| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/ell_integral.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1)  B. C. Carlson Numer. Math. 33, 1 (1979) | 
| 36 | //   (2)  B. C. Carlson, Special Functions of Applied Mathematics (1977) | 
| 37 | //   (3)  The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 38 | //   (4)  Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky, | 
| 39 | //        W. T. Vetterling, B. P. Flannery, Cambridge University Press | 
| 40 | //        (1992), pp. 261-269 | 
| 41 |  | 
| 42 | #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC | 
| 43 | #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1 | 
| 44 |  | 
| 45 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 46 | { | 
| 47 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 48 |  | 
| 49 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 50 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 51 | namespace tr1 | 
| 52 | { | 
| 53 | #else | 
| 54 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 55 | #endif | 
| 56 |   // [5.2] Special functions | 
| 57 |  | 
| 58 |   // Implementation-space details. | 
| 59 |   namespace __detail | 
| 60 |   { | 
| 61 |     /** | 
| 62 |      *   @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$ | 
| 63 |      *          of the first kind. | 
| 64 |      *  | 
| 65 |      *   The Carlson elliptic function of the first kind is defined by: | 
| 66 |      *   @f[ | 
| 67 |      *       R_F(x,y,z) = \frac{1}{2} \int_0^\infty | 
| 68 |      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}} | 
| 69 |      *   @f] | 
| 70 |      * | 
| 71 |      *   @param  __x  The first of three symmetric arguments. | 
| 72 |      *   @param  __y  The second of three symmetric arguments. | 
| 73 |      *   @param  __z  The third of three symmetric arguments. | 
| 74 |      *   @return  The Carlson elliptic function of the first kind. | 
| 75 |      */ | 
| 76 |     template<typename _Tp> | 
| 77 |     _Tp | 
| 78 |     __ellint_rf(_Tp __x, _Tp __y, _Tp __z) | 
| 79 |     { | 
| 80 |       const _Tp __min = std::numeric_limits<_Tp>::min(); | 
| 81 |       const _Tp __max = std::numeric_limits<_Tp>::max(); | 
| 82 |       const _Tp __lolim = _Tp(5) * __min; | 
| 83 |       const _Tp __uplim = __max / _Tp(5); | 
| 84 |  | 
| 85 |       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) | 
| 86 |         std::__throw_domain_error(__N("Argument less than zero "  | 
| 87 |                                       "in __ellint_rf." )); | 
| 88 |       else if (__x + __y < __lolim || __x + __z < __lolim | 
| 89 |             || __y + __z < __lolim) | 
| 90 |         std::__throw_domain_error(__N("Argument too small in __ellint_rf" )); | 
| 91 |       else | 
| 92 |         { | 
| 93 |           const _Tp __c0 = _Tp(1) / _Tp(4); | 
| 94 |           const _Tp __c1 = _Tp(1) / _Tp(24); | 
| 95 |           const _Tp __c2 = _Tp(1) / _Tp(10); | 
| 96 |           const _Tp __c3 = _Tp(3) / _Tp(44); | 
| 97 |           const _Tp __c4 = _Tp(1) / _Tp(14); | 
| 98 |  | 
| 99 |           _Tp __xn = __x; | 
| 100 |           _Tp __yn = __y; | 
| 101 |           _Tp __zn = __z; | 
| 102 |  | 
| 103 |           const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 104 |           const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); | 
| 105 |           _Tp __mu; | 
| 106 |           _Tp __xndev, __yndev, __zndev; | 
| 107 |  | 
| 108 |           const unsigned int __max_iter = 100; | 
| 109 |           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) | 
| 110 |             { | 
| 111 |               __mu = (__xn + __yn + __zn) / _Tp(3); | 
| 112 |               __xndev = 2 - (__mu + __xn) / __mu; | 
| 113 |               __yndev = 2 - (__mu + __yn) / __mu; | 
| 114 |               __zndev = 2 - (__mu + __zn) / __mu; | 
| 115 |               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); | 
| 116 |               __epsilon = std::max(__epsilon, std::abs(__zndev)); | 
| 117 |               if (__epsilon < __errtol) | 
| 118 |                 break; | 
| 119 |               const _Tp __xnroot = std::sqrt(__xn); | 
| 120 |               const _Tp __ynroot = std::sqrt(__yn); | 
| 121 |               const _Tp __znroot = std::sqrt(__zn); | 
| 122 |               const _Tp __lambda = __xnroot * (__ynroot + __znroot) | 
