_val / __nu_val) |
| 1739 | { } |
| 1740 | |
| 1741 | explicit |
| 1742 | k_distribution(const param_type& __p) |
| 1743 | : _M_param(__p), |
| 1744 | _M_gd1(__p.lambda(), result_type(1) / __p.lambda()), |
| 1745 | _M_gd2(__p.nu(), __p.mu() / __p.nu()) |
| 1746 | { } |
| 1747 | |
| 1748 | /** |
| 1749 | * @brief Resets the distribution state. |
| 1750 | */ |
| 1751 | void |
| 1752 | reset() |
| 1753 | { |
| 1754 | _M_gd1.reset(); |
| 1755 | _M_gd2.reset(); |
| 1756 | } |
| 1757 | |
| 1758 | /** |
| 1759 | * @brief Return the parameters of the distribution. |
| 1760 | */ |
| 1761 | result_type |
| 1762 | lambda() const |
| 1763 | { return _M_param.lambda(); } |
| 1764 | |
| 1765 | result_type |
| 1766 | mu() const |
| 1767 | { return _M_param.mu(); } |
| 1768 | |
| 1769 | result_type |
| 1770 | nu() const |
| 1771 | { return _M_param.nu(); } |
| 1772 | |
| 1773 | /** |
| 1774 | * @brief Returns the parameter set of the distribution. |
| 1775 | */ |
| 1776 | param_type |
| 1777 | param() const |
| 1778 | { return _M_param; } |
| 1779 | |
| 1780 | /** |
| 1781 | * @brief Sets the parameter set of the distribution. |
| 1782 | * @param __param The new parameter set of the distribution. |
| 1783 | */ |
| 1784 | void |
| 1785 | param(const param_type& __param) |
| 1786 | { _M_param = __param; } |
| 1787 | |
| 1788 | /** |
| 1789 | * @brief Returns the greatest lower bound value of the distribution. |
| 1790 | */ |
| 1791 | result_type |
| 1792 | min() const |
| 1793 | { return result_type(0); } |
| 1794 | |
| 1795 | /** |
| 1796 | * @brief Returns the least upper bound value of the distribution. |
| 1797 | */ |
| 1798 | result_type |
| 1799 | max() const |
| 1800 | { return std::numeric_limits<result_type>::max(); } |
| 1801 | |
| 1802 | /** |
| 1803 | * @brief Generating functions. |
| 1804 | */ |
| 1805 | template<typename _UniformRandomNumberGenerator> |
| 1806 | result_type |
| 1807 | operator()(_UniformRandomNumberGenerator&); |
| 1808 | |
| 1809 | template<typename _UniformRandomNumberGenerator> |
| 1810 | result_type |
| 1811 | operator()(_UniformRandomNumberGenerator&, const param_type&); |
| 1812 | |
| 1813 | template<typename _ForwardIterator, |
| 1814 | typename _UniformRandomNumberGenerator> |
| 1815 | void |
| 1816 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1817 | _UniformRandomNumberGenerator& __urng) |
| 1818 | { this->__generate(__f, __t, __urng, _M_param); } |
| 1819 | |
| 1820 | template<typename _ForwardIterator, |
| 1821 | typename _UniformRandomNumberGenerator> |
| 1822 | void |
| 1823 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 1824 | _UniformRandomNumberGenerator& __urng, |
| 1825 | const param_type& __p) |
| 1826 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1827 | |
| 1828 | template<typename _UniformRandomNumberGenerator> |
| 1829 | void |
| 1830 | __generate(result_type* __f, result_type* __t, |
| 1831 | _UniformRandomNumberGenerator& __urng, |
| 1832 | const param_type& __p) |
| 1833 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 1834 | |
| 1835 | /** |
| 1836 | * @brief Return true if two K distributions have |
| 1837 | * the same parameters and the sequences that would |
| 1838 | * be generated are equal. |
| 1839 | */ |
| 1840 | friend bool |
| 1841 | operator==(const k_distribution& __d1, |
| 1842 | const k_distribution& __d2) |
| 1843 | { return (__d1._M_param == __d2._M_param |
| 1844 | && __d1._M_gd1 == __d2._M_gd1 |
| 1845 | && __d1._M_gd2 == __d2._M_gd2); } |
| 1846 | |
| 1847 | /** |
| 1848 | * @brief Inserts a %k_distribution random number distribution |
| 1849 | * @p __x into the output stream @p __os. |
| 1850 | * |
| 1851 | * @param __os An output stream. |
| 1852 | * @param __x A %k_distribution random number distribution. |
| 1853 | * |
| 1854 | * @returns The output stream with the state of @p __x inserted or in |
| 1855 | * an error state. |
| 1856 | */ |
| 1857 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1858 | friend std::basic_ostream<_CharT, _Traits>& |
| 1859 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 1860 | const k_distribution<_RealType1>&); |
| 1861 | |
| 1862 | /** |
| 1863 | * @brief Extracts a %k_distribution random number distribution |
| 1864 | * @p __x from the input stream @p __is. |
| 1865 | * |
| 1866 | * @param __is An input stream. |
| 1867 | * @param __x A %k_distribution random number |
| 1868 | * generator engine. |
| 1869 | * |
| 1870 | * @returns The input stream with @p __x extracted or in an error state. |
| 1871 | */ |
| 1872 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 1873 | friend std::basic_istream<_CharT, _Traits>& |
| 1874 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 1875 | k_distribution<_RealType1>&); |
| 1876 | |
| 1877 | private: |
| 1878 | template<typename _ForwardIterator, |
| 1879 | typename _UniformRandomNumberGenerator> |
| 1880 | void |
| 1881 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1882 | _UniformRandomNumberGenerator& __urng, |
| 1883 | const param_type& __p); |
| 1884 | |
| 1885 | param_type _M_param; |
| 1886 | |
| 1887 | std::gamma_distribution<result_type> _M_gd1; |
| 1888 | std::gamma_distribution<result_type> _M_gd2; |
| 1889 | }; |
| 1890 | |
| 1891 | /** |
| 1892 | * @brief Return true if two K distributions are not equal. |
| 1893 | */ |
| 1894 | template<typename _RealType> |
| 1895 | inline bool |
| 1896 | operator!=(const k_distribution<_RealType>& __d1, |
| 1897 | const k_distribution<_RealType>& __d2) |
| 1898 | { return !(__d1 == __d2); } |
| 1899 | |
| 1900 | |
| 1901 | /** |
| 1902 | * @brief An arcsine continuous distribution for random numbers. |
| 1903 | * |
| 1904 | * The formula for the arcsine probability density function is |
| 1905 | * @f[ |
| 1906 | * p(x|a,b) = \frac{1}{\pi \sqrt{(x - a)(b - x)}} |
| 1907 | * @f] |
| 1908 | * where @f$x >= a@f$ and @f$x <= b@f$. |
| 1909 | * |
| 1910 | * <table border=1 cellpadding=10 cellspacing=0> |
| 1911 | * <caption align=top>Distribution Statistics</caption> |
| 1912 | * <tr><td>Mean</td><td>@f$ (a + b) / 2 @f$</td></tr> |
| 1913 | * <tr><td>Variance</td><td>@f$ (b - a)^2 / 8 @f$</td></tr> |
| 1914 | * <tr><td>Range</td><td>@f$[a, b]@f$</td></tr> |
| 1915 | * </table> |
| 1916 | */ |
| 1917 | template<typename _RealType = double> |
| 1918 | class |
| 1919 | arcsine_distribution |
| 1920 | { |
| 1921 | static_assert(std::is_floating_point<_RealType>::value, |
| 1922 | "template argument not a floating point type" ); |
| 1923 | |
| 1924 | public: |
| 1925 | /** The type of the range of the distribution. */ |
| 1926 | typedef _RealType result_type; |
| 1927 | |
| 1928 | /** Parameter type. */ |
| 1929 | struct param_type |
| 1930 | { |
| 1931 | typedef arcsine_distribution<result_type> distribution_type; |
| 1932 | |
| 1933 | param_type(result_type __a = result_type(0), |
| 1934 | result_type __b = result_type(1)) |
| 1935 | : _M_a(__a), _M_b(__b) |
| 1936 | { |
| 1937 | __glibcxx_assert(_M_a <= _M_b); |
| 1938 | } |
| 1939 | |
| 1940 | result_type |
| 1941 | a() const |
| 1942 | { return _M_a; } |
| 1943 | |
| 1944 | result_type |
| 1945 | b() const |
| 1946 | { return _M_b; } |
| 1947 | |
| 1948 | friend bool |
| 1949 | operator==(const param_type& __p1, const param_type& __p2) |
| 1950 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 1951 | |
| 1952 | friend bool |
| 1953 | operator!=(const param_type& __p1, const param_type& __p2) |
| 1954 | { return !(__p1 == __p2); } |
| 1955 | |
| 1956 | private: |
| 1957 | void _M_initialize(); |
| 1958 | |
| 1959 | result_type _M_a; |
| 1960 | result_type _M_b; |
| 1961 | }; |
| 1962 | |
| 1963 | /** |
| 1964 | * @brief Constructors. |
| 1965 | */ |
| 1966 | explicit |
| 1967 | arcsine_distribution(result_type __a = result_type(0), |
| 1968 | result_type __b = result_type(1)) |
| 1969 | : _M_param(__a, __b), |
| 1970 | _M_ud(-1.5707963267948966192313216916397514L, |
| 1971 | +1.5707963267948966192313216916397514L) |
| 1972 | { } |
| 1973 | |
| 1974 | explicit |
| 1975 | arcsine_distribution(const param_type& __p) |
| 1976 | : _M_param(__p), |
| 1977 | _M_ud(-1.5707963267948966192313216916397514L, |
| 1978 | +1.5707963267948966192313216916397514L) |
| 1979 | { } |
| 1980 | |
| 1981 | /** |
| 1982 | * @brief Resets the distribution state. |
| 1983 | */ |
| 1984 | void |
| 1985 | reset() |
| 1986 | { _M_ud.reset(); } |
| 1987 | |
| 1988 | /** |
| 1989 | * @brief Return the parameters of the distribution. |
| 1990 | */ |
| 1991 | result_type |
| 1992 | a() const |
| 1993 | { return _M_param.a(); } |
| 1994 | |
| 1995 | result_type |
| 1996 | b() const |
| 1997 | { return _M_param.b(); } |
| 1998 | |
| 1999 | /** |
| 2000 | * @brief Returns the parameter set of the distribution. |
| 2001 | */ |
| 2002 | param_type |
| 2003 | param() const |
| 2004 | { return _M_param; } |
| 2005 | |
| 2006 | /** |
| 2007 | * @brief Sets the parameter set of the distribution. |
| 2008 | * @param __param The new parameter set of the distribution. |
| 2009 | */ |
| 2010 | void |
