| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/bessel_function.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland. | 
| 35 | // | 
| 36 | // References: | 
| 37 | //   (1) Handbook of Mathematical Functions, | 
| 38 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
| 39 | //       Dover Publications, | 
| 40 | //       Section 9, pp. 355-434, Section 10 pp. 435-478 | 
| 41 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 42 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
| 43 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
| 44 | //       2nd ed, pp. 240-245 | 
| 45 |  | 
| 46 | #ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC | 
| 47 | #define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1 | 
| 48 |  | 
| 49 | #include "special_function_util.h" | 
| 50 |  | 
| 51 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 52 | { | 
| 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 54 |  | 
| 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 56 | # define _GLIBCXX_MATH_NS ::std | 
| 57 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 58 | namespace tr1 | 
| 59 | { | 
| 60 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 61 | #else | 
| 62 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 63 | #endif | 
| 64 |   // [5.2] Special functions | 
| 65 |  | 
| 66 |   // Implementation-space details. | 
| 67 |   namespace __detail | 
| 68 |   { | 
| 69 |     /** | 
| 70 |      *   @brief Compute the gamma functions required by the Temme series | 
| 71 |      *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$. | 
| 72 |      *   @f[ | 
| 73 |      *     \Gamma_1 = \frac{1}{2\mu} | 
| 74 |      *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] | 
| 75 |      *   @f] | 
| 76 |      *   and | 
| 77 |      *   @f[ | 
| 78 |      *     \Gamma_2 = \frac{1}{2} | 
| 79 |      *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] | 
| 80 |      *   @f] | 
| 81 |      *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$. | 
| 82 |      *   is the nearest integer to @f$ \nu @f$. | 
| 83 |      *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ | 
| 84 |      *   are returned as well. | 
| 85 |      *  | 
| 86 |      *   The accuracy requirements on this are exquisite. | 
| 87 |      * | 
| 88 |      *   @param __mu     The input parameter of the gamma functions. | 
| 89 |      *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$ | 
| 90 |      *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$ | 
| 91 |      *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$ | 
| 92 |      *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$ | 
| 93 |      */ | 
| 94 |     template <typename _Tp> | 
| 95 |     void | 
| 96 |     __gamma_temme(_Tp __mu, | 
| 97 |                   _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi) | 
| 98 |     { | 
| 99 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 100 |       __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu); | 
| 101 |       __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu); | 
| 102 | #else | 
| 103 |       __gampl = _Tp(1) / __gamma(_Tp(1) + __mu); | 
| 104 |       __gammi = _Tp(1) / __gamma(_Tp(1) - __mu); | 
| 105 | #endif | 
| 106 |  | 
| 107 |       if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon()) | 
| 108 |         __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e()); | 
| 109 |       else | 
| 110 |         __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu); | 
| 111 |  | 
| 112 |       __gam2 = (__gammi + __gampl) / (_Tp(2)); | 
| 113 |  | 
| 114 |       return; | 
| 115 |     } | 
| 116 |  | 
| 117 |  | 
| 118 |     /** | 
| 119 |      *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann | 
| 120 |      *           @f$ N_\nu(x) @f$ functions and their first derivatives | 
| 121 |      *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively. | 
| 122 |      *           These four functions are computed together for numerical | 