| 123 |                                  + __ynroot * __znroot; | 
| 124 |               __xn = __c0 * (__xn + __lambda); | 
| 125 |               __yn = __c0 * (__yn + __lambda); | 
| 126 |               __zn = __c0 * (__zn + __lambda); | 
| 127 |             } | 
| 128 |  | 
| 129 |           const _Tp __e2 = __xndev * __yndev - __zndev * __zndev; | 
| 130 |           const _Tp __e3 = __xndev * __yndev * __zndev; | 
| 131 |           const _Tp __s  = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2 | 
| 132 |                    + __c4 * __e3; | 
| 133 |  | 
| 134 |           return __s / std::sqrt(__mu); | 
| 135 |         } | 
| 136 |     } | 
| 137 |  | 
| 138 |  | 
| 139 |     /** | 
| 140 |      *   @brief Return the complete elliptic integral of the first kind | 
| 141 |      *          @f$ K(k) @f$ by series expansion. | 
| 142 |      *  | 
| 143 |      *   The complete elliptic integral of the first kind is defined as | 
| 144 |      *   @f[ | 
| 145 |      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} | 
| 146 |      *                              {\sqrt{1 - k^2sin^2\theta}} | 
| 147 |      *   @f] | 
| 148 |      *  | 
| 149 |      *   This routine is not bad as long as |k| is somewhat smaller than 1 | 
| 150 |      *   but is not is good as the Carlson elliptic integral formulation. | 
| 151 |      *  | 
| 152 |      *   @param  __k  The argument of the complete elliptic function. | 
| 153 |      *   @return  The complete elliptic function of the first kind. | 
| 154 |      */ | 
| 155 |     template<typename _Tp> | 
| 156 |     _Tp | 
| 157 |     __comp_ellint_1_series(_Tp __k) | 
| 158 |     { | 
| 159 |  | 
| 160 |       const _Tp __kk = __k * __k; | 
| 161 |  | 
| 162 |       _Tp __term = __kk / _Tp(4); | 
| 163 |       _Tp __sum = _Tp(1) + __term; | 
| 164 |  | 
| 165 |       const unsigned int __max_iter = 1000; | 
| 166 |       for (unsigned int __i = 2; __i < __max_iter; ++__i) | 
| 167 |         { | 
| 168 |           __term *= (2 * __i - 1) * __kk / (2 * __i); | 
| 169 |           if (__term < std::numeric_limits<_Tp>::epsilon()) | 
| 170 |             break; | 
| 171 |           __sum += __term; | 
| 172 |         } | 
| 173 |  | 
| 174 |       return __numeric_constants<_Tp>::__pi_2() * __sum; | 
| 175 |     } | 
| 176 |  | 
| 177 |  | 
| 178 |     /** | 
| 179 |      *   @brief  Return the complete elliptic integral of the first kind | 
| 180 |      *           @f$ K(k) @f$ using the Carlson formulation. | 
| 181 |      *  | 
| 182 |      *   The complete elliptic integral of the first kind is defined as | 
| 183 |      *   @f[ | 
| 184 |      *     K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} | 
| 185 |      *                                           {\sqrt{1 - k^2 sin^2\theta}} | 
| 186 |      *   @f] | 
| 187 |      *   where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the | 
| 188 |      *   first kind. | 
| 189 |      *  | 
| 190 |      *   @param  __k  The argument of the complete elliptic function. | 
| 191 |      *   @return  The complete elliptic function of the first kind. | 
| 192 |      */ | 
| 193 |     template<typename _Tp> | 
| 194 |     _Tp | 
| 195 |     __comp_ellint_1(_Tp __k) | 
| 196 |     { | 
| 197 |  | 
| 198 |       if (__isnan(__k)) | 
| 199 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 200 |       else if (std::abs(__k) >= _Tp(1)) | 
| 201 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 202 |       else | 
| 203 |         return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1)); | 
| 204 |     } | 
| 205 |  | 
| 206 |  | 
| 207 |     /** | 
| 208 |      *   @brief  Return the incomplete elliptic integral of the first kind | 
| 209 |      *           @f$ F(k,\phi) @f$ using the Carlson formulation. | 
| 210 |      *  | 
| 211 |      *   The incomplete elliptic integral of the first kind is defined as | 
| 212 |      *   @f[ | 
| 213 |      *     F(k,\phi) = \int_0^{\phi}\frac{d\theta} | 
| 214 |      *                                   {\sqrt{1 - k^2 sin^2\theta}} | 
| 215 |      *   @f] | 
| 216 |      *  | 
| 217 |      *   @param  __k  The argument of the elliptic function. | 
| 218 |      *   @param  __phi  The integral limit argument of the elliptic function. | 