| 2011 | param(const param_type& __param) |
| 2012 | { _M_param = __param; } |
| 2013 | |
| 2014 | /** |
| 2015 | * @brief Returns the greatest lower bound value of the distribution. |
| 2016 | */ |
| 2017 | result_type |
| 2018 | min() const |
| 2019 | { return this->a(); } |
| 2020 | |
| 2021 | /** |
| 2022 | * @brief Returns the least upper bound value of the distribution. |
| 2023 | */ |
| 2024 | result_type |
| 2025 | max() const |
| 2026 | { return this->b(); } |
| 2027 | |
| 2028 | /** |
| 2029 | * @brief Generating functions. |
| 2030 | */ |
| 2031 | template<typename _UniformRandomNumberGenerator> |
| 2032 | result_type |
| 2033 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2034 | { |
| 2035 | result_type __x = std::sin(this->_M_ud(__urng)); |
| 2036 | return (__x * (this->b() - this->a()) |
| 2037 | + this->a() + this->b()) / result_type(2); |
| 2038 | } |
| 2039 | |
| 2040 | template<typename _UniformRandomNumberGenerator> |
| 2041 | result_type |
| 2042 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2043 | const param_type& __p) |
| 2044 | { |
| 2045 | result_type __x = std::sin(this->_M_ud(__urng)); |
| 2046 | return (__x * (__p.b() - __p.a()) |
| 2047 | + __p.a() + __p.b()) / result_type(2); |
| 2048 | } |
| 2049 | |
| 2050 | template<typename _ForwardIterator, |
| 2051 | typename _UniformRandomNumberGenerator> |
| 2052 | void |
| 2053 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2054 | _UniformRandomNumberGenerator& __urng) |
| 2055 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2056 | |
| 2057 | template<typename _ForwardIterator, |
| 2058 | typename _UniformRandomNumberGenerator> |
| 2059 | void |
| 2060 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2061 | _UniformRandomNumberGenerator& __urng, |
| 2062 | const param_type& __p) |
| 2063 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2064 | |
| 2065 | template<typename _UniformRandomNumberGenerator> |
| 2066 | void |
| 2067 | __generate(result_type* __f, result_type* __t, |
| 2068 | _UniformRandomNumberGenerator& __urng, |
| 2069 | const param_type& __p) |
| 2070 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2071 | |
| 2072 | /** |
| 2073 | * @brief Return true if two arcsine distributions have |
| 2074 | * the same parameters and the sequences that would |
| 2075 | * be generated are equal. |
| 2076 | */ |
| 2077 | friend bool |
| 2078 | operator==(const arcsine_distribution& __d1, |
| 2079 | const arcsine_distribution& __d2) |
| 2080 | { return (__d1._M_param == __d2._M_param |
| 2081 | && __d1._M_ud == __d2._M_ud); } |
| 2082 | |
| 2083 | /** |
| 2084 | * @brief Inserts a %arcsine_distribution random number distribution |
| 2085 | * @p __x into the output stream @p __os. |
| 2086 | * |
| 2087 | * @param __os An output stream. |
| 2088 | * @param __x A %arcsine_distribution random number distribution. |
| 2089 | * |
| 2090 | * @returns The output stream with the state of @p __x inserted or in |
| 2091 | * an error state. |
| 2092 | */ |
| 2093 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2094 | friend std::basic_ostream<_CharT, _Traits>& |
| 2095 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 2096 | const arcsine_distribution<_RealType1>&); |
| 2097 | |
| 2098 | /** |
| 2099 | * @brief Extracts a %arcsine_distribution random number distribution |
| 2100 | * @p __x from the input stream @p __is. |
| 2101 | * |
| 2102 | * @param __is An input stream. |
| 2103 | * @param __x A %arcsine_distribution random number |
| 2104 | * generator engine. |
| 2105 | * |
| 2106 | * @returns The input stream with @p __x extracted or in an error state. |
| 2107 | */ |
| 2108 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2109 | friend std::basic_istream<_CharT, _Traits>& |
| 2110 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 2111 | arcsine_distribution<_RealType1>&); |
| 2112 | |
| 2113 | private: |
| 2114 | template<typename _ForwardIterator, |
| 2115 | typename _UniformRandomNumberGenerator> |
| 2116 | void |
| 2117 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2118 | _UniformRandomNumberGenerator& __urng, |
| 2119 | const param_type& __p); |
| 2120 | |
| 2121 | param_type _M_param; |
| 2122 | |
| 2123 | std::uniform_real_distribution<result_type> _M_ud; |
| 2124 | }; |
| 2125 | |
| 2126 | /** |
| 2127 | * @brief Return true if two arcsine distributions are not equal. |
| 2128 | */ |
| 2129 | template<typename _RealType> |
| 2130 | inline bool |
| 2131 | operator!=(const arcsine_distribution<_RealType>& __d1, |
| 2132 | const arcsine_distribution<_RealType>& __d2) |
| 2133 | { return !(__d1 == __d2); } |
| 2134 | |
| 2135 | |
| 2136 | /** |
| 2137 | * @brief A Hoyt continuous distribution for random numbers. |
| 2138 | * |
| 2139 | * The formula for the Hoyt probability density function is |
| 2140 | * @f[ |
| 2141 | * p(x|q,\omega) = \frac{(1 + q^2)x}{q\omega} |
| 2142 | * \exp\left(-\frac{(1 + q^2)^2 x^2}{4 q^2 \omega}\right) |
| 2143 | * I_0\left(\frac{(1 - q^4) x^2}{4 q^2 \omega}\right) |
| 2144 | * @f] |
| 2145 | * where @f$I_0(z)@f$ is the modified Bessel function of the first kind |
| 2146 | * of order 0 and @f$0 < q < 1@f$. |
| 2147 | * |
| 2148 | * <table border=1 cellpadding=10 cellspacing=0> |
| 2149 | * <caption align=top>Distribution Statistics</caption> |
| 2150 | * <tr><td>Mean</td><td>@f$ \sqrt{\frac{2}{\pi}} \sqrt{\frac{\omega}{1 + q^2}} |
| 2151 | * E(1 - q^2) @f$</td></tr> |
| 2152 | * <tr><td>Variance</td><td>@f$ \omega \left(1 - \frac{2E^2(1 - q^2)} |
| 2153 | * {\pi (1 + q^2)}\right) @f$</td></tr> |
| 2154 | * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 2155 | * </table> |
| 2156 | * where @f$E(x)@f$ is the elliptic function of the second kind. |
| 2157 | */ |
| 2158 | template<typename _RealType = double> |
| 2159 | class |
| 2160 | hoyt_distribution |
| 2161 | { |
| 2162 | static_assert(std::is_floating_point<_RealType>::value, |
| 2163 | "template argument not a floating point type" ); |
| 2164 | |
| 2165 | public: |
| 2166 | /** The type of the range of the distribution. */ |
| 2167 | typedef _RealType result_type; |
| 2168 | |
| 2169 | /** Parameter type. */ |
| 2170 | struct param_type |
| 2171 | { |
| 2172 | typedef hoyt_distribution<result_type> distribution_type; |
| 2173 | |
| 2174 | param_type(result_type __q = result_type(0.5L), |
| 2175 | result_type __omega = result_type(1)) |
| 2176 | : _M_q(__q), _M_omega(__omega) |
| 2177 | { |
| 2178 | __glibcxx_assert(_M_q > result_type(0)); |
| 2179 | __glibcxx_assert(_M_q < result_type(1)); |
| 2180 | } |
| 2181 | |
| 2182 | result_type |
| 2183 | q() const |
| 2184 | { return _M_q; } |
| 2185 | |
| 2186 | result_type |
| 2187 | omega() const |
| 2188 | { return _M_omega; } |
| 2189 | |
| 2190 | friend bool |
| 2191 | operator==(const param_type& __p1, const param_type& __p2) |
| 2192 | { return __p1._M_q == __p2._M_q && __p1._M_omega == __p2._M_omega; } |
| 2193 | |
| 2194 | friend bool |
| 2195 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2196 | { return !(__p1 == __p2); } |
| 2197 | |
| 2198 | private: |
| 2199 | void _M_initialize(); |
| 2200 | |
| 2201 | result_type _M_q; |
| 2202 | result_type _M_omega; |
| 2203 | }; |
| 2204 | |
| 2205 | /** |
| 2206 | * @brief Constructors. |
| 2207 | */ |
| 2208 | explicit |
| 2209 | hoyt_distribution(result_type __q = result_type(0.5L), |
| 2210 | result_type __omega = result_type(1)) |
| 2211 | : _M_param(__q, __omega), |
| 2212 | _M_ad(result_type(0.5L) * (result_type(1) + __q * __q), |
| 2213 | result_type(0.5L) * (result_type(1) + __q * __q) |
| 2214 | / (__q * __q)), |
| 2215 | _M_ed(result_type(1)) |
| 2216 | { } |
| 2217 | |
| 2218 | explicit |
| 2219 | hoyt_distribution(const param_type& __p) |
| 2220 | : _M_param(__p), |
| 2221 | _M_ad(result_type(0.5L) * (result_type(1) + __p.q() * __p.q()), |
| 2222 | result_type(0.5L) * (result_type(1) + __p.q() * __p.q()) |
| 2223 | / (__p.q() * __p.q())), |
| 2224 | _M_ed(result_type(1)) |
| 2225 | { } |
| 2226 | |
| 2227 | /** |
| 2228 | * @brief Resets the distribution state. |
| 2229 | */ |
| 2230 | void |
| 2231 | reset() |
| 2232 | { |
| 2233 | _M_ad.reset(); |
| 2234 | _M_ed.reset(); |
| 2235 | } |
| 2236 | |
| 2237 | /** |
| 2238 | * @brief Return the parameters of the distribution. |
| 2239 | */ |
| 2240 | result_type |
| 2241 | q() const |
| 2242 | { return _M_param.q(); } |
| 2243 | |
| 2244 | result_type |
| 2245 | omega() const |
| 2246 | { return _M_param.omega(); } |
| 2247 | |
| 2248 | /** |
| 2249 | * @brief Returns the parameter set of the distribution. |
| 2250 | */ |
| 2251 | param_type |
| 2252 | param() const |
| 2253 | { return _M_param; } |
| 2254 | |
| 2255 | /** |
| 2256 | * @brief Sets the parameter set of the distribution. |
| 2257 | * @param __param The new parameter set of the distribution. |
| 2258 | */ |
| 2259 | void |
| 2260 | param(const param_type& __param) |
| 2261 | { _M_param = __param; } |
| 2262 | |
| 2263 | /** |
| 2264 | * @brief Returns the greatest lower bound value of the distribution. |
| 2265 | */ |
| 2266 | result_type |