| 123 |      *           stability. | 
| 124 |      * | 
| 125 |      *   @param  __nu  The order of the Bessel functions. | 
| 126 |      *   @param  __x   The argument of the Bessel functions. | 
| 127 |      *   @param  __Jnu  The output Bessel function of the first kind. | 
| 128 |      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind). | 
| 129 |      *   @param  __Jpnu  The output derivative of the Bessel function of the first kind. | 
| 130 |      *   @param  __Npnu  The output derivative of the Neumann function. | 
| 131 |      */ | 
| 132 |     template <typename _Tp> | 
| 133 |     void | 
| 134 |     __bessel_jn(_Tp __nu, _Tp __x, | 
| 135 |                 _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu) | 
| 136 |     { | 
| 137 |       if (__x == _Tp(0)) | 
| 138 |         { | 
| 139 |           if (__nu == _Tp(0)) | 
| 140 |             { | 
| 141 |               __Jnu = _Tp(1); | 
| 142 |               __Jpnu = _Tp(0); | 
| 143 |             } | 
| 144 |           else if (__nu == _Tp(1)) | 
| 145 |             { | 
| 146 |               __Jnu = _Tp(0); | 
| 147 |               __Jpnu = _Tp(0.5L); | 
| 148 |             } | 
| 149 |           else | 
| 150 |             { | 
| 151 |               __Jnu = _Tp(0); | 
| 152 |               __Jpnu = _Tp(0); | 
| 153 |             } | 
| 154 |           __Nnu = -std::numeric_limits<_Tp>::infinity(); | 
| 155 |           __Npnu = std::numeric_limits<_Tp>::infinity(); | 
| 156 |           return; | 
| 157 |         } | 
| 158 |  | 
| 159 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 160 |       //  When the multiplier is N i.e. | 
| 161 |       //  fp_min = N * min() | 
| 162 |       //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)! | 
| 163 |       //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min(); | 
| 164 |       const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min()); | 
| 165 |       const int __max_iter = 15000; | 
| 166 |       const _Tp __x_min = _Tp(2); | 
| 167 |  | 
| 168 |       const int __nl = (__x < __x_min | 
| 169 |                     ? static_cast<int>(__nu + _Tp(0.5L)) | 
| 170 |                     : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L)))); | 
| 171 |  | 
| 172 |       const _Tp __mu = __nu - __nl; | 
| 173 |       const _Tp __mu2 = __mu * __mu; | 
| 174 |       const _Tp __xi = _Tp(1) / __x; | 
| 175 |       const _Tp __xi2 = _Tp(2) * __xi; | 
| 176 |       _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi(); | 
| 177 |       int __isign = 1; | 
| 178 |       _Tp __h = __nu * __xi; | 
| 179 |       if (__h < __fp_min) | 
| 180 |         __h = __fp_min; | 
| 181 |       _Tp __b = __xi2 * __nu; | 
| 182 |       _Tp __d = _Tp(0); | 
| 183 |       _Tp __c = __h; | 
| 184 |       int __i; | 
| 185 |       for (__i = 1; __i <= __max_iter; ++__i) | 
| 186 |         { | 
| 187 |           __b += __xi2; | 
| 188 |           __d = __b - __d; | 
| 189 |           if (std::abs(__d) < __fp_min) | 
| 190 |             __d = __fp_min; | 
| 191 |           __c = __b - _Tp(1) / __c; | 
| 192 |           if (std::abs(__c) < __fp_min) | 
| 193 |             __c = __fp_min; | 
| 194 |           __d = _Tp(1) / __d; | 
| 195 |           const _Tp __del = __c * __d; | 
| 196 |           __h *= __del; | 
| 197 |           if (__d < _Tp(0)) | 
| 198 |             __isign = -__isign; | 
| 199 |           if (std::abs(__del - _Tp(1)) < __eps) | 
| 200 |             break; | 
| 201 |         } | 
| 202 |       if (__i > __max_iter) | 
| 203 |         std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "  | 
| 204 |                                        "try asymptotic expansion." )); | 
| 205 |       _Tp __Jnul = __isign * __fp_min; | 
| 206 |       _Tp __Jpnul = __h * __Jnul; | 
| 207 |       _Tp __Jnul1 = __Jnul; | 
| 208 |       _Tp __Jpnu1 = __Jpnul; | 
| 209 |       _Tp __fact = __nu * __xi; | 
| 210 |       for ( int __l = __nl; __l >= 1; --__l ) | 