| 219 |      *   @return  The elliptic function of the first kind. | 
| 220 |      */ | 
| 221 |     template<typename _Tp> | 
| 222 |     _Tp | 
| 223 |     __ellint_1(_Tp __k, _Tp __phi) | 
| 224 |     { | 
| 225 |  | 
| 226 |       if (__isnan(__k) || __isnan(__phi)) | 
| 227 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 228 |       else if (std::abs(__k) > _Tp(1)) | 
| 229 |         std::__throw_domain_error(__N("Bad argument in __ellint_1." )); | 
| 230 |       else | 
| 231 |         { | 
| 232 |           //  Reduce phi to -pi/2 < phi < +pi/2. | 
| 233 |           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() | 
| 234 |                                    + _Tp(0.5L)); | 
| 235 |           const _Tp __phi_red = __phi | 
| 236 |                               - __n * __numeric_constants<_Tp>::__pi(); | 
| 237 |  | 
| 238 |           const _Tp __s = std::sin(__phi_red); | 
| 239 |           const _Tp __c = std::cos(__phi_red); | 
| 240 |  | 
| 241 |           const _Tp __F = __s | 
| 242 |                         * __ellint_rf(__c * __c, | 
| 243 |                                 _Tp(1) - __k * __k * __s * __s, _Tp(1)); | 
| 244 |  | 
| 245 |           if (__n == 0) | 
| 246 |             return __F; | 
| 247 |           else | 
| 248 |             return __F + _Tp(2) * __n * __comp_ellint_1(__k); | 
| 249 |         } | 
| 250 |     } | 
| 251 |  | 
| 252 |  | 
| 253 |     /** | 
| 254 |      *   @brief Return the complete elliptic integral of the second kind | 
| 255 |      *          @f$ E(k) @f$ by series expansion. | 
| 256 |      *  | 
| 257 |      *   The complete elliptic integral of the second kind is defined as | 
| 258 |      *   @f[ | 
| 259 |      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} | 
| 260 |      *   @f] | 
| 261 |      *  | 
| 262 |      *   This routine is not bad as long as |k| is somewhat smaller than 1 | 
| 263 |      *   but is not is good as the Carlson elliptic integral formulation. | 
| 264 |      *  | 
| 265 |      *   @param  __k  The argument of the complete elliptic function. | 
| 266 |      *   @return  The complete elliptic function of the second kind. | 
| 267 |      */ | 
| 268 |     template<typename _Tp> | 
| 269 |     _Tp | 
| 270 |     __comp_ellint_2_series(_Tp __k) | 
| 271 |     { | 
| 272 |  | 
| 273 |       const _Tp __kk = __k * __k; | 
| 274 |  | 
| 275 |       _Tp __term = __kk; | 
| 276 |       _Tp __sum = __term; | 
| 277 |  | 
| 278 |       const unsigned int __max_iter = 1000; | 
| 279 |       for (unsigned int __i = 2; __i < __max_iter; ++__i) | 
| 280 |         { | 
| 281 |           const _Tp __i2m = 2 * __i - 1; | 
| 282 |           const _Tp __i2 = 2 * __i; | 
| 283 |           __term *= __i2m * __i2m * __kk / (__i2 * __i2); | 
| 284 |           if (__term < std::numeric_limits<_Tp>::epsilon()) | 
| 285 |             break; | 
| 286 |           __sum += __term / __i2m; | 
| 287 |         } | 
| 288 |  | 
| 289 |       return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum); | 
| 290 |     } | 
| 291 |  | 
| 292 |  | 
| 293 |     /** | 
| 294 |      *   @brief  Return the Carlson elliptic function of the second kind | 
| 295 |      *           @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where | 
| 296 |      *           @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function | 
| 297 |      *           of the third kind. | 
| 298 |      *  | 
| 299 |      *   The Carlson elliptic function of the second kind is defined by: | 
| 300 |      *   @f[ | 
| 301 |      *       R_D(x,y,z) = \frac{3}{2} \int_0^\infty | 
| 302 |      *                 \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}} | 
| 303 |      *   @f] | 
| 304 |      * | 
| 305 |      *   Based on Carlson's algorithms: | 
| 306 |      *   -  B. C. Carlson Numer. Math. 33, 1 (1979) | 
| 307 |      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977) | 
| 308 |      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269, | 
| 309 |      *      by Press, Teukolsky, Vetterling, Flannery (1992) | 
| 310 |      * | 
| 311 |      *   @param  __x  The first of two symmetric arguments. | 
| 312 |      *   @param  __y  The second of two symmetric arguments. | 
| 313 |      *   @param  __z  The third argument. | 
| 314 |      *   @return  The Carlson elliptic function of the second kind. | 