| 2267 | min() const |
| 2268 | { return result_type(0); } |
| 2269 | |
| 2270 | /** |
| 2271 | * @brief Returns the least upper bound value of the distribution. |
| 2272 | */ |
| 2273 | result_type |
| 2274 | max() const |
| 2275 | { return std::numeric_limits<result_type>::max(); } |
| 2276 | |
| 2277 | /** |
| 2278 | * @brief Generating functions. |
| 2279 | */ |
| 2280 | template<typename _UniformRandomNumberGenerator> |
| 2281 | result_type |
| 2282 | operator()(_UniformRandomNumberGenerator& __urng); |
| 2283 | |
| 2284 | template<typename _UniformRandomNumberGenerator> |
| 2285 | result_type |
| 2286 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2287 | const param_type& __p); |
| 2288 | |
| 2289 | template<typename _ForwardIterator, |
| 2290 | typename _UniformRandomNumberGenerator> |
| 2291 | void |
| 2292 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2293 | _UniformRandomNumberGenerator& __urng) |
| 2294 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2295 | |
| 2296 | template<typename _ForwardIterator, |
| 2297 | typename _UniformRandomNumberGenerator> |
| 2298 | void |
| 2299 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2300 | _UniformRandomNumberGenerator& __urng, |
| 2301 | const param_type& __p) |
| 2302 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2303 | |
| 2304 | template<typename _UniformRandomNumberGenerator> |
| 2305 | void |
| 2306 | __generate(result_type* __f, result_type* __t, |
| 2307 | _UniformRandomNumberGenerator& __urng, |
| 2308 | const param_type& __p) |
| 2309 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2310 | |
| 2311 | /** |
| 2312 | * @brief Return true if two Hoyt distributions have |
| 2313 | * the same parameters and the sequences that would |
| 2314 | * be generated are equal. |
| 2315 | */ |
| 2316 | friend bool |
| 2317 | operator==(const hoyt_distribution& __d1, |
| 2318 | const hoyt_distribution& __d2) |
| 2319 | { return (__d1._M_param == __d2._M_param |
| 2320 | && __d1._M_ad == __d2._M_ad |
| 2321 | && __d1._M_ed == __d2._M_ed); } |
| 2322 | |
| 2323 | /** |
| 2324 | * @brief Inserts a %hoyt_distribution random number distribution |
| 2325 | * @p __x into the output stream @p __os. |
| 2326 | * |
| 2327 | * @param __os An output stream. |
| 2328 | * @param __x A %hoyt_distribution random number distribution. |
| 2329 | * |
| 2330 | * @returns The output stream with the state of @p __x inserted or in |
| 2331 | * an error state. |
| 2332 | */ |
| 2333 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2334 | friend std::basic_ostream<_CharT, _Traits>& |
| 2335 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 2336 | const hoyt_distribution<_RealType1>&); |
| 2337 | |
| 2338 | /** |
| 2339 | * @brief Extracts a %hoyt_distribution random number distribution |
| 2340 | * @p __x from the input stream @p __is. |
| 2341 | * |
| 2342 | * @param __is An input stream. |
| 2343 | * @param __x A %hoyt_distribution random number |
| 2344 | * generator engine. |
| 2345 | * |
| 2346 | * @returns The input stream with @p __x extracted or in an error state. |
| 2347 | */ |
| 2348 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2349 | friend std::basic_istream<_CharT, _Traits>& |
| 2350 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 2351 | hoyt_distribution<_RealType1>&); |
| 2352 | |
| 2353 | private: |
| 2354 | template<typename _ForwardIterator, |
| 2355 | typename _UniformRandomNumberGenerator> |
| 2356 | void |
| 2357 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2358 | _UniformRandomNumberGenerator& __urng, |
| 2359 | const param_type& __p); |
| 2360 | |
| 2361 | param_type _M_param; |
| 2362 | |
| 2363 | __gnu_cxx::arcsine_distribution<result_type> _M_ad; |
| 2364 | std::exponential_distribution<result_type> _M_ed; |
| 2365 | }; |
| 2366 | |
| 2367 | /** |
| 2368 | * @brief Return true if two Hoyt distributions are not equal. |
| 2369 | */ |
| 2370 | template<typename _RealType> |
| 2371 | inline bool |
| 2372 | operator!=(const hoyt_distribution<_RealType>& __d1, |
| 2373 | const hoyt_distribution<_RealType>& __d2) |
| 2374 | { return !(__d1 == __d2); } |
| 2375 | |
| 2376 | |
| 2377 | /** |
| 2378 | * @brief A triangular distribution for random numbers. |
| 2379 | * |
| 2380 | * The formula for the triangular probability density function is |
| 2381 | * @f[ |
| 2382 | * / 0 for x < a |
| 2383 | * p(x|a,b,c) = | \frac{2(x-a)}{(c-a)(b-a)} for a <= x <= b |
| 2384 | * | \frac{2(c-x)}{(c-a)(c-b)} for b < x <= c |
| 2385 | * \ 0 for c < x |
| 2386 | * @f] |
| 2387 | * |
| 2388 | * <table border=1 cellpadding=10 cellspacing=0> |
| 2389 | * <caption align=top>Distribution Statistics</caption> |
| 2390 | * <tr><td>Mean</td><td>@f$ \frac{a+b+c}{2} @f$</td></tr> |
| 2391 | * <tr><td>Variance</td><td>@f$ \frac{a^2+b^2+c^2-ab-ac-bc} |
| 2392 | * {18}@f$</td></tr> |
| 2393 | * <tr><td>Range</td><td>@f$[a, c]@f$</td></tr> |
| 2394 | * </table> |
| 2395 | */ |
| 2396 | template<typename _RealType = double> |
| 2397 | class triangular_distribution |
| 2398 | { |
| 2399 | static_assert(std::is_floating_point<_RealType>::value, |
| 2400 | "template argument not a floating point type" ); |
| 2401 | |
| 2402 | public: |
| 2403 | /** The type of the range of the distribution. */ |
| 2404 | typedef _RealType result_type; |
| 2405 | |
| 2406 | /** Parameter type. */ |
| 2407 | struct param_type |
| 2408 | { |
| 2409 | friend class triangular_distribution<_RealType>; |
| 2410 | |
| 2411 | explicit |
| 2412 | param_type(_RealType __a = _RealType(0), |
| 2413 | _RealType __b = _RealType(0.5), |
| 2414 | _RealType __c = _RealType(1)) |
| 2415 | : _M_a(__a), _M_b(__b), _M_c(__c) |
| 2416 | { |
| 2417 | __glibcxx_assert(_M_a <= _M_b); |
| 2418 | __glibcxx_assert(_M_b <= _M_c); |
| 2419 | __glibcxx_assert(_M_a < _M_c); |
| 2420 | |
| 2421 | _M_r_ab = (_M_b - _M_a) / (_M_c - _M_a); |
| 2422 | _M_f_ab_ac = (_M_b - _M_a) * (_M_c - _M_a); |
| 2423 | _M_f_bc_ac = (_M_c - _M_b) * (_M_c - _M_a); |
| 2424 | } |
| 2425 | |
| 2426 | _RealType |
| 2427 | a() const |
| 2428 | { return _M_a; } |
| 2429 | |
| 2430 | _RealType |
| 2431 | b() const |
| 2432 | { return _M_b; } |
| 2433 | |
| 2434 | _RealType |
| 2435 | c() const |
| 2436 | { return _M_c; } |
| 2437 | |
| 2438 | friend bool |
| 2439 | operator==(const param_type& __p1, const param_type& __p2) |
| 2440 | { |
| 2441 | return (__p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b |
| 2442 | && __p1._M_c == __p2._M_c); |
| 2443 | } |
| 2444 | |
| 2445 | friend bool |
| 2446 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2447 | { return !(__p1 == __p2); } |
| 2448 | |
| 2449 | private: |
| 2450 | |
| 2451 | _RealType _M_a; |
| 2452 | _RealType _M_b; |
| 2453 | _RealType _M_c; |
| 2454 | _RealType _M_r_ab; |
| 2455 | _RealType _M_f_ab_ac; |
| 2456 | _RealType _M_f_bc_ac; |
| 2457 | }; |
| 2458 | |
| 2459 | /** |
| 2460 | * @brief Constructs a triangle distribution with parameters |
| 2461 | * @f$ a @f$, @f$ b @f$ and @f$ c @f$. |
| 2462 | */ |
| 2463 | explicit |
| 2464 | triangular_distribution(result_type __a = result_type(0), |
| 2465 | result_type __b = result_type(0.5), |
| 2466 | result_type __c = result_type(1)) |
| 2467 | : _M_param(__a, __b, __c) |
| 2468 | { } |
| 2469 | |
| 2470 | explicit |
| 2471 | triangular_distribution(const param_type& __p) |
| 2472 | : _M_param(__p) |
| 2473 | { } |
| 2474 | |
| 2475 | /** |
| 2476 | * @brief Resets the distribution state. |
| 2477 | */ |
| 2478 | void |
| 2479 | reset() |
| 2480 | { } |
| 2481 | |
| 2482 | /** |
| 2483 | * @brief Returns the @f$ a @f$ of the distribution. |
| 2484 | */ |
| 2485 | result_type |
| 2486 | a() const |
| 2487 | { return _M_param.a(); } |
| 2488 | |
| 2489 | /** |
| 2490 | * @brief Returns the @f$ b @f$ of the distribution. |
| 2491 | */ |
| 2492 | result_type |
| 2493 | b() const |
| 2494 | { return _M_param.b(); } |
| 2495 | |
| 2496 | /** |
| 2497 | * @brief Returns the @f$ c @f$ of the distribution. |
| 2498 | */ |
| 2499 | result_type |
| 2500 | c() const |
| 2501 | { return _M_param.c(); } |
| 2502 | |
| 2503 | /** |
| 2504 | * @brief Returns the parameter set of the distribution. |
| 2505 | */ |
| 2506 | param_type |
| 2507 | param() const |
| 2508 | { return _M_param; } |
| 2509 | |
| 2510 | /** |
| 2511 | * @brief Sets the parameter set of the distribution. |
| 2512 | * @param __param The new parameter set of the distribution. |
| 2513 | */ |
| 2514 | void |
| 2515 | param(const param_type& __param) |
| 2516 | { _M_param = __param; } |
| 2517 | |
| 2518 | /** |
| 2519 | * @brief Returns the greatest lower bound value of the distribution. |
| 2520 | */ |
| 2521 | result_type |
| 2522 | min() const |
| 2523 | { return _M_param._M_a; } |
| 2524 | |
| 2525 | /** |
| 2526 | * @brief Returns the least upper bound value of the distribution. |
| 2527 | */ |
| 2528 | result_type |
| 2529 | max() const |
| 2530 | { return _M_param._M_c; } |
| 2531 | |
| 2532 | /** |
| 2533 | * @brief Generating functions. |
| 2534 | */ |