| 211 |         { | 
| 212 |           const _Tp __Jnutemp = __fact * __Jnul + __Jpnul; | 
| 213 |           __fact -= __xi; | 
| 214 |           __Jpnul = __fact * __Jnutemp - __Jnul; | 
| 215 |           __Jnul = __Jnutemp; | 
| 216 |         } | 
| 217 |       if (__Jnul == _Tp(0)) | 
| 218 |         __Jnul = __eps; | 
| 219 |       _Tp __f= __Jpnul / __Jnul; | 
| 220 |       _Tp __Nmu, __Nnu1, __Npmu, __Jmu; | 
| 221 |       if (__x < __x_min) | 
| 222 |         { | 
| 223 |           const _Tp __x2 = __x / _Tp(2); | 
| 224 |           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; | 
| 225 |           _Tp __fact = (std::abs(__pimu) < __eps | 
| 226 |                       ? _Tp(1) : __pimu / std::sin(__pimu)); | 
| 227 |           _Tp __d = -std::log(__x2); | 
| 228 |           _Tp __e = __mu * __d; | 
| 229 |           _Tp __fact2 = (std::abs(__e) < __eps | 
| 230 |                        ? _Tp(1) : std::sinh(__e) / __e); | 
| 231 |           _Tp __gam1, __gam2, __gampl, __gammi; | 
| 232 |           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); | 
| 233 |           _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi()) | 
| 234 |                    * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); | 
| 235 |           __e = std::exp(__e); | 
| 236 |           _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl); | 
| 237 |           _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi); | 
| 238 |           const _Tp __pimu2 = __pimu / _Tp(2); | 
| 239 |           _Tp __fact3 = (std::abs(__pimu2) < __eps | 
| 240 |                        ? _Tp(1) : std::sin(__pimu2) / __pimu2 ); | 
| 241 |           _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3; | 
| 242 |           _Tp __c = _Tp(1); | 
| 243 |           __d = -__x2 * __x2; | 
| 244 |           _Tp __sum = __ff + __r * __q; | 
| 245 |           _Tp __sum1 = __p; | 
| 246 |           for (__i = 1; __i <= __max_iter; ++__i) | 
| 247 |             { | 
| 248 |               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); | 
| 249 |               __c *= __d / _Tp(__i); | 
| 250 |               __p /= _Tp(__i) - __mu; | 
| 251 |               __q /= _Tp(__i) + __mu; | 
| 252 |               const _Tp __del = __c * (__ff + __r * __q); | 
| 253 |               __sum += __del;  | 
| 254 |               const _Tp __del1 = __c * __p - __i * __del; | 
| 255 |               __sum1 += __del1; | 
| 256 |               if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) ) | 
| 257 |                 break; | 
| 258 |             } | 
| 259 |           if ( __i > __max_iter ) | 
| 260 |             std::__throw_runtime_error(__N("Bessel y series failed to converge "  | 
| 261 |                                            "in __bessel_jn." )); | 
| 262 |           __Nmu = -__sum; | 
| 263 |           __Nnu1 = -__sum1 * __xi2; | 
| 264 |           __Npmu = __mu * __xi * __Nmu - __Nnu1; | 
| 265 |           __Jmu = __w / (__Npmu - __f * __Nmu); | 
| 266 |         } | 
| 267 |       else | 
| 268 |         { | 
| 269 |           _Tp __a = _Tp(0.25L) - __mu2; | 
| 270 |           _Tp __q = _Tp(1); | 
| 271 |           _Tp __p = -__xi / _Tp(2); | 
| 272 |           _Tp __br = _Tp(2) * __x; | 
| 273 |           _Tp __bi = _Tp(2); | 
| 274 |           _Tp __fact = __a * __xi / (__p * __p + __q * __q); | 
| 275 |           _Tp __cr = __br + __q * __fact; | 
| 276 |           _Tp __ci = __bi + __p * __fact; | 
| 277 |           _Tp __den = __br * __br + __bi * __bi; | 
| 278 |           _Tp __dr = __br / __den; | 
| 279 |           _Tp __di = -__bi / __den; | 
| 280 |           _Tp __dlr = __cr * __dr - __ci * __di; | 
| 281 |           _Tp __dli = __cr * __di + __ci * __dr; | 
| 282 |           _Tp __temp = __p * __dlr - __q * __dli; | 
| 283 |           __q = __p * __dli + __q * __dlr; | 
| 284 |           __p = __temp; | 
| 285 |           int __i; | 
| 286 |           for (__i = 2; __i <= __max_iter; ++__i) | 