| 315 |      */ | 
| 316 |     template<typename _Tp> | 
| 317 |     _Tp | 
| 318 |     __ellint_rd(_Tp __x, _Tp __y, _Tp __z) | 
| 319 |     { | 
| 320 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 321 |       const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); | 
| 322 |       const _Tp __min = std::numeric_limits<_Tp>::min(); | 
| 323 |       const _Tp __max = std::numeric_limits<_Tp>::max(); | 
| 324 |       const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); | 
| 325 |       const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); | 
| 326 |  | 
| 327 |       if (__x < _Tp(0) || __y < _Tp(0)) | 
| 328 |         std::__throw_domain_error(__N("Argument less than zero "  | 
| 329 |                                       "in __ellint_rd." )); | 
| 330 |       else if (__x + __y < __lolim || __z < __lolim) | 
| 331 |         std::__throw_domain_error(__N("Argument too small "  | 
| 332 |                                       "in __ellint_rd." )); | 
| 333 |       else | 
| 334 |         { | 
| 335 |           const _Tp __c0 = _Tp(1) / _Tp(4); | 
| 336 |           const _Tp __c1 = _Tp(3) / _Tp(14); | 
| 337 |           const _Tp __c2 = _Tp(1) / _Tp(6); | 
| 338 |           const _Tp __c3 = _Tp(9) / _Tp(22); | 
| 339 |           const _Tp __c4 = _Tp(3) / _Tp(26); | 
| 340 |  | 
| 341 |           _Tp __xn = __x; | 
| 342 |           _Tp __yn = __y; | 
| 343 |           _Tp __zn = __z; | 
| 344 |           _Tp __sigma = _Tp(0); | 
| 345 |           _Tp __power4 = _Tp(1); | 
| 346 |  | 
| 347 |           _Tp __mu; | 
| 348 |           _Tp __xndev, __yndev, __zndev; | 
| 349 |  | 
| 350 |           const unsigned int __max_iter = 100; | 
| 351 |           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) | 
| 352 |             { | 
| 353 |               __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5); | 
| 354 |               __xndev = (__mu - __xn) / __mu; | 
| 355 |               __yndev = (__mu - __yn) / __mu; | 
| 356 |               __zndev = (__mu - __zn) / __mu; | 
| 357 |               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); | 
| 358 |               __epsilon = std::max(__epsilon, std::abs(__zndev)); | 
| 359 |               if (__epsilon < __errtol) | 
| 360 |                 break; | 
| 361 |               _Tp __xnroot = std::sqrt(__xn); | 
| 362 |               _Tp __ynroot = std::sqrt(__yn); | 
| 363 |               _Tp __znroot = std::sqrt(__zn); | 
| 364 |               _Tp __lambda = __xnroot * (__ynroot + __znroot) | 
| 365 |                            + __ynroot * __znroot; | 
| 366 |               __sigma += __power4 / (__znroot * (__zn + __lambda)); | 
| 367 |               __power4 *= __c0; | 
| 368 |               __xn = __c0 * (__xn + __lambda); | 
| 369 |               __yn = __c0 * (__yn + __lambda); | 
| 370 |               __zn = __c0 * (__zn + __lambda); | 
| 371 |             } | 
| 372 |  | 
| 373 | 	  // Note: __ea is an SPU badname. | 
| 374 |           _Tp __eaa = __xndev * __yndev; | 
| 375 |           _Tp __eb = __zndev * __zndev; | 
| 376 |           _Tp __ec = __eaa - __eb; | 
| 377 |           _Tp __ed = __eaa - _Tp(6) * __eb; | 
| 378 |           _Tp __ef = __ed + __ec + __ec; | 
| 379 |           _Tp __s1 = __ed * (-__c1 + __c3 * __ed | 
| 380 |                                    / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef | 
| 381 |                                    / _Tp(2)); | 
| 382 |           _Tp __s2 = __zndev | 
| 383 |                    * (__c2 * __ef | 
| 384 |                     + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa)); | 
| 385 |  | 
| 386 |           return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2) | 
| 387 |                                         / (__mu * std::sqrt(__mu)); | 
| 388 |         } | 
| 389 |     } | 
| 390 |  | 
| 391 |  | 
| 392 |     /** | 
| 393 |      *   @brief  Return the complete elliptic integral of the second kind | 
| 394 |      *           @f$ E(k) @f$ using the Carlson formulation. | 
| 395 |      *  | 
| 396 |      *   The complete elliptic integral of the second kind is defined as | 
| 397 |      *   @f[ | 
| 398 |      *     E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} | 
| 399 |      *   @f] | 
| 400 |      *  | 
