| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/beta_function.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, | 
| 38 | //       Section 6, pp. 253-266 | 
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
| 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
| 42 | //       2nd ed, pp. 213-216 | 
| 43 | //   (4) Gamma, Exploring Euler's Constant, Julian Havil, | 
| 44 | //       Princeton, 2003. | 
| 45 |  | 
| 46 | #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC | 
| 47 | #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1 | 
| 48 |  | 
| 49 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 50 | { | 
| 51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 52 |  | 
| 53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 54 | # define _GLIBCXX_MATH_NS ::std | 
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 56 | namespace tr1 | 
| 57 | { | 
| 58 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 59 | #else | 
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 61 | #endif | 
| 62 |   // [5.2] Special functions | 
| 63 |  | 
| 64 |   // Implementation-space details. | 
| 65 |   namespace __detail | 
| 66 |   { | 
| 67 |     /** | 
| 68 |      *   @brief  Return the beta function: \f$B(x,y)\f$. | 
| 69 |      *  | 
| 70 |      *   The beta function is defined by | 
| 71 |      *   @f[ | 
| 72 |      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} | 
| 73 |      *   @f] | 
| 74 |      * | 
| 75 |      *   @param __x The first argument of the beta function. | 
| 76 |      *   @param __y The second argument of the beta function. | 
| 77 |      *   @return  The beta function. | 
| 78 |      */ | 
| 79 |     template<typename _Tp> | 
| 80 |     _Tp | 
| 81 |     __beta_gamma(_Tp __x, _Tp __y) | 
| 82 |     { | 
| 83 |  | 
| 84 |       _Tp __bet; | 
| 85 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 86 |       if (__x > __y) | 
| 87 |         { | 
| 88 |           __bet = _GLIBCXX_MATH_NS::tgamma(__x) | 
| 89 |                 / _GLIBCXX_MATH_NS::tgamma(__x + __y); | 
| 90 |           __bet *= _GLIBCXX_MATH_NS::tgamma(__y); | 
| 91 |         } | 
| 92 |       else | 
| 93 |         { | 
| 94 |           __bet = _GLIBCXX_MATH_NS::tgamma(__y) | 
| 95 |                 / _GLIBCXX_MATH_NS::tgamma(__x + __y); | 
| 96 |           __bet *= _GLIBCXX_MATH_NS::tgamma(__x); | 
| 97 |         } | 
| 98 | #else | 
| 99 |       if (__x > __y) | 
| 100 |         { | 
| 101 |           __bet = __gamma(__x) / __gamma(__x + __y); | 
| 102 |           __bet *= __gamma(__y); | 
| 103 |         } | 
| 104 |       else | 
| 105 |         { | 
| 106 |           __bet = __gamma(__y) / __gamma(__x + __y); | 
| 107 |           __bet *= __gamma(__x); | 
| 108 |         } | 
| 109 | #endif | 
| 110 |  | 
| 111 |       return __bet; | 
| 112 |     } | 
| 113 |  | 
| 114 |     /** | 
| 115 |      *   @brief  Return the beta function \f$B(x,y)\f$ using | 
| 116 |      *           the log gamma functions. | 
| 117 |      *  | 
| 118 |      *   The beta function is defined by | 
| 119 |      *   @f[ | 
| 120 |      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} | 
| 121 |      *   @f] | 
| 122 |      * | 
| 123 |      *   @param __x The first argument of the beta function. | 
| 124 |      *   @param __y The second argument of the beta function. | 
| 125 |      *   @return  The beta function. | 
| 126 |      */ | 
| 127 |     template<typename _Tp> | 
| 128 |     _Tp | 
| 129 |     __beta_lgamma(_Tp __x, _Tp __y) | 
| 130 |     { | 
| 131 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 132 |       _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x) | 
| 133 |                 + _GLIBCXX_MATH_NS::lgamma(__y) | 
| 134 |                 - _GLIBCXX_MATH_NS::lgamma(__x + __y); | 
| 135 | #else | 
| 136 |       _Tp __bet = __log_gamma(__x) | 
| 137 |                 + __log_gamma(__y) | 
| 138 |                 - __log_gamma(__x + __y); | 
| 139 | #endif | 
| 140 |       __bet = std::exp(__bet); | 
| 141 |       return __bet; | 
| 142 |     } | 
| 143 |  | 
| 144 |  | 
| 145 |     /** | 
| 146 |      *   @brief  Return the beta function \f$B(x,y)\f$ using | 
| 147 |      *           the product form. | 
| 148 |      *  | 
| 149 |      *   The beta function is defined by | 
| 150 |      *   @f[ | 
| 151 |      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} | 
| 152 |      *   @f] | 
| 153 |      * | 
| 154 |      *   @param __x The first argument of the beta function. | 
| 155 |      *   @param __y The second argument of the beta function. | 
| 156 |      *   @return  The beta function. | 
| 157 |      */ | 
| 158 |     template<typename _Tp> | 
| 159 |     _Tp | 
| 160 |     __beta_product(_Tp __x, _Tp __y) | 
| 161 |     { | 
| 162 |  | 
| 163 |       _Tp __bet = (__x + __y) / (__x * __y); | 
| 164 |  | 
| 165 |       unsigned int __max_iter = 1000000; | 
| 166 |       for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
| 167 |         { | 
| 168 |           _Tp __term = (_Tp(1) + (__x + __y) / __k) | 
| 169 |                      / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k)); | 
| 170 |           __bet *= __term; | 
| 171 |         } | 
| 172 |  | 
| 173 |       return __bet; | 
| 174 |     } | 
| 175 |  | 
| 176 |  | 
| 177 |     /** | 
| 178 |      *   @brief  Return the beta function \f$ B(x,y) \f$. | 
| 179 |      *  | 
| 180 |      *   The beta function is defined by | 
| 181 |      *   @f[ | 
| 182 |      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} | 
| 183 |      *   @f] | 
| 184 |      * | 
| 185 |      *   @param __x The first argument of the beta function. | 
| 186 |      *   @param __y The second argument of the beta function. | 
| 187 |      *   @return  The beta function. | 
| 188 |      */ | 
| 189 |     template<typename _Tp> | 
| 190 |     inline _Tp | 
| 191 |     __beta(_Tp __x, _Tp __y) | 
| 192 |     { | 
| 193 |       if (__isnan(__x) || __isnan(__y)) | 
| 194 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 195 |       else | 
| 196 |         return __beta_lgamma(__x, __y); | 
| 197 |     } | 
| 198 |   } // namespace __detail | 
| 199 | #undef _GLIBCXX_MATH_NS | 
| 200 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 201 | } // namespace tr1 | 
| 202 | #endif | 
| 203 |  | 
| 204 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 205 | } | 
| 206 |  | 
| 207 | #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC | 
| 208 |  |