| 287 |             { | 
| 288 |               __a += _Tp(2 * (__i - 1)); | 
| 289 |               __bi += _Tp(2); | 
| 290 |               __dr = __a * __dr + __br; | 
| 291 |               __di = __a * __di + __bi; | 
| 292 |               if (std::abs(__dr) + std::abs(__di) < __fp_min) | 
| 293 |                 __dr = __fp_min; | 
| 294 |               __fact = __a / (__cr * __cr + __ci * __ci); | 
| 295 |               __cr = __br + __cr * __fact; | 
| 296 |               __ci = __bi - __ci * __fact; | 
| 297 |               if (std::abs(__cr) + std::abs(__ci) < __fp_min) | 
| 298 |                 __cr = __fp_min; | 
| 299 |               __den = __dr * __dr + __di * __di; | 
| 300 |               __dr /= __den; | 
| 301 |               __di /= -__den; | 
| 302 |               __dlr = __cr * __dr - __ci * __di; | 
| 303 |               __dli = __cr * __di + __ci * __dr; | 
| 304 |               __temp = __p * __dlr - __q * __dli; | 
| 305 |               __q = __p * __dli + __q * __dlr; | 
| 306 |               __p = __temp; | 
| 307 |               if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps) | 
| 308 |                 break; | 
| 309 |           } | 
| 310 |           if (__i > __max_iter) | 
| 311 |             std::__throw_runtime_error(__N("Lentz's method failed "  | 
| 312 |                                            "in __bessel_jn." )); | 
| 313 |           const _Tp __gam = (__p - __f) / __q; | 
| 314 |           __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q)); | 
| 315 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 316 |           __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul); | 
| 317 | #else | 
| 318 |           if (__Jmu * __Jnul < _Tp(0)) | 
| 319 |             __Jmu = -__Jmu; | 
| 320 | #endif | 
| 321 |           __Nmu = __gam * __Jmu; | 
| 322 |           __Npmu = (__p + __q / __gam) * __Nmu; | 
| 323 |           __Nnu1 = __mu * __xi * __Nmu - __Npmu; | 
| 324 |       } | 
| 325 |       __fact = __Jmu / __Jnul; | 
| 326 |       __Jnu = __fact * __Jnul1; | 
| 327 |       __Jpnu = __fact * __Jpnu1; | 
| 328 |       for (__i = 1; __i <= __nl; ++__i) | 
| 329 |         { | 
| 330 |           const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu; | 
| 331 |           __Nmu = __Nnu1; | 
| 332 |           __Nnu1 = __Nnutemp; | 
| 333 |         } | 
| 334 |       __Nnu = __Nmu; | 
| 335 |       __Npnu = __nu * __xi * __Nmu - __Nnu1; | 
| 336 |  | 
| 337 |       return; | 
| 338 |     } | 
| 339 |  | 
| 340 |  | 
| 341 |     /** | 
| 342 |      *   @brief This routine computes the asymptotic cylindrical Bessel | 
| 343 |      *          and Neumann functions of order nu: \f$ J_{\nu} \f$, | 
| 344 |      *          \f$ N_{\nu} \f$. | 
| 345 |      * | 
| 346 |      *   References: | 
| 347 |      *    (1) Handbook of Mathematical Functions, | 
| 348 |      *        ed. Milton Abramowitz and Irene A. Stegun, | 
| 349 |      *        Dover Publications, | 
| 350 |      *        Section 9 p. 364, Equations 9.2.5-9.2.10 | 
| 351 |      * | 
| 352 |      *   @param  __nu  The order of the Bessel functions. | 
| 353 |      *   @param  __x   The argument of the Bessel functions. | 
| 354 |      *   @param  __Jnu  The output Bessel function of the first kind. | 
| 355 |      *   @param  __Nnu  The output Neumann function (Bessel function of the second kind). | 
| 356 |      */ | 
| 357 |     template <typename _Tp> | 
| 358 |     void | 
| 359 |     __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu) | 
| 360 |     { | 
| 361 |       const _Tp __mu   = _Tp(4) * __nu * __nu; | 
| 362 |       const _Tp __mum1 = __mu - _Tp(1); | 
| 363 |       const _Tp __mum9 = __mu - _Tp(9); | 
| 364 |       const _Tp __mum25 = __mu - _Tp(25); | 
| 365 |       const _Tp __mum49 = __mu - _Tp(49); | 
| 366 |       const _Tp __xx = _Tp(64) * __x * __x; | 
| 367 |       const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx) | 