| 401 |      *   @param  __k  The argument of the complete elliptic function. | 
| 402 |      *   @return  The complete elliptic function of the second kind. | 
| 403 |      */ | 
| 404 |     template<typename _Tp> | 
| 405 |     _Tp | 
| 406 |     __comp_ellint_2(_Tp __k) | 
| 407 |     { | 
| 408 |  | 
| 409 |       if (__isnan(__k)) | 
| 410 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 411 |       else if (std::abs(__k) == 1) | 
| 412 |         return _Tp(1); | 
| 413 |       else if (std::abs(__k) > _Tp(1)) | 
| 414 |         std::__throw_domain_error(__N("Bad argument in __comp_ellint_2." )); | 
| 415 |       else | 
| 416 |         { | 
| 417 |           const _Tp __kk = __k * __k; | 
| 418 |  | 
| 419 |           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) | 
| 420 |                - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3); | 
| 421 |         } | 
| 422 |     } | 
| 423 |  | 
| 424 |  | 
| 425 |     /** | 
| 426 |      *   @brief  Return the incomplete elliptic integral of the second kind | 
| 427 |      *           @f$ E(k,\phi) @f$ using the Carlson formulation. | 
| 428 |      *  | 
| 429 |      *   The incomplete elliptic integral of the second kind is defined as | 
| 430 |      *   @f[ | 
| 431 |      *     E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} | 
| 432 |      *   @f] | 
| 433 |      *  | 
| 434 |      *   @param  __k  The argument of the elliptic function. | 
| 435 |      *   @param  __phi  The integral limit argument of the elliptic function. | 
| 436 |      *   @return  The elliptic function of the second kind. | 
| 437 |      */ | 
| 438 |     template<typename _Tp> | 
| 439 |     _Tp | 
| 440 |     __ellint_2(_Tp __k, _Tp __phi) | 
| 441 |     { | 
| 442 |  | 
| 443 |       if (__isnan(__k) || __isnan(__phi)) | 
| 444 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 445 |       else if (std::abs(__k) > _Tp(1)) | 
| 446 |         std::__throw_domain_error(__N("Bad argument in __ellint_2." )); | 
| 447 |       else | 
| 448 |         { | 
| 449 |           //  Reduce phi to -pi/2 < phi < +pi/2. | 
| 450 |           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() | 
| 451 |                                    + _Tp(0.5L)); | 
| 452 |           const _Tp __phi_red = __phi | 
| 453 |                               - __n * __numeric_constants<_Tp>::__pi(); | 
| 454 |  | 
| 455 |           const _Tp __kk = __k * __k; | 
| 456 |           const _Tp __s = std::sin(__phi_red); | 
| 457 |           const _Tp __ss = __s * __s; | 
| 458 |           const _Tp __sss = __ss * __s; | 
| 459 |           const _Tp __c = std::cos(__phi_red); | 
| 460 |           const _Tp __cc = __c * __c; | 
| 461 |  | 
| 462 |           const _Tp __E = __s | 
| 463 |                         * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) | 
| 464 |                         - __kk * __sss | 
| 465 |                         * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1)) | 
| 466 |                         / _Tp(3); | 
| 467 |  | 
| 468 |           if (__n == 0) | 
| 469 |             return __E; | 
| 470 |           else | 
| 471 |             return __E + _Tp(2) * __n * __comp_ellint_2(__k); | 
| 472 |         } | 
| 473 |     } | 
| 474 |  | 
| 475 |  | 
| 476 |     /** | 
| 477 |      *   @brief  Return the Carlson elliptic function | 
| 478 |      *           @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$ | 
| 479 |      *           is the Carlson elliptic function of the first kind. | 
| 480 |      *  | 
| 481 |      *   The Carlson elliptic function is defined by: | 
| 482 |      *   @f[ | 
| 483 |      *       R_C(x,y) = \frac{1}{2} \int_0^\infty | 
| 484 |      *                 \frac{dt}{(t + x)^{1/2}(t + y)} | 
| 485 |      *   @f] | 
| 486 |      * | 
| 487 |      *   Based on Carlson's algorithms: | 
| 488 |      *   -  B. C. Carlson Numer. Math. 33, 1 (1979) | 
| 489 |      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977) | 
| 490 |      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269, | 
| 491 |      *      by Press, Teukolsky, Vetterling, Flannery (1992) | 
| 492 |      * | 
| 493 |      *   @param  __x  The first argument. | 
| 494 |      *   @param  __y  The second argument. | 
| 495 |      *   @return  The Carlson elliptic function. | 