| 2535 | template<typename _UniformRandomNumberGenerator> |
| 2536 | result_type |
| 2537 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2538 | { return this->operator()(__urng, _M_param); } |
| 2539 | |
| 2540 | template<typename _UniformRandomNumberGenerator> |
| 2541 | result_type |
| 2542 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2543 | const param_type& __p) |
| 2544 | { |
| 2545 | std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2546 | __aurng(__urng); |
| 2547 | result_type __rnd = __aurng(); |
| 2548 | if (__rnd <= __p._M_r_ab) |
| 2549 | return __p.a() + std::sqrt(__rnd * __p._M_f_ab_ac); |
| 2550 | else |
| 2551 | return __p.c() - std::sqrt((result_type(1) - __rnd) |
| 2552 | * __p._M_f_bc_ac); |
| 2553 | } |
| 2554 | |
| 2555 | template<typename _ForwardIterator, |
| 2556 | typename _UniformRandomNumberGenerator> |
| 2557 | void |
| 2558 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2559 | _UniformRandomNumberGenerator& __urng) |
| 2560 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2561 | |
| 2562 | template<typename _ForwardIterator, |
| 2563 | typename _UniformRandomNumberGenerator> |
| 2564 | void |
| 2565 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2566 | _UniformRandomNumberGenerator& __urng, |
| 2567 | const param_type& __p) |
| 2568 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2569 | |
| 2570 | template<typename _UniformRandomNumberGenerator> |
| 2571 | void |
| 2572 | __generate(result_type* __f, result_type* __t, |
| 2573 | _UniformRandomNumberGenerator& __urng, |
| 2574 | const param_type& __p) |
| 2575 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2576 | |
| 2577 | /** |
| 2578 | * @brief Return true if two triangle distributions have the same |
| 2579 | * parameters and the sequences that would be generated |
| 2580 | * are equal. |
| 2581 | */ |
| 2582 | friend bool |
| 2583 | operator==(const triangular_distribution& __d1, |
| 2584 | const triangular_distribution& __d2) |
| 2585 | { return __d1._M_param == __d2._M_param; } |
| 2586 | |
| 2587 | /** |
| 2588 | * @brief Inserts a %triangular_distribution random number distribution |
| 2589 | * @p __x into the output stream @p __os. |
| 2590 | * |
| 2591 | * @param __os An output stream. |
| 2592 | * @param __x A %triangular_distribution random number distribution. |
| 2593 | * |
| 2594 | * @returns The output stream with the state of @p __x inserted or in |
| 2595 | * an error state. |
| 2596 | */ |
| 2597 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2598 | friend std::basic_ostream<_CharT, _Traits>& |
| 2599 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2600 | const __gnu_cxx::triangular_distribution<_RealType1>& __x); |
| 2601 | |
| 2602 | /** |
| 2603 | * @brief Extracts a %triangular_distribution random number distribution |
| 2604 | * @p __x from the input stream @p __is. |
| 2605 | * |
| 2606 | * @param __is An input stream. |
| 2607 | * @param __x A %triangular_distribution random number generator engine. |
| 2608 | * |
| 2609 | * @returns The input stream with @p __x extracted or in an error state. |
| 2610 | */ |
| 2611 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2612 | friend std::basic_istream<_CharT, _Traits>& |
| 2613 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2614 | __gnu_cxx::triangular_distribution<_RealType1>& __x); |
| 2615 | |
| 2616 | private: |
| 2617 | template<typename _ForwardIterator, |
| 2618 | typename _UniformRandomNumberGenerator> |
| 2619 | void |
| 2620 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2621 | _UniformRandomNumberGenerator& __urng, |
| 2622 | const param_type& __p); |
| 2623 | |
| 2624 | param_type _M_param; |
| 2625 | }; |
| 2626 | |
| 2627 | /** |
| 2628 | * @brief Return true if two triangle distributions are different. |
| 2629 | */ |
| 2630 | template<typename _RealType> |
| 2631 | inline bool |
| 2632 | operator!=(const __gnu_cxx::triangular_distribution<_RealType>& __d1, |
| 2633 | const __gnu_cxx::triangular_distribution<_RealType>& __d2) |
| 2634 | { return !(__d1 == __d2); } |
| 2635 | |
| 2636 | |
| 2637 | /** |
| 2638 | * @brief A von Mises distribution for random numbers. |
| 2639 | * |
| 2640 | * The formula for the von Mises probability density function is |
| 2641 | * @f[ |
| 2642 | * p(x|\mu,\kappa) = \frac{e^{\kappa \cos(x-\mu)}} |
| 2643 | * {2\pi I_0(\kappa)} |
| 2644 | * @f] |
| 2645 | * |
| 2646 | * The generating functions use the method according to: |
| 2647 | * |
| 2648 | * D. J. Best and N. I. Fisher, 1979. "Efficient Simulation of the |
| 2649 | * von Mises Distribution", Journal of the Royal Statistical Society. |
| 2650 | * Series C (Applied Statistics), Vol. 28, No. 2, pp. 152-157. |
| 2651 | * |
| 2652 | * <table border=1 cellpadding=10 cellspacing=0> |
| 2653 | * <caption align=top>Distribution Statistics</caption> |
| 2654 | * <tr><td>Mean</td><td>@f$ \mu @f$</td></tr> |
| 2655 | * <tr><td>Variance</td><td>@f$ 1-I_1(\kappa)/I_0(\kappa) @f$</td></tr> |
| 2656 | * <tr><td>Range</td><td>@f$[-\pi, \pi]@f$</td></tr> |
| 2657 | * </table> |
| 2658 | */ |
| 2659 | template<typename _RealType = double> |
| 2660 | class von_mises_distribution |
| 2661 | { |
| 2662 | static_assert(std::is_floating_point<_RealType>::value, |
| 2663 | "template argument not a floating point type" ); |
| 2664 | |
| 2665 | public: |
| 2666 | /** The type of the range of the distribution. */ |
| 2667 | typedef _RealType result_type; |
| 2668 | /** Parameter type. */ |
| 2669 | struct param_type |
| 2670 | { |
| 2671 | friend class von_mises_distribution<_RealType>; |
| 2672 | |
| 2673 | explicit |
| 2674 | param_type(_RealType __mu = _RealType(0), |
| 2675 | _RealType __kappa = _RealType(1)) |
| 2676 | : _M_mu(__mu), _M_kappa(__kappa) |
| 2677 | { |
| 2678 | const _RealType __pi = __gnu_cxx::__math_constants<_RealType>::__pi; |
| 2679 | __glibcxx_assert(_M_mu >= -__pi && _M_mu <= __pi); |
| 2680 | __glibcxx_assert(_M_kappa >= _RealType(0)); |
| 2681 | |
| 2682 | auto __tau = std::sqrt(_RealType(4) * _M_kappa * _M_kappa |
| 2683 | + _RealType(1)) + _RealType(1); |
| 2684 | auto __rho = ((__tau - std::sqrt(_RealType(2) * __tau)) |
| 2685 | / (_RealType(2) * _M_kappa)); |
| 2686 | _M_r = (_RealType(1) + __rho * __rho) / (_RealType(2) * __rho); |
| 2687 | } |
| 2688 | |
| 2689 | _RealType |
| 2690 | mu() const |
| 2691 | { return _M_mu; } |
| 2692 | |
| 2693 | _RealType |
| 2694 | kappa() const |
| 2695 | { return _M_kappa; } |
| 2696 | |
| 2697 | friend bool |
| 2698 | operator==(const param_type& __p1, const param_type& __p2) |
| 2699 | { return __p1._M_mu == __p2._M_mu && __p1._M_kappa == __p2._M_kappa; } |
| 2700 | |
| 2701 | friend bool |
| 2702 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2703 | { return !(__p1 == __p2); } |
| 2704 | |
| 2705 | private: |
| 2706 | _RealType _M_mu; |
| 2707 | _RealType _M_kappa; |
| 2708 | _RealType _M_r; |
| 2709 | }; |
| 2710 | |
| 2711 | /** |
| 2712 | * @brief Constructs a von Mises distribution with parameters |
| 2713 | * @f$\mu@f$ and @f$\kappa@f$. |
| 2714 | */ |
| 2715 | explicit |
| 2716 | von_mises_distribution(result_type __mu = result_type(0), |
| 2717 | result_type __kappa = result_type(1)) |
| 2718 | : _M_param(__mu, __kappa) |
| 2719 | { } |
| 2720 | |
| 2721 | explicit |
| 2722 | von_mises_distribution(const param_type& __p) |
| 2723 | : _M_param(__p) |
| 2724 | { } |
| 2725 | |
| 2726 | /** |
| 2727 | * @brief Resets the distribution state. |
| 2728 | */ |
| 2729 | void |
| 2730 | reset() |
| 2731 | { } |
| 2732 | |
| 2733 | /** |
| 2734 | * @brief Returns the @f$ \mu @f$ of the distribution. |
| 2735 | */ |
| 2736 | result_type |
| 2737 | mu() const |
| 2738 | { return _M_param.mu(); } |
| 2739 | |
| 2740 | /** |
| 2741 | * @brief Returns the @f$ \kappa @f$ of the distribution. |
| 2742 | */ |
| 2743 | result_type |
| 2744 | kappa() const |
| 2745 | { return _M_param.kappa(); } |
| 2746 | |
| 2747 | /** |
| 2748 | * @brief Returns the parameter set of the distribution. |
| 2749 | */ |
| 2750 | param_type |
| 2751 | param() const |
| 2752 | { return _M_param; } |
| 2753 | |
| 2754 | /** |
| 2755 | * @brief Sets the parameter set of the distribution. |
| 2756 | * @param __param The new parameter set of the distribution. |
| 2757 | */ |
| 2758 | void |
| 2759 | param(const param_type& __param) |
| 2760 | { _M_param = __param; } |
| 2761 | |
| 2762 | /** |
| 2763 | * @brief Returns the greatest lower bound value of the distribution. |
| 2764 | */ |
| 2765 | result_type |
| 2766 | min() const |
| 2767 | { |
| 2768 | return -__gnu_cxx::__math_constants<result_type>::__pi; |
| 2769 | } |
| 2770 | |
| 2771 | /** |
| 2772 | * @brief Returns the least upper bound value of the distribution. |
| 2773 | */ |
| 2774 | result_type |
| 2775 | max() const |
| 2776 | { |
| 2777 | return __gnu_cxx::__math_constants<result_type>::__pi; |
| 2778 | } |
| 2779 | |
| 2780 | /** |
| 2781 | * @brief Generating functions. |
| 2782 | */ |
| 2783 | template<typename _UniformRandomNumberGenerator> |
| 2784 | result_type |