| 368 |                     * (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx)); | 
| 369 |       const _Tp __Q = __mum1 / (_Tp(8) * __x) | 
| 370 |                     * (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx)); | 
| 371 |  | 
| 372 |       const _Tp __chi = __x - (__nu + _Tp(0.5L)) | 
| 373 |                             * __numeric_constants<_Tp>::__pi_2(); | 
| 374 |       const _Tp __c = std::cos(__chi); | 
| 375 |       const _Tp __s = std::sin(__chi); | 
| 376 |  | 
| 377 |       const _Tp __coef = std::sqrt(_Tp(2) | 
| 378 |                              / (__numeric_constants<_Tp>::__pi() * __x)); | 
| 379 |       __Jnu = __coef * (__c * __P - __s * __Q); | 
| 380 |       __Nnu = __coef * (__s * __P + __c * __Q); | 
| 381 |  | 
| 382 |       return; | 
| 383 |     } | 
| 384 |  | 
| 385 |  | 
| 386 |     /** | 
| 387 |      *   @brief This routine returns the cylindrical Bessel functions | 
| 388 |      *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$ | 
| 389 |      *          by series expansion. | 
| 390 |      * | 
| 391 |      *   The modified cylindrical Bessel function is: | 
| 392 |      *   @f[ | 
| 393 |      *    Z_{\nu}(x) = \sum_{k=0}^{\infty} | 
| 394 |      *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
| 395 |      *   @f] | 
| 396 |      *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for | 
| 397 |      *   \f$ Z = I \f$ or \f$ J \f$ respectively. | 
| 398 |      *  | 
| 399 |      *   See Abramowitz & Stegun, 9.1.10 | 
| 400 |      *       Abramowitz & Stegun, 9.6.7 | 
| 401 |      *    (1) Handbook of Mathematical Functions, | 
| 402 |      *        ed. Milton Abramowitz and Irene A. Stegun, | 
| 403 |      *        Dover Publications, | 
| 404 |      *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375 | 
| 405 |      * | 
| 406 |      *   @param  __nu  The order of the Bessel function. | 
| 407 |      *   @param  __x   The argument of the Bessel function. | 
| 408 |      *   @param  __sgn  The sign of the alternate terms | 
| 409 |      *                  -1 for the Bessel function of the first kind. | 
| 410 |      *                  +1 for the modified Bessel function of the first kind. | 
| 411 |      *   @return  The output Bessel function. | 
| 412 |      */ | 
| 413 |     template <typename _Tp> | 
| 414 |     _Tp | 
| 415 |     __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn, | 
| 416 |                            unsigned int __max_iter) | 
| 417 |     { | 
| 418 |       if (__x == _Tp(0)) | 
| 419 | 	return __nu == _Tp(0) ? _Tp(1) : _Tp(0); | 
| 420 |  | 
| 421 |       const _Tp __x2 = __x / _Tp(2); | 
| 422 |       _Tp __fact = __nu * std::log(__x2); | 
| 423 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 424 |       __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1)); | 
| 425 | #else | 
| 426 |       __fact -= __log_gamma(__nu + _Tp(1)); | 
| 427 | #endif | 
| 428 |       __fact = std::exp(__fact); | 
| 429 |       const _Tp __xx4 = __sgn * __x2 * __x2; | 
| 430 |       _Tp __Jn = _Tp(1); | 
| 431 |       _Tp __term = _Tp(1); | 
| 432 |  | 
| 433 |       for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
| 434 |         { | 
| 435 |           __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i))); | 
| 436 |           __Jn += __term; | 
| 437 |           if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon()) | 
| 438 |             break; | 
| 439 |         } | 
| 440 |  | 
| 441 |       return __fact * __Jn; | 
| 442 |     } | 
| 443 |  | 
| 444 |  | 
| 445 |     /** | 
| 446 |      *   @brief  Return the Bessel function of order \f$ \nu \f$: | 
| 447 |      *           \f$ J_{\nu}(x) \f$. | 
| 448 |      * | 
| 449 |      *   The cylindrical Bessel function is: | 
| 450 |      *   @f[ | 
| 451 |      *    J_{\nu}(x) = \sum_{k=0}^{\infty} | 
| 452 |      *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
| 453 |      *   @f] | 
| 454 |      * | 