| 496 |      */ | 
| 497 |     template<typename _Tp> | 
| 498 |     _Tp | 
| 499 |     __ellint_rc(_Tp __x, _Tp __y) | 
| 500 |     { | 
| 501 |       const _Tp __min = std::numeric_limits<_Tp>::min(); | 
| 502 |       const _Tp __max = std::numeric_limits<_Tp>::max(); | 
| 503 |       const _Tp __lolim = _Tp(5) * __min; | 
| 504 |       const _Tp __uplim = __max / _Tp(5); | 
| 505 |  | 
| 506 |       if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim) | 
| 507 |         std::__throw_domain_error(__N("Argument less than zero "  | 
| 508 |                                       "in __ellint_rc." )); | 
| 509 |       else | 
| 510 |         { | 
| 511 |           const _Tp __c0 = _Tp(1) / _Tp(4); | 
| 512 |           const _Tp __c1 = _Tp(1) / _Tp(7); | 
| 513 |           const _Tp __c2 = _Tp(9) / _Tp(22); | 
| 514 |           const _Tp __c3 = _Tp(3) / _Tp(10); | 
| 515 |           const _Tp __c4 = _Tp(3) / _Tp(8); | 
| 516 |  | 
| 517 |           _Tp __xn = __x; | 
| 518 |           _Tp __yn = __y; | 
| 519 |  | 
| 520 |           const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 521 |           const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); | 
| 522 |           _Tp __mu; | 
| 523 |           _Tp __sn; | 
| 524 |  | 
| 525 |           const unsigned int __max_iter = 100; | 
| 526 |           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) | 
| 527 |             { | 
| 528 |               __mu = (__xn + _Tp(2) * __yn) / _Tp(3); | 
| 529 |               __sn = (__yn + __mu) / __mu - _Tp(2); | 
| 530 |               if (std::abs(__sn) < __errtol) | 
| 531 |                 break; | 
| 532 |               const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn) | 
| 533 |                              + __yn; | 
| 534 |               __xn = __c0 * (__xn + __lambda); | 
| 535 |               __yn = __c0 * (__yn + __lambda); | 
| 536 |             } | 
| 537 |  | 
| 538 |           _Tp __s = __sn * __sn | 
| 539 |                   * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2))); | 
| 540 |  | 
| 541 |           return (_Tp(1) + __s) / std::sqrt(__mu); | 
| 542 |         } | 
| 543 |     } | 
| 544 |  | 
| 545 |  | 
| 546 |     /** | 
| 547 |      *   @brief  Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$ | 
| 548 |      *           of the third kind. | 
| 549 |      *  | 
| 550 |      *   The Carlson elliptic function of the third kind is defined by: | 
| 551 |      *   @f[ | 
| 552 |      *       R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty | 
| 553 |      *       \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)} | 
| 554 |      *   @f] | 
| 555 |      * | 
| 556 |      *   Based on Carlson's algorithms: | 
| 557 |      *   -  B. C. Carlson Numer. Math. 33, 1 (1979) | 
| 558 |      *   -  B. C. Carlson, Special Functions of Applied Mathematics (1977) | 
| 559 |      *   -  Numerical Recipes in C, 2nd ed, pp. 261-269, | 
| 560 |      *      by Press, Teukolsky, Vetterling, Flannery (1992) | 
| 561 |      * | 
| 562 |      *   @param  __x  The first of three symmetric arguments. | 
| 563 |      *   @param  __y  The second of three symmetric arguments. | 
| 564 |      *   @param  __z  The third of three symmetric arguments. | 
| 565 |      *   @param  __p  The fourth argument. | 
| 566 |      *   @return  The Carlson elliptic function of the fourth kind. | 
| 567 |      */ | 
| 568 |     template<typename _Tp> | 
| 569 |     _Tp | 
| 570 |     __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p) | 
| 571 |     { | 
| 572 |       const _Tp __min = std::numeric_limits<_Tp>::min(); | 
| 573 |       const _Tp __max = std::numeric_limits<_Tp>::max(); | 
| 574 |       const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); | 
| 575 |       const _Tp __uplim = _Tp(0.3L) | 
| 576 |                         * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); | 
| 577 |  | 
| 578 |       if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) | 
| 579 |         std::__throw_domain_error(__N("Argument less than zero "  | 
| 580 |                                       "in __ellint_rj." )); | 
| 581 |       else if (__x + __y < __lolim || __x + __z < __lolim | 
| 582 |             || __y + __z < __lolim || __p < __lolim) | 