| 2785 | operator()(_UniformRandomNumberGenerator& __urng) |
| 2786 | { return this->operator()(__urng, _M_param); } |
| 2787 | |
| 2788 | template<typename _UniformRandomNumberGenerator> |
| 2789 | result_type |
| 2790 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2791 | const param_type& __p); |
| 2792 | |
| 2793 | template<typename _ForwardIterator, |
| 2794 | typename _UniformRandomNumberGenerator> |
| 2795 | void |
| 2796 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2797 | _UniformRandomNumberGenerator& __urng) |
| 2798 | { this->__generate(__f, __t, __urng, _M_param); } |
| 2799 | |
| 2800 | template<typename _ForwardIterator, |
| 2801 | typename _UniformRandomNumberGenerator> |
| 2802 | void |
| 2803 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 2804 | _UniformRandomNumberGenerator& __urng, |
| 2805 | const param_type& __p) |
| 2806 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2807 | |
| 2808 | template<typename _UniformRandomNumberGenerator> |
| 2809 | void |
| 2810 | __generate(result_type* __f, result_type* __t, |
| 2811 | _UniformRandomNumberGenerator& __urng, |
| 2812 | const param_type& __p) |
| 2813 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 2814 | |
| 2815 | /** |
| 2816 | * @brief Return true if two von Mises distributions have the same |
| 2817 | * parameters and the sequences that would be generated |
| 2818 | * are equal. |
| 2819 | */ |
| 2820 | friend bool |
| 2821 | operator==(const von_mises_distribution& __d1, |
| 2822 | const von_mises_distribution& __d2) |
| 2823 | { return __d1._M_param == __d2._M_param; } |
| 2824 | |
| 2825 | /** |
| 2826 | * @brief Inserts a %von_mises_distribution random number distribution |
| 2827 | * @p __x into the output stream @p __os. |
| 2828 | * |
| 2829 | * @param __os An output stream. |
| 2830 | * @param __x A %von_mises_distribution random number distribution. |
| 2831 | * |
| 2832 | * @returns The output stream with the state of @p __x inserted or in |
| 2833 | * an error state. |
| 2834 | */ |
| 2835 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2836 | friend std::basic_ostream<_CharT, _Traits>& |
| 2837 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2838 | const __gnu_cxx::von_mises_distribution<_RealType1>& __x); |
| 2839 | |
| 2840 | /** |
| 2841 | * @brief Extracts a %von_mises_distribution random number distribution |
| 2842 | * @p __x from the input stream @p __is. |
| 2843 | * |
| 2844 | * @param __is An input stream. |
| 2845 | * @param __x A %von_mises_distribution random number generator engine. |
| 2846 | * |
| 2847 | * @returns The input stream with @p __x extracted or in an error state. |
| 2848 | */ |
| 2849 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 2850 | friend std::basic_istream<_CharT, _Traits>& |
| 2851 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2852 | __gnu_cxx::von_mises_distribution<_RealType1>& __x); |
| 2853 | |
| 2854 | private: |
| 2855 | template<typename _ForwardIterator, |
| 2856 | typename _UniformRandomNumberGenerator> |
| 2857 | void |
| 2858 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2859 | _UniformRandomNumberGenerator& __urng, |
| 2860 | const param_type& __p); |
| 2861 | |
| 2862 | param_type _M_param; |
| 2863 | }; |
| 2864 | |
| 2865 | /** |
| 2866 | * @brief Return true if two von Mises distributions are different. |
| 2867 | */ |
| 2868 | template<typename _RealType> |
| 2869 | inline bool |
| 2870 | operator!=(const __gnu_cxx::von_mises_distribution<_RealType>& __d1, |
| 2871 | const __gnu_cxx::von_mises_distribution<_RealType>& __d2) |
| 2872 | { return !(__d1 == __d2); } |
| 2873 | |
| 2874 | |
| 2875 | /** |
| 2876 | * @brief A discrete hypergeometric random number distribution. |
| 2877 | * |
| 2878 | * The hypergeometric distribution is a discrete probability distribution |
| 2879 | * that describes the probability of @p k successes in @p n draws @a without |
| 2880 | * replacement from a finite population of size @p N containing exactly @p K |
| 2881 | * successes. |
| 2882 | * |
| 2883 | * The formula for the hypergeometric probability density function is |
| 2884 | * @f[ |
| 2885 | * p(k|N,K,n) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} |
| 2886 | * @f] |
| 2887 | * where @f$N@f$ is the total population of the distribution, |
| 2888 | * @f$K@f$ is the total population of the distribution. |
| 2889 | * |
| 2890 | * <table border=1 cellpadding=10 cellspacing=0> |
| 2891 | * <caption align=top>Distribution Statistics</caption> |
| 2892 | * <tr><td>Mean</td><td>@f$ n\frac{K}{N} @f$</td></tr> |
| 2893 | * <tr><td>Variance</td><td>@f$ n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1} |
| 2894 | * @f$</td></tr> |
| 2895 | * <tr><td>Range</td><td>@f$[max(0, n+K-N), min(K, n)]@f$</td></tr> |
| 2896 | * </table> |
| 2897 | */ |
| 2898 | template<typename _UIntType = unsigned int> |
| 2899 | class hypergeometric_distribution |
| 2900 | { |
| 2901 | static_assert(std::is_unsigned<_UIntType>::value, "template argument " |
| 2902 | "substituting _UIntType not an unsigned integral type" ); |
| 2903 | |
| 2904 | public: |
| 2905 | /** The type of the range of the distribution. */ |
| 2906 | typedef _UIntType result_type; |
| 2907 | |
| 2908 | /** Parameter type. */ |
| 2909 | struct param_type |
| 2910 | { |
| 2911 | typedef hypergeometric_distribution<_UIntType> distribution_type; |
| 2912 | friend class hypergeometric_distribution<_UIntType>; |
| 2913 | |
| 2914 | explicit |
| 2915 | param_type(result_type __N = 10, result_type __K = 5, |
| 2916 | result_type __n = 1) |
| 2917 | : _M_N{__N}, _M_K{__K}, _M_n{__n} |
| 2918 | { |
| 2919 | __glibcxx_assert(_M_N >= _M_K); |
| 2920 | __glibcxx_assert(_M_N >= _M_n); |
| 2921 | } |
| 2922 | |
| 2923 | result_type |
| 2924 | total_size() const |
| 2925 | { return _M_N; } |
| 2926 | |
| 2927 | result_type |
| 2928 | successful_size() const |
| 2929 | { return _M_K; } |
| 2930 | |
| 2931 | result_type |
| 2932 | unsuccessful_size() const |
| 2933 | { return _M_N - _M_K; } |
| 2934 | |
| 2935 | result_type |
| 2936 | total_draws() const |
| 2937 | { return _M_n; } |
| 2938 | |
| 2939 | friend bool |
| 2940 | operator==(const param_type& __p1, const param_type& __p2) |
| 2941 | { return (__p1._M_N == __p2._M_N) |
| 2942 | && (__p1._M_K == __p2._M_K) |
| 2943 | && (__p1._M_n == __p2._M_n); } |
| 2944 | |
| 2945 | friend bool |
| 2946 | operator!=(const param_type& __p1, const param_type& __p2) |
| 2947 | { return !(__p1 == __p2); } |
| 2948 | |
| 2949 | private: |
| 2950 | |
| 2951 | result_type _M_N; |
| 2952 | result_type _M_K; |
| 2953 | result_type _M_n; |
| 2954 | }; |
| 2955 | |
| 2956 | // constructors and member function |
| 2957 | explicit |
| 2958 | hypergeometric_distribution(result_type __N = 10, result_type __K = 5, |
| 2959 | result_type __n = 1) |
| 2960 | : _M_param{__N, __K, __n} |
| 2961 | { } |
| 2962 | |
| 2963 | explicit |
| 2964 | hypergeometric_distribution(const param_type& __p) |
| 2965 | : _M_param{__p} |
| 2966 | { } |
| 2967 | |
| 2968 | /** |
| 2969 | * @brief Resets the distribution state. |
| 2970 | */ |
| 2971 | void |
| 2972 | reset() |
| 2973 | { } |
| 2974 | |
| 2975 | /** |
| 2976 | * @brief Returns the distribution parameter @p N, |
| 2977 | * the total number of items. |
| 2978 | */ |
| 2979 | result_type |
| 2980 | total_size() const |
| 2981 | { return this->_M_param.total_size(); } |
| 2982 | |
| 2983 | /** |
| 2984 | * @brief Returns the distribution parameter @p K, |
| 2985 | * the total number of successful items. |
| 2986 | */ |
| 2987 | result_type |
| 2988 | successful_size() const |
| 2989 | { return this->_M_param.successful_size(); } |
| 2990 | |
| 2991 | /** |
| 2992 | * @brief Returns the total number of unsuccessful items @f$ N - K @f$. |
| 2993 | */ |
| 2994 | result_type |
| 2995 | unsuccessful_size() const |
| 2996 | { return this->_M_param.unsuccessful_size(); } |
| 2997 | |
| 2998 | /** |
| 2999 | * @brief Returns the distribution parameter @p n, |
| 3000 | * the total number of draws. |
| 3001 | */ |
| 3002 | result_type |
| 3003 | total_draws() const |
| 3004 | { return this->_M_param.total_draws(); } |
| 3005 | |
| 3006 | /** |
| 3007 | * @brief Returns the parameter set of the distribution. |
| 3008 | */ |
| 3009 | param_type |
| 3010 | param() const |
| 3011 | { return this->_M_param; } |
| 3012 | |
| 3013 | /** |
| 3014 | * @brief Sets the parameter set of the distribution. |
| 3015 | * @param __param The new parameter set of the distribution. |
| 3016 | */ |
| 3017 | void |
| 3018 | param(const param_type& __param) |
| 3019 | { this->_M_param = __param; } |
| 3020 | |
| 3021 | /** |
| 3022 | * @brief Returns the greatest lower bound value of the distribution. |
| 3023 | */ |
| 3024 | result_type |
| 3025 | min() const |
| 3026 | { |
| 3027 | using _IntType = typename std::make_signed<result_type>::type; |
| 3028 | return static_cast<result_type>(std::max(static_cast<_IntType>(0), |
| 3029 | static_cast<_IntType>(this->total_draws() |