| 455 |      *   @param  __nu  The order of the Bessel function. | 
| 456 |      *   @param  __x   The argument of the Bessel function. | 
| 457 |      *   @return  The output Bessel function. | 
| 458 |      */ | 
| 459 |     template<typename _Tp> | 
| 460 |     _Tp | 
| 461 |     __cyl_bessel_j(_Tp __nu, _Tp __x) | 
| 462 |     { | 
| 463 |       if (__nu < _Tp(0) || __x < _Tp(0)) | 
| 464 |         std::__throw_domain_error(__N("Bad argument "  | 
| 465 |                                       "in __cyl_bessel_j." )); | 
| 466 |       else if (__isnan(__nu) || __isnan(__x)) | 
| 467 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 468 |       else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) | 
| 469 |         return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200); | 
| 470 |       else if (__x > _Tp(1000)) | 
| 471 |         { | 
| 472 |           _Tp __J_nu, __N_nu; | 
| 473 |           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu); | 
| 474 |           return __J_nu; | 
| 475 |         } | 
| 476 |       else | 
| 477 |         { | 
| 478 |           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; | 
| 479 |           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
| 480 |           return __J_nu; | 
| 481 |         } | 
| 482 |     } | 
| 483 |  | 
| 484 |  | 
| 485 |     /** | 
| 486 |      *   @brief  Return the Neumann function of order \f$ \nu \f$: | 
| 487 |      *           \f$ N_{\nu}(x) \f$. | 
| 488 |      * | 
| 489 |      *   The Neumann function is defined by: | 
| 490 |      *   @f[ | 
| 491 |      *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)} | 
| 492 |      *                        {\sin \nu\pi} | 
| 493 |      *   @f] | 
| 494 |      *   where for integral \f$ \nu = n \f$ a limit is taken: | 
| 495 |      *   \f$ lim_{\nu \to n} \f$. | 
| 496 |      * | 
| 497 |      *   @param  __nu  The order of the Neumann function. | 
| 498 |      *   @param  __x   The argument of the Neumann function. | 
| 499 |      *   @return  The output Neumann function. | 
| 500 |      */ | 
| 501 |     template<typename _Tp> | 
| 502 |     _Tp | 
| 503 |     __cyl_neumann_n(_Tp __nu, _Tp __x) | 
| 504 |     { | 
| 505 |       if (__nu < _Tp(0) || __x < _Tp(0)) | 
| 506 |         std::__throw_domain_error(__N("Bad argument "  | 
| 507 |                                       "in __cyl_neumann_n." )); | 
| 508 |       else if (__isnan(__nu) || __isnan(__x)) | 
| 509 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 510 |       else if (__x > _Tp(1000)) | 
| 511 |         { | 
| 512 |           _Tp __J_nu, __N_nu; | 
| 513 |           __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu); | 
| 514 |           return __N_nu; | 
| 515 |         } | 
| 516 |       else | 
| 517 |         { | 
| 518 |           _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; | 
| 519 |           __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
| 520 |           return __N_nu; | 
| 521 |         } | 
| 522 |     } | 
| 523 |  | 
| 524 |  | 
| 525 |     /** | 
| 526 |      *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$ | 
| 527 |      *           and Neumann @f$ n_n(x) @f$ functions and their first | 
| 528 |      *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$ | 
| 529 |      *           respectively. | 
| 530 |      * | 
| 531 |      *   @param  __n  The order of the spherical Bessel function. | 
| 532 |      *   @param  __x  The argument of the spherical Bessel function. | 
| 533 |      *   @param  __j_n  The output spherical Bessel function. | 
| 534 |      *   @param  __n_n  The output spherical Neumann function. | 
| 535 |      *   @param  __jp_n The output derivative of the spherical Bessel function. | 
| 536 |      *   @param  __np_n The output derivative of the spherical Neumann function. | 
| 537 |      */ | 
| 538 |     template <typename _Tp> | 
| 539 |     void | 
| 540 |     __sph_bessel_jn(unsigned int __n, _Tp __x, | 