| 583 |         std::__throw_domain_error(__N("Argument too small "  | 
| 584 |                                       "in __ellint_rj" )); | 
| 585 |       else | 
| 586 |         { | 
| 587 |           const _Tp __c0 = _Tp(1) / _Tp(4); | 
| 588 |           const _Tp __c1 = _Tp(3) / _Tp(14); | 
| 589 |           const _Tp __c2 = _Tp(1) / _Tp(3); | 
| 590 |           const _Tp __c3 = _Tp(3) / _Tp(22); | 
| 591 |           const _Tp __c4 = _Tp(3) / _Tp(26); | 
| 592 |  | 
| 593 |           _Tp __xn = __x; | 
| 594 |           _Tp __yn = __y; | 
| 595 |           _Tp __zn = __z; | 
| 596 |           _Tp __pn = __p; | 
| 597 |           _Tp __sigma = _Tp(0); | 
| 598 |           _Tp __power4 = _Tp(1); | 
| 599 |  | 
| 600 |           const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 601 |           const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); | 
| 602 |  | 
| 603 |           _Tp __lambda, __mu; | 
| 604 |           _Tp __xndev, __yndev, __zndev, __pndev; | 
| 605 |  | 
| 606 |           const unsigned int __max_iter = 100; | 
| 607 |           for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) | 
| 608 |             { | 
| 609 |               __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5); | 
| 610 |               __xndev = (__mu - __xn) / __mu; | 
| 611 |               __yndev = (__mu - __yn) / __mu; | 
| 612 |               __zndev = (__mu - __zn) / __mu; | 
| 613 |               __pndev = (__mu - __pn) / __mu; | 
| 614 |               _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); | 
| 615 |               __epsilon = std::max(__epsilon, std::abs(__zndev)); | 
| 616 |               __epsilon = std::max(__epsilon, std::abs(__pndev)); | 
| 617 |               if (__epsilon < __errtol) | 
| 618 |                 break; | 
| 619 |               const _Tp __xnroot = std::sqrt(__xn); | 
| 620 |               const _Tp __ynroot = std::sqrt(__yn); | 
| 621 |               const _Tp __znroot = std::sqrt(__zn); | 
| 622 |               const _Tp __lambda = __xnroot * (__ynroot + __znroot) | 
| 623 |                                  + __ynroot * __znroot; | 
| 624 |               const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot) | 
| 625 |                                 + __xnroot * __ynroot * __znroot; | 
| 626 |               const _Tp __alpha2 = __alpha1 * __alpha1; | 
| 627 |               const _Tp __beta = __pn * (__pn + __lambda) | 
| 628 |                                       * (__pn + __lambda); | 
| 629 |               __sigma += __power4 * __ellint_rc(__alpha2, __beta); | 
| 630 |               __power4 *= __c0; | 
| 631 |               __xn = __c0 * (__xn + __lambda); | 
| 632 |               __yn = __c0 * (__yn + __lambda); | 
| 633 |               __zn = __c0 * (__zn + __lambda); | 
| 634 |               __pn = __c0 * (__pn + __lambda); | 
| 635 |             } | 
| 636 |  | 
| 637 | 	  // Note: __ea is an SPU badname. | 
| 638 |           _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev; | 
| 639 |           _Tp __eb = __xndev * __yndev * __zndev; | 
| 640 |           _Tp __ec = __pndev * __pndev; | 
| 641 |           _Tp __e2 = __eaa - _Tp(3) * __ec; | 
| 642 |           _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec); | 
| 643 |           _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4) | 
| 644 |                             - _Tp(3) * __c4 * __e3 / _Tp(2)); | 
| 645 |           _Tp __s2 = __eb * (__c2 / _Tp(2) | 
| 646 |                    + __pndev * (-__c3 - __c3 + __pndev * __c4)); | 
| 647 |           _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3) | 
| 648 |                    - __c2 * __pndev * __ec; | 
| 649 |  | 
| 650 |           return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3) | 
| 651 |                                              / (__mu * std::sqrt(__mu)); | 
| 652 |         } | 
| 653 |     } | 
| 654 |  | 
| 655 |  | 
| 656 |     /** | 
| 657 |      *   @brief Return the complete elliptic integral of the third kind | 
| 658 |      *          @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the | 
| 659 |      *          Carlson formulation. | 
| 660 |      *  | 
| 661 |      *   The complete elliptic integral of the third kind is defined as | 
| 662 |      *   @f[ | 
| 663 |      *     \Pi(k,\nu) = \int_0^{\pi/2} | 