| 3030 | - this->unsuccessful_size()))); |
| 3031 | } |
| 3032 | |
| 3033 | /** |
| 3034 | * @brief Returns the least upper bound value of the distribution. |
| 3035 | */ |
| 3036 | result_type |
| 3037 | max() const |
| 3038 | { return std::min(this->successful_size(), this->total_draws()); } |
| 3039 | |
| 3040 | /** |
| 3041 | * @brief Generating functions. |
| 3042 | */ |
| 3043 | template<typename _UniformRandomNumberGenerator> |
| 3044 | result_type |
| 3045 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3046 | { return this->operator()(__urng, this->_M_param); } |
| 3047 | |
| 3048 | template<typename _UniformRandomNumberGenerator> |
| 3049 | result_type |
| 3050 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3051 | const param_type& __p); |
| 3052 | |
| 3053 | template<typename _ForwardIterator, |
| 3054 | typename _UniformRandomNumberGenerator> |
| 3055 | void |
| 3056 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3057 | _UniformRandomNumberGenerator& __urng) |
| 3058 | { this->__generate(__f, __t, __urng, this->_M_param); } |
| 3059 | |
| 3060 | template<typename _ForwardIterator, |
| 3061 | typename _UniformRandomNumberGenerator> |
| 3062 | void |
| 3063 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3064 | _UniformRandomNumberGenerator& __urng, |
| 3065 | const param_type& __p) |
| 3066 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3067 | |
| 3068 | template<typename _UniformRandomNumberGenerator> |
| 3069 | void |
| 3070 | __generate(result_type* __f, result_type* __t, |
| 3071 | _UniformRandomNumberGenerator& __urng, |
| 3072 | const param_type& __p) |
| 3073 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3074 | |
| 3075 | /** |
| 3076 | * @brief Return true if two hypergeometric distributions have the same |
| 3077 | * parameters and the sequences that would be generated |
| 3078 | * are equal. |
| 3079 | */ |
| 3080 | friend bool |
| 3081 | operator==(const hypergeometric_distribution& __d1, |
| 3082 | const hypergeometric_distribution& __d2) |
| 3083 | { return __d1._M_param == __d2._M_param; } |
| 3084 | |
| 3085 | /** |
| 3086 | * @brief Inserts a %hypergeometric_distribution random number |
| 3087 | * distribution @p __x into the output stream @p __os. |
| 3088 | * |
| 3089 | * @param __os An output stream. |
| 3090 | * @param __x A %hypergeometric_distribution random number |
| 3091 | * distribution. |
| 3092 | * |
| 3093 | * @returns The output stream with the state of @p __x inserted or in |
| 3094 | * an error state. |
| 3095 | */ |
| 3096 | template<typename _UIntType1, typename _CharT, typename _Traits> |
| 3097 | friend std::basic_ostream<_CharT, _Traits>& |
| 3098 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3099 | const __gnu_cxx::hypergeometric_distribution<_UIntType1>& |
| 3100 | __x); |
| 3101 | |
| 3102 | /** |
| 3103 | * @brief Extracts a %hypergeometric_distribution random number |
| 3104 | * distribution @p __x from the input stream @p __is. |
| 3105 | * |
| 3106 | * @param __is An input stream. |
| 3107 | * @param __x A %hypergeometric_distribution random number generator |
| 3108 | * distribution. |
| 3109 | * |
| 3110 | * @returns The input stream with @p __x extracted or in an error |
| 3111 | * state. |
| 3112 | */ |
| 3113 | template<typename _UIntType1, typename _CharT, typename _Traits> |
| 3114 | friend std::basic_istream<_CharT, _Traits>& |
| 3115 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3116 | __gnu_cxx::hypergeometric_distribution<_UIntType1>& __x); |
| 3117 | |
| 3118 | private: |
| 3119 | |
| 3120 | template<typename _ForwardIterator, |
| 3121 | typename _UniformRandomNumberGenerator> |
| 3122 | void |
| 3123 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3124 | _UniformRandomNumberGenerator& __urng, |
| 3125 | const param_type& __p); |
| 3126 | |
| 3127 | param_type _M_param; |
| 3128 | }; |
| 3129 | |
| 3130 | /** |
| 3131 | * @brief Return true if two hypergeometric distributions are different. |
| 3132 | */ |
| 3133 | template<typename _UIntType> |
| 3134 | inline bool |
| 3135 | operator!=(const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d1, |
| 3136 | const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d2) |
| 3137 | { return !(__d1 == __d2); } |
| 3138 | |
| 3139 | /** |
| 3140 | * @brief A logistic continuous distribution for random numbers. |
| 3141 | * |
| 3142 | * The formula for the logistic probability density function is |
| 3143 | * @f[ |
| 3144 | * p(x|\a,\b) = \frac{e^{(x - a)/b}}{b[1 + e^{(x - a)/b}]^2} |
| 3145 | * @f] |
| 3146 | * where @f$b > 0@f$. |
| 3147 | * |
| 3148 | * The formula for the logistic probability function is |
| 3149 | * @f[ |
| 3150 | * cdf(x|\a,\b) = \frac{e^{(x - a)/b}}{1 + e^{(x - a)/b}} |
| 3151 | * @f] |
| 3152 | * where @f$b > 0@f$. |
| 3153 | * |
| 3154 | * <table border=1 cellpadding=10 cellspacing=0> |
| 3155 | * <caption align=top>Distribution Statistics</caption> |
| 3156 | * <tr><td>Mean</td><td>@f$a@f$</td></tr> |
| 3157 | * <tr><td>Variance</td><td>@f$b^2\pi^2/3@f$</td></tr> |
| 3158 | * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr> |
| 3159 | * </table> |
| 3160 | */ |
| 3161 | template<typename _RealType = double> |
| 3162 | class |
| 3163 | logistic_distribution |
| 3164 | { |
| 3165 | static_assert(std::is_floating_point<_RealType>::value, |
| 3166 | "template argument not a floating point type" ); |
| 3167 | |
| 3168 | public: |
| 3169 | /** The type of the range of the distribution. */ |
| 3170 | typedef _RealType result_type; |
| 3171 | |
| 3172 | /** Parameter type. */ |
| 3173 | struct param_type |
| 3174 | { |
| 3175 | typedef logistic_distribution<result_type> distribution_type; |
| 3176 | |
| 3177 | param_type(result_type __a = result_type(0), |
| 3178 | result_type __b = result_type(1)) |
| 3179 | : _M_a(__a), _M_b(__b) |
| 3180 | { |
| 3181 | __glibcxx_assert(_M_b > result_type(0)); |
| 3182 | } |
| 3183 | |
| 3184 | result_type |
| 3185 | a() const |
| 3186 | { return _M_a; } |
| 3187 | |
| 3188 | result_type |
| 3189 | b() const |
| 3190 | { return _M_b; } |
| 3191 | |
| 3192 | friend bool |
| 3193 | operator==(const param_type& __p1, const param_type& __p2) |
| 3194 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
| 3195 | |
| 3196 | friend bool |
| 3197 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3198 | { return !(__p1 == __p2); } |
| 3199 | |
| 3200 | private: |
| 3201 | void _M_initialize(); |
| 3202 | |
| 3203 | result_type _M_a; |
| 3204 | result_type _M_b; |
| 3205 | }; |
| 3206 | |
| 3207 | /** |
| 3208 | * @brief Constructors. |
| 3209 | */ |
| 3210 | explicit |
| 3211 | logistic_distribution(result_type __a = result_type(0), |
| 3212 | result_type __b = result_type(1)) |
| 3213 | : _M_param(__a, __b) |
| 3214 | { } |
| 3215 | |
| 3216 | explicit |
| 3217 | logistic_distribution(const param_type& __p) |
| 3218 | : _M_param(__p) |
| 3219 | { } |
| 3220 | |
| 3221 | /** |
| 3222 | * @brief Resets the distribution state. |
| 3223 | */ |
| 3224 | void |
| 3225 | reset() |
| 3226 | { } |
| 3227 | |
| 3228 | /** |
| 3229 | * @brief Return the parameters of the distribution. |
| 3230 | */ |
| 3231 | result_type |
| 3232 | a() const |
| 3233 | { return _M_param.a(); } |
| 3234 | |
| 3235 | result_type |
| 3236 | b() const |
| 3237 | { return _M_param.b(); } |
| 3238 | |
| 3239 | /** |
| 3240 | * @brief Returns the parameter set of the distribution. |
| 3241 | */ |
| 3242 | param_type |
| 3243 | param() const |
| 3244 | { return _M_param; } |
| 3245 | |
| 3246 | /** |
| 3247 | * @brief Sets the parameter set of the distribution. |
| 3248 | * @param __param The new parameter set of the distribution. |
| 3249 | */ |
| 3250 | void |
| 3251 | param(const param_type& __param) |
| 3252 | { _M_param = __param; } |
| 3253 | |
| 3254 | /** |
| 3255 | * @brief Returns the greatest lower bound value of the distribution. |
| 3256 | */ |
| 3257 | result_type |
| 3258 | min() const |
| 3259 | { return -std::numeric_limits<result_type>::max(); } |
| 3260 | |
| 3261 | /** |
| 3262 | * @brief Returns the least upper bound value of the distribution. |
| 3263 | */ |
| 3264 | result_type |
| 3265 | max() const |
| 3266 | { return std::numeric_limits<result_type>::max(); } |
| 3267 | |
| 3268 | /** |
| 3269 | * @brief Generating functions. |
| 3270 | */ |
| 3271 | template<typename _UniformRandomNumberGenerator> |
| 3272 | result_type |
| 3273 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3274 | { return this->operator()(__urng, this->_M_param); } |
| 3275 | |
| 3276 | template<typename _UniformRandomNumberGenerator> |
| 3277 | result_type |
| 3278 | operator()(_UniformRandomNumberGenerator&, |
| 3279 | const param_type&); |
| 3280 | |
| 3281 | template<typename _ForwardIterator, |
| 3282 | typename _UniformRandomNumberGenerator> |
| 3283 | void |
| 3284 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3285 | _UniformRandomNumberGenerator& __urng) |
| 3286 | { this->__generate(__f, __t, __urng, this->param()); } |
| 3287 | |
| 3288 | template<typename _ForwardIterator, |