| 541 |                     _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n) | 
| 542 |     { | 
| 543 |       const _Tp __nu = _Tp(__n) + _Tp(0.5L); | 
| 544 |  | 
| 545 |       _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu; | 
| 546 |       __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
| 547 |  | 
| 548 |       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() | 
| 549 |                          / std::sqrt(__x); | 
| 550 |  | 
| 551 |       __j_n = __factor * __J_nu; | 
| 552 |       __n_n = __factor * __N_nu; | 
| 553 |       __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x); | 
| 554 |       __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x); | 
| 555 |  | 
| 556 |       return; | 
| 557 |     } | 
| 558 |  | 
| 559 |  | 
| 560 |     /** | 
| 561 |      *   @brief  Return the spherical Bessel function | 
| 562 |      *           @f$ j_n(x) @f$ of order n. | 
| 563 |      * | 
| 564 |      *   The spherical Bessel function is defined by: | 
| 565 |      *   @f[ | 
| 566 |      *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x) | 
| 567 |      *   @f] | 
| 568 |      * | 
| 569 |      *   @param  __n  The order of the spherical Bessel function. | 
| 570 |      *   @param  __x  The argument of the spherical Bessel function. | 
| 571 |      *   @return  The output spherical Bessel function. | 
| 572 |      */ | 
| 573 |     template <typename _Tp> | 
| 574 |     _Tp | 
| 575 |     __sph_bessel(unsigned int __n, _Tp __x) | 
| 576 |     { | 
| 577 |       if (__x < _Tp(0)) | 
| 578 |         std::__throw_domain_error(__N("Bad argument "  | 
| 579 |                                       "in __sph_bessel." )); | 
| 580 |       else if (__isnan(__x)) | 
| 581 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 582 |       else if (__x == _Tp(0)) | 
| 583 |         { | 
| 584 |           if (__n == 0) | 
| 585 |             return _Tp(1); | 
| 586 |           else | 
| 587 |             return _Tp(0); | 
| 588 |         } | 
| 589 |       else | 
| 590 |         { | 
| 591 |           _Tp __j_n, __n_n, __jp_n, __np_n; | 
| 592 |           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n); | 
| 593 |           return __j_n; | 
| 594 |         } | 
| 595 |     } | 
| 596 |  | 
| 597 |  | 
| 598 |     /** | 
| 599 |      *   @brief  Return the spherical Neumann function | 
| 600 |      *           @f$ n_n(x) @f$. | 
| 601 |      * | 
| 602 |      *   The spherical Neumann function is defined by: | 
| 603 |      *   @f[ | 
| 604 |      *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x) | 
| 605 |      *   @f] | 
| 606 |      * | 
| 607 |      *   @param  __n  The order of the spherical Neumann function. | 
| 608 |      *   @param  __x  The argument of the spherical Neumann function. | 
| 609 |      *   @return  The output spherical Neumann function. | 
| 610 |      */ | 
| 611 |     template <typename _Tp> | 
| 612 |     _Tp | 
| 613 |     __sph_neumann(unsigned int __n, _Tp __x) | 
| 614 |     { | 
| 615 |       if (__x < _Tp(0)) | 
| 616 |         std::__throw_domain_error(__N("Bad argument "  | 
| 617 |                                       "in __sph_neumann." )); | 
| 618 |       else if (__isnan(__x)) | 
| 619 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 620 |       else if (__x == _Tp(0)) | 
| 621 |         return -std::numeric_limits<_Tp>::infinity(); | 
| 622 |       else | 
| 623 |         { | 
| 624 |           _Tp __j_n, __n_n, __jp_n, __np_n; | 
| 625 |           __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n); | 
| 626 |           return __n_n; | 
| 627 |         } | 
| 628 |     } | 
| 629 |   } // namespace __detail | 
| 630 | #undef _GLIBCXX_MATH_NS | 
| 631 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 632 | } // namespace tr1 | 
| 633 | #endif | 
| 634 |  | 
| 635 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 636 | } | 
| 637 |  | 
| 638 | #endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC | 
| 639 |  |