| 664 |      *                   \frac{d\theta} | 
| 665 |      *                 {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} | 
| 666 |      *   @f] | 
| 667 |      *  | 
| 668 |      *   @param  __k  The argument of the elliptic function. | 
| 669 |      *   @param  __nu  The second argument of the elliptic function. | 
| 670 |      *   @return  The complete elliptic function of the third kind. | 
| 671 |      */ | 
| 672 |     template<typename _Tp> | 
| 673 |     _Tp | 
| 674 |     __comp_ellint_3(_Tp __k, _Tp __nu) | 
| 675 |     { | 
| 676 |  | 
| 677 |       if (__isnan(__k) || __isnan(__nu)) | 
| 678 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 679 |       else if (__nu == _Tp(1)) | 
| 680 |         return std::numeric_limits<_Tp>::infinity(); | 
| 681 |       else if (std::abs(__k) > _Tp(1)) | 
| 682 |         std::__throw_domain_error(__N("Bad argument in __comp_ellint_3." )); | 
| 683 |       else | 
| 684 |         { | 
| 685 |           const _Tp __kk = __k * __k; | 
| 686 |  | 
| 687 |           return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) | 
| 688 |                + __nu | 
| 689 |                * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu) | 
| 690 |                / _Tp(3); | 
| 691 |         } | 
| 692 |     } | 
| 693 |  | 
| 694 |  | 
| 695 |     /** | 
| 696 |      *   @brief Return the incomplete elliptic integral of the third kind | 
| 697 |      *          @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation. | 
| 698 |      *  | 
| 699 |      *   The incomplete elliptic integral of the third kind is defined as | 
| 700 |      *   @f[ | 
| 701 |      *     \Pi(k,\nu,\phi) = \int_0^{\phi} | 
| 702 |      *                       \frac{d\theta} | 
| 703 |      *                            {(1 - \nu \sin^2\theta) | 
| 704 |      *                             \sqrt{1 - k^2 \sin^2\theta}} | 
| 705 |      *   @f] | 
| 706 |      *  | 
| 707 |      *   @param  __k  The argument of the elliptic function. | 
| 708 |      *   @param  __nu  The second argument of the elliptic function. | 
| 709 |      *   @param  __phi  The integral limit argument of the elliptic function. | 
| 710 |      *   @return  The elliptic function of the third kind. | 
| 711 |      */ | 
| 712 |     template<typename _Tp> | 
| 713 |     _Tp | 
| 714 |     __ellint_3(_Tp __k, _Tp __nu, _Tp __phi) | 
| 715 |     { | 
| 716 |  | 
| 717 |       if (__isnan(__k) || __isnan(__nu) || __isnan(__phi)) | 
| 718 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 719 |       else if (std::abs(__k) > _Tp(1)) | 
| 720 |         std::__throw_domain_error(__N("Bad argument in __ellint_3." )); | 
| 721 |       else | 
| 722 |         { | 
| 723 |           //  Reduce phi to -pi/2 < phi < +pi/2. | 
| 724 |           const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() | 
| 725 |                                    + _Tp(0.5L)); | 
| 726 |           const _Tp __phi_red = __phi | 
| 727 |                               - __n * __numeric_constants<_Tp>::__pi(); | 
| 728 |  | 
| 729 |           const _Tp __kk = __k * __k; | 
| 730 |           const _Tp __s = std::sin(__phi_red); | 
| 731 |           const _Tp __ss = __s * __s; | 
| 732 |           const _Tp __sss = __ss * __s; | 
| 733 |           const _Tp __c = std::cos(__phi_red); | 
| 734 |           const _Tp __cc = __c * __c; | 
| 735 |  | 
| 736 |           const _Tp __Pi = __s | 
| 737 |                          * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) | 
| 738 |                          + __nu * __sss | 
| 739 |                          * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1), | 
| 740 |                                        _Tp(1) - __nu * __ss) / _Tp(3); | 
| 741 |  | 
| 742 |           if (__n == 0) | 
| 743 |             return __Pi; | 
| 744 |           else | 
| 745 |             return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu); | 
| 746 |         } | 
| 747 |     } | 
| 748 |   } // namespace __detail | 
| 749 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 750 | } // namespace tr1 | 
| 751 | #endif | 
| 752 |  | 
| 753 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 754 | } | 
| 755 |  | 
| 756 | #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC | 
| 757 |  | 
| 758 |  |