| 3289 | typename _UniformRandomNumberGenerator> |
| 3290 | void |
| 3291 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3292 | _UniformRandomNumberGenerator& __urng, |
| 3293 | const param_type& __p) |
| 3294 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3295 | |
| 3296 | template<typename _UniformRandomNumberGenerator> |
| 3297 | void |
| 3298 | __generate(result_type* __f, result_type* __t, |
| 3299 | _UniformRandomNumberGenerator& __urng, |
| 3300 | const param_type& __p) |
| 3301 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3302 | |
| 3303 | /** |
| 3304 | * @brief Return true if two logistic distributions have |
| 3305 | * the same parameters and the sequences that would |
| 3306 | * be generated are equal. |
| 3307 | */ |
| 3308 | template<typename _RealType1> |
| 3309 | friend bool |
| 3310 | operator==(const logistic_distribution<_RealType1>& __d1, |
| 3311 | const logistic_distribution<_RealType1>& __d2) |
| 3312 | { return __d1.param() == __d2.param(); } |
| 3313 | |
| 3314 | /** |
| 3315 | * @brief Inserts a %logistic_distribution random number distribution |
| 3316 | * @p __x into the output stream @p __os. |
| 3317 | * |
| 3318 | * @param __os An output stream. |
| 3319 | * @param __x A %logistic_distribution random number distribution. |
| 3320 | * |
| 3321 | * @returns The output stream with the state of @p __x inserted or in |
| 3322 | * an error state. |
| 3323 | */ |
| 3324 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3325 | friend std::basic_ostream<_CharT, _Traits>& |
| 3326 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
| 3327 | const logistic_distribution<_RealType1>&); |
| 3328 | |
| 3329 | /** |
| 3330 | * @brief Extracts a %logistic_distribution random number distribution |
| 3331 | * @p __x from the input stream @p __is. |
| 3332 | * |
| 3333 | * @param __is An input stream. |
| 3334 | * @param __x A %logistic_distribution random number |
| 3335 | * generator engine. |
| 3336 | * |
| 3337 | * @returns The input stream with @p __x extracted or in an error state. |
| 3338 | */ |
| 3339 | template<typename _RealType1, typename _CharT, typename _Traits> |
| 3340 | friend std::basic_istream<_CharT, _Traits>& |
| 3341 | operator>>(std::basic_istream<_CharT, _Traits>&, |
| 3342 | logistic_distribution<_RealType1>&); |
| 3343 | |
| 3344 | private: |
| 3345 | template<typename _ForwardIterator, |
| 3346 | typename _UniformRandomNumberGenerator> |
| 3347 | void |
| 3348 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3349 | _UniformRandomNumberGenerator& __urng, |
| 3350 | const param_type& __p); |
| 3351 | |
| 3352 | param_type _M_param; |
| 3353 | }; |
| 3354 | |
| 3355 | /** |
| 3356 | * @brief Return true if two logistic distributions are not equal. |
| 3357 | */ |
| 3358 | template<typename _RealType1> |
| 3359 | inline bool |
| 3360 | operator!=(const logistic_distribution<_RealType1>& __d1, |
| 3361 | const logistic_distribution<_RealType1>& __d2) |
| 3362 | { return !(__d1 == __d2); } |
| 3363 | |
| 3364 | |
| 3365 | /** |
| 3366 | * @brief A distribution for random coordinates on a unit sphere. |
| 3367 | * |
| 3368 | * The method used in the generation function is attributed by Donald Knuth |
| 3369 | * to G. W. Brown, Modern Mathematics for the Engineer (1956). |
| 3370 | */ |
| 3371 | template<std::size_t _Dimen, typename _RealType = double> |
| 3372 | class uniform_on_sphere_distribution |
| 3373 | { |
| 3374 | static_assert(std::is_floating_point<_RealType>::value, |
| 3375 | "template argument not a floating point type" ); |
| 3376 | static_assert(_Dimen != 0, "dimension is zero" ); |
| 3377 | |
| 3378 | public: |
| 3379 | /** The type of the range of the distribution. */ |
| 3380 | typedef std::array<_RealType, _Dimen> result_type; |
| 3381 | |
| 3382 | /** Parameter type. */ |
| 3383 | struct param_type |
| 3384 | { |
| 3385 | explicit |
| 3386 | param_type() |
| 3387 | { } |
| 3388 | |
| 3389 | friend bool |
| 3390 | operator==(const param_type&, const param_type&) |
| 3391 | { return true; } |
| 3392 | |
| 3393 | friend bool |
| 3394 | operator!=(const param_type&, const param_type&) |
| 3395 | { return false; } |
| 3396 | }; |
| 3397 | |
| 3398 | /** |
| 3399 | * @brief Constructs a uniform on sphere distribution. |
| 3400 | */ |
| 3401 | explicit |
| 3402 | uniform_on_sphere_distribution() |
| 3403 | : _M_param(), _M_nd() |
| 3404 | { } |
| 3405 | |
| 3406 | explicit |
| 3407 | uniform_on_sphere_distribution(const param_type& __p) |
| 3408 | : _M_param(__p), _M_nd() |
| 3409 | { } |
| 3410 | |
| 3411 | /** |
| 3412 | * @brief Resets the distribution state. |
| 3413 | */ |
| 3414 | void |
| 3415 | reset() |
| 3416 | { _M_nd.reset(); } |
| 3417 | |
| 3418 | /** |
| 3419 | * @brief Returns the parameter set of the distribution. |
| 3420 | */ |
| 3421 | param_type |
| 3422 | param() const |
| 3423 | { return _M_param; } |
| 3424 | |
| 3425 | /** |
| 3426 | * @brief Sets the parameter set of the distribution. |
| 3427 | * @param __param The new parameter set of the distribution. |
| 3428 | */ |
| 3429 | void |
| 3430 | param(const param_type& __param) |
| 3431 | { _M_param = __param; } |
| 3432 | |
| 3433 | /** |
| 3434 | * @brief Returns the greatest lower bound value of the distribution. |
| 3435 | * This function makes no sense for this distribution. |
| 3436 | */ |
| 3437 | result_type |
| 3438 | min() const |
| 3439 | { |
| 3440 | result_type __res; |
| 3441 | __res.fill(0); |
| 3442 | return __res; |
| 3443 | } |
| 3444 | |
| 3445 | /** |
| 3446 | * @brief Returns the least upper bound value of the distribution. |
| 3447 | * This function makes no sense for this distribution. |
| 3448 | */ |
| 3449 | result_type |
| 3450 | max() const |
| 3451 | { |
| 3452 | result_type __res; |
| 3453 | __res.fill(0); |
| 3454 | return __res; |
| 3455 | } |
| 3456 | |
| 3457 | /** |
| 3458 | * @brief Generating functions. |
| 3459 | */ |
| 3460 | template<typename _UniformRandomNumberGenerator> |
| 3461 | result_type |
| 3462 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3463 | { return this->operator()(__urng, _M_param); } |
| 3464 | |
| 3465 | template<typename _UniformRandomNumberGenerator> |
| 3466 | result_type |
| 3467 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3468 | const param_type& __p); |
| 3469 | |
| 3470 | template<typename _ForwardIterator, |
| 3471 | typename _UniformRandomNumberGenerator> |
| 3472 | void |
| 3473 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3474 | _UniformRandomNumberGenerator& __urng) |
| 3475 | { this->__generate(__f, __t, __urng, this->param()); } |
| 3476 | |
| 3477 | template<typename _ForwardIterator, |
| 3478 | typename _UniformRandomNumberGenerator> |
| 3479 | void |
| 3480 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3481 | _UniformRandomNumberGenerator& __urng, |
| 3482 | const param_type& __p) |
| 3483 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3484 | |
| 3485 | template<typename _UniformRandomNumberGenerator> |
| 3486 | void |
| 3487 | __generate(result_type* __f, result_type* __t, |
| 3488 | _UniformRandomNumberGenerator& __urng, |
| 3489 | const param_type& __p) |
| 3490 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3491 | |
| 3492 | /** |
| 3493 | * @brief Return true if two uniform on sphere distributions have |
| 3494 | * the same parameters and the sequences that would be |
| 3495 | * generated are equal. |
| 3496 | */ |
| 3497 | friend bool |
| 3498 | operator==(const uniform_on_sphere_distribution& __d1, |
| 3499 | const uniform_on_sphere_distribution& __d2) |
| 3500 | { return __d1._M_nd == __d2._M_nd; } |
| 3501 | |
| 3502 | /** |
| 3503 | * @brief Inserts a %uniform_on_sphere_distribution random number |
| 3504 | * distribution @p __x into the output stream @p __os. |
| 3505 | * |
| 3506 | * @param __os An output stream. |
| 3507 | * @param __x A %uniform_on_sphere_distribution random number |
| 3508 | * distribution. |
| 3509 | * |
| 3510 | * @returns The output stream with the state of @p __x inserted or in |
| 3511 | * an error state. |
| 3512 | */ |
| 3513 | template<size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3514 | typename _Traits> |
| 3515 | friend std::basic_ostream<_CharT, _Traits>& |
| 3516 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3517 | const __gnu_cxx::uniform_on_sphere_distribution<_Dimen1, |
| 3518 | _RealType1>& |
| 3519 | __x); |
| 3520 | |
| 3521 | /** |
| 3522 | * @brief Extracts a %uniform_on_sphere_distribution random number |
| 3523 | * distribution |
| 3524 | * @p __x from the input stream @p __is. |
| 3525 | * |
| 3526 | * @param __is An input stream. |
| 3527 | * @param __x A %uniform_on_sphere_distribution random number |
| 3528 | * generator engine. |
| 3529 | * |
| 3530 | * @returns The input stream with @p __x extracted or in an error state. |
| 3531 | */ |
| 3532 | template<std::size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3533 | typename _Traits> |
| 3534 | friend std::basic_istream<_CharT, _Traits>& |
| 3535 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3536 | __gnu_cxx::uniform_on_sphere_distribution<_Dimen1, |
| 3537 | _RealType1>& __x); |
| 3538 | |
| 3539 | private: |
| 3540 | template<typename _ForwardIterator, |
| 3541 | typename _UniformRandomNumberGenerator> |
| 3542 | void |
| 3543 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3544 | _UniformRandomNumberGenerator& __urng, |
| 3545 | const param_type& __p); |
| 3546 | |
| 3547 | param_type _M_param; |
| 3548 | std::normal_distribution<_RealType> _M_nd; |
| 3549 | }; |
| 3550 | |
| 3551 | /** |
| 3552 | * @brief Return true if two uniform on sphere distributions are different. |
| 3553 | */ |
| 3554 | template<std::size_t _Dimen, typename _RealType> |
| 3555 | inline bool |
| 3556 | operator!=(const __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| 3557 | _RealType>& __d1, |
| 3558 | const __gnu_cxx::uniform_on_sphere_distribution<_Dimen, |
| 3559 | _RealType>& __d2) |
| 3560 | { return !(__d1 == __d2); } |
| 3561 | |
| 3562 | |
| 3563 | /** |
| 3564 | * @brief A distribution for random coordinates inside a unit sphere. |
| 3565 | */ |
| 3566 | template<std::size_t _Dimen, typename _RealType = double> |
| 3567 | class uniform_inside_sphere_distribution |
| 3568 | { |
| 3569 | static_assert(std::is_floating_point<_RealType>::value, |
| 3570 | "template argument not a floating point type" ); |
| 3571 | static_assert(_Dimen != 0, "dimension is zero" ); |
| 3572 | |
| 3573 | public: |
| 3574 | /** The type of the range of the distribution. */ |
| 3575 | using result_type = std::array<_RealType, _Dimen>; |
| 3576 | |
| 3577 | /** Parameter type. */ |
| 3578 | struct param_type |
| 3579 | { |
| 3580 | using distribution_type |
| 3581 | = uniform_inside_sphere_distribution<_Dimen, _RealType>; |
| 3582 | friend class uniform_inside_sphere_distribution<_Dimen, _RealType>; |
| 3583 | |
| 3584 | explicit |
| 3585 | param_type(_RealType __radius = _RealType(1)) |
| 3586 | : _M_radius(__radius) |
| 3587 | { |
| 3588 | __glibcxx_assert(_M_radius > _RealType(0)); |
| 3589 | } |
| 3590 | |
| 3591 | _RealType |
| 3592 | radius() const |
| 3593 | { return _M_radius; } |
| 3594 | |
| 3595 | friend bool |
| 3596 | operator==(const param_type& __p1, const param_type& __p2) |
| 3597 | { return __p1._M_radius == __p2._M_radius; } |
| 3598 | |
| 3599 | friend bool |
| 3600 | operator!=(const param_type& __p1, const param_type& __p2) |
| 3601 | { return !(__p1 == __p2); } |
| 3602 | |
| 3603 | private: |
| 3604 | _RealType _M_radius; |
| 3605 | }; |
| 3606 | |
| 3607 | /** |
| 3608 | * @brief Constructors. |
| 3609 | */ |
| 3610 | explicit |
| 3611 | uniform_inside_sphere_distribution(_RealType __radius = _RealType(1)) |
| 3612 | : _M_param(__radius), _M_uosd() |
| 3613 | { } |
| 3614 | |
| 3615 | explicit |
| 3616 | uniform_inside_sphere_distribution(const param_type& __p) |
| 3617 | : _M_param(__p), _M_uosd() |
| 3618 | { } |
| 3619 | |
| 3620 | /** |
| 3621 | * @brief Resets the distribution state. |
| 3622 | */ |
| 3623 | void |
| 3624 | reset() |
| 3625 | { _M_uosd.reset(); } |
| 3626 | |
| 3627 | /** |
| 3628 | * @brief Returns the @f$radius@f$ of the distribution. |
| 3629 | */ |
| 3630 | _RealType |
| 3631 | radius() const |
| 3632 | { return _M_param.radius(); } |
| 3633 | |
| 3634 | /** |
| 3635 | * @brief Returns the parameter set of the distribution. |
| 3636 | */ |
| 3637 | param_type |
| 3638 | param() const |
| 3639 | { return _M_param; } |
| 3640 | |
| 3641 | /** |
| 3642 | * @brief Sets the parameter set of the distribution. |
| 3643 | * @param __param The new parameter set of the distribution. |
| 3644 | */ |
| 3645 | void |
| 3646 | param(const param_type& __param) |
| 3647 | { _M_param = __param; } |
| 3648 | |
| 3649 | /** |
| 3650 | * @brief Returns the greatest lower bound value of the distribution. |
| 3651 | * This function makes no sense for this distribution. |
| 3652 | */ |
| 3653 | result_type |
| 3654 | min() const |
| 3655 | { |
| 3656 | result_type __res; |
| 3657 | __res.fill(0); |
| 3658 | return __res; |
| 3659 | } |
| 3660 | |
| 3661 | /** |
| 3662 | * @brief Returns the least upper bound value of the distribution. |
| 3663 | * This function makes no sense for this distribution. |
| 3664 | */ |
| 3665 | result_type |
| 3666 | max() const |
| 3667 | { |
| 3668 | result_type __res; |
| 3669 | __res.fill(0); |
| 3670 | return __res; |
| 3671 | } |
| 3672 | |
| 3673 | /** |
| 3674 | * @brief Generating functions. |
| 3675 | */ |
| 3676 | template<typename _UniformRandomNumberGenerator> |
| 3677 | result_type |
| 3678 | operator()(_UniformRandomNumberGenerator& __urng) |
| 3679 | { return this->operator()(__urng, _M_param); } |
| 3680 | |
| 3681 | template<typename _UniformRandomNumberGenerator> |
| 3682 | result_type |
| 3683 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3684 | const param_type& __p); |
| 3685 | |
| 3686 | template<typename _ForwardIterator, |
| 3687 | typename _UniformRandomNumberGenerator> |
| 3688 | void |
| 3689 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3690 | _UniformRandomNumberGenerator& __urng) |
| 3691 | { this->__generate(__f, __t, __urng, this->param()); } |
| 3692 | |
| 3693 | template<typename _ForwardIterator, |
| 3694 | typename _UniformRandomNumberGenerator> |
| 3695 | void |
| 3696 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
| 3697 | _UniformRandomNumberGenerator& __urng, |
| 3698 | const param_type& __p) |
| 3699 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3700 | |
| 3701 | template<typename _UniformRandomNumberGenerator> |
| 3702 | void |
| 3703 | __generate(result_type* __f, result_type* __t, |
| 3704 | _UniformRandomNumberGenerator& __urng, |
| 3705 | const param_type& __p) |
| 3706 | { this->__generate_impl(__f, __t, __urng, __p); } |
| 3707 | |
| 3708 | /** |
| 3709 | * @brief Return true if two uniform on sphere distributions have |
| 3710 | * the same parameters and the sequences that would be |
| 3711 | * generated are equal. |
| 3712 | */ |
| 3713 | friend bool |
| 3714 | operator==(const uniform_inside_sphere_distribution& __d1, |
| 3715 | const uniform_inside_sphere_distribution& __d2) |
| 3716 | { return __d1._M_param == __d2._M_param && __d1._M_uosd == __d2._M_uosd; } |
| 3717 | |
| 3718 | /** |
| 3719 | * @brief Inserts a %uniform_inside_sphere_distribution random number |
| 3720 | * distribution @p __x into the output stream @p __os. |
| 3721 | * |
| 3722 | * @param __os An output stream. |
| 3723 | * @param __x A %uniform_inside_sphere_distribution random number |
| 3724 | * distribution. |
| 3725 | * |
| 3726 | * @returns The output stream with the state of @p __x inserted or in |
| 3727 | * an error state. |
| 3728 | */ |
| 3729 | template<size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3730 | typename _Traits> |
| 3731 | friend std::basic_ostream<_CharT, _Traits>& |
| 3732 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3733 | const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1, |
| 3734 | _RealType1>& |
| 3735 | ); |
| 3736 | |
| 3737 | /** |
| 3738 | * @brief Extracts a %uniform_inside_sphere_distribution random number |
| 3739 | * distribution |
| 3740 | * @p __x from the input stream @p __is. |
| 3741 | * |
| 3742 | * @param __is An input stream. |
| 3743 | * @param __x A %uniform_inside_sphere_distribution random number |
| 3744 | * generator engine. |
| 3745 | * |
| 3746 | * @returns The input stream with @p __x extracted or in an error state. |
| 3747 | */ |
| 3748 | template<std::size_t _Dimen1, typename _RealType1, typename _CharT, |
| 3749 | typename _Traits> |
| 3750 | friend std::basic_istream<_CharT, _Traits>& |
| 3751 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3752 | __gnu_cxx::uniform_inside_sphere_distribution<_Dimen1, |
| 3753 | _RealType1>&); |
| 3754 | |
| 3755 | private: |
| 3756 | template<typename _ForwardIterator, |
| 3757 | typename _UniformRandomNumberGenerator> |
| 3758 | void |
| 3759 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3760 | _UniformRandomNumberGenerator& __urng, |
| 3761 | const param_type& __p); |
| 3762 | |
| 3763 | param_type _M_param; |
| 3764 | uniform_on_sphere_distribution<_Dimen, _RealType> _M_uosd; |
| 3765 | }; |
| 3766 | |
| 3767 | /** |
| 3768 | * @brief Return true if two uniform on sphere distributions are different. |
| 3769 | */ |
| 3770 | template<std::size_t _Dimen, typename _RealType> |
| 3771 | inline bool |
| 3772 | operator!=(const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| 3773 | _RealType>& __d1, |
| 3774 | const __gnu_cxx::uniform_inside_sphere_distribution<_Dimen, |
| 3775 | _RealType>& __d2) |
| 3776 | { return !(__d1 == __d2); } |
| 3777 | |
| 3778 | _GLIBCXX_END_NAMESPACE_VERSION |
| 3779 | } // namespace __gnu_cxx |
| 3780 | |
| 3781 | #include "ext/opt_random.h" |
| 3782 | #include "random.tcc" |
| 3783 | |
| 3784 | #endif // _GLIBCXX_USE_C99_STDINT_TR1 && UINT32_C |
| 3785 | |
| 3786 | #endif // C++11 |
| 3787 | |
| 3788 | #endif // _EXT_RANDOM |
| 3789 | |