| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/exp_integral.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | //  Written by Edward Smith-Rowland based on: | 
| 35 | // | 
| 36 | //   (1) Handbook of Mathematical Functions, | 
| 37 | //       Ed. by Milton Abramowitz and Irene A. Stegun, | 
| 38 | //       Dover Publications, New-York, Section 5, pp. 228-251. | 
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
| 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
| 42 | //       2nd ed, pp. 222-225. | 
| 43 | // | 
| 44 |  | 
| 45 | #ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC | 
| 46 | #define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 | 
| 47 |  | 
| 48 | #include "special_function_util.h" | 
| 49 |  | 
| 50 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 51 | { | 
| 52 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 53 |  | 
| 54 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 56 | namespace tr1 | 
| 57 | { | 
| 58 | #else | 
| 59 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 60 | #endif | 
| 61 |   // [5.2] Special functions | 
| 62 |  | 
| 63 |   // Implementation-space details. | 
| 64 |   namespace __detail | 
| 65 |   { | 
| 66 |     template<typename _Tp> _Tp __expint_E1(_Tp); | 
| 67 |  | 
| 68 |     /** | 
| 69 |      *   @brief Return the exponential integral @f$ E_1(x) @f$ | 
| 70 |      *          by series summation.  This should be good | 
| 71 |      *          for @f$ x < 1 @f$. | 
| 72 |      *  | 
| 73 |      *   The exponential integral is given by | 
| 74 |      *          \f[ | 
| 75 |      *            E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt | 
| 76 |      *          \f] | 
| 77 |      *  | 
| 78 |      *   @param  __x  The argument of the exponential integral function. | 
| 79 |      *   @return  The exponential integral. | 
| 80 |      */ | 
| 81 |     template<typename _Tp> | 
| 82 |     _Tp | 
| 83 |     __expint_E1_series(_Tp __x) | 
| 84 |     { | 
| 85 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 86 |       _Tp __term = _Tp(1); | 
| 87 |       _Tp __esum = _Tp(0); | 
| 88 |       _Tp __osum = _Tp(0); | 
| 89 |       const unsigned int __max_iter = 1000; | 
| 90 |       for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
| 91 |         { | 
| 92 |           __term *= - __x / __i; | 
| 93 |           if (std::abs(__term) < __eps) | 
| 94 |             break; | 
| 95 |           if (__term >= _Tp(0)) | 
| 96 |             __esum += __term / __i; | 
| 97 |           else | 
| 98 |             __osum += __term / __i; | 
| 99 |         } | 
| 100 |  | 
| 101 |       return - __esum - __osum | 
| 102 |              - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); | 
| 103 |     } | 
| 104 |  | 
| 105 |  | 
| 106 |     /** | 
| 107 |      *   @brief Return the exponential integral @f$ E_1(x) @f$ | 
| 108 |      *          by asymptotic expansion. | 
| 109 |      *  | 
| 110 |      *   The exponential integral is given by | 
| 111 |      *          \f[ | 
| 112 |      *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt | 
| 113 |      *          \f] | 
| 114 |      *  | 
| 115 |      *   @param  __x  The argument of the exponential integral function. | 
| 116 |      *   @return  The exponential integral. | 
| 117 |      */ | 
| 118 |     template<typename _Tp> | 
| 119 |     _Tp | 
| 120 |     __expint_E1_asymp(_Tp __x) | 
| 121 |     { | 
| 122 |       _Tp __term = _Tp(1); | 
| 123 |       _Tp __esum = _Tp(1); | 
| 124 |       _Tp __osum = _Tp(0); | 
| 125 |       const unsigned int __max_iter = 1000; | 
| 126 |       for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
| 127 |         { | 
| 128 |           _Tp __prev = __term; | 
| 129 |           __term *= - __i / __x; | 
| 130 |           if (std::abs(__term) > std::abs(__prev)) | 
| 131 |             break; | 
| 132 |           if (__term >= _Tp(0)) | 
| 133 |             __esum += __term; | 
| 134 |           else | 
| 135 |             __osum += __term; | 
| 136 |         } | 
| 137 |  | 
| 138 |       return std::exp(- __x) * (__esum + __osum) / __x; | 
| 139 |     } | 
| 140 |  | 
| 141 |  | 
| 142 |     /** | 
| 143 |      *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
| 144 |      *          by series summation. | 
| 145 |      *  | 
| 146 |      *   The exponential integral is given by | 
| 147 |      *          \f[ | 
| 148 |      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
| 149 |      *          \f] | 
| 150 |      *  | 
| 151 |      *   @param  __n  The order of the exponential integral function. | 
| 152 |      *   @param  __x  The argument of the exponential integral function. | 
| 153 |      *   @return  The exponential integral. | 
| 154 |      */ | 
| 155 |     template<typename _Tp> | 
| 156 |     _Tp | 
| 157 |     __expint_En_series(unsigned int __n, _Tp __x) | 
| 158 |     { | 
| 159 |       const unsigned int __max_iter = 1000; | 
| 160 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 161 |       const int __nm1 = __n - 1; | 
| 162 |       _Tp __ans = (__nm1 != 0 | 
| 163 |                 ? _Tp(1) / __nm1 : -std::log(__x) | 
| 164 |                                    - __numeric_constants<_Tp>::__gamma_e()); | 
| 165 |       _Tp __fact = _Tp(1); | 
| 166 |       for (int __i = 1; __i <= __max_iter; ++__i) | 
| 167 |         { | 
| 168 |           __fact *= -__x / _Tp(__i); | 
| 169 |           _Tp __del; | 
| 170 |           if ( __i != __nm1 ) | 
| 171 |             __del = -__fact / _Tp(__i - __nm1); | 
| 172 |           else | 
| 173 |             { | 
| 174 |               _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); | 
| 175 |               for (int __ii = 1; __ii <= __nm1; ++__ii) | 
| 176 |                 __psi += _Tp(1) / _Tp(__ii); | 
| 177 |               __del = __fact * (__psi - std::log(__x));  | 
| 178 |             } | 
| 179 |           __ans += __del; | 
| 180 |           if (std::abs(__del) < __eps * std::abs(__ans)) | 
| 181 |             return __ans; | 
| 182 |         } | 
| 183 |       std::__throw_runtime_error(__N("Series summation failed "  | 
| 184 |                                      "in __expint_En_series." )); | 
| 185 |     } | 
| 186 |  | 
| 187 |  | 
| 188 |     /** | 
| 189 |      *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
| 190 |      *          by continued fractions. | 
| 191 |      *  | 
| 192 |      *   The exponential integral is given by | 
| 193 |      *          \f[ | 
| 194 |      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
| 195 |      *          \f] | 
| 196 |      *  | 
| 197 |      *   @param  __n  The order of the exponential integral function. | 
| 198 |      *   @param  __x  The argument of the exponential integral function. | 
| 199 |      *   @return  The exponential integral. | 
| 200 |      */ | 
| 201 |     template<typename _Tp> | 
| 202 |     _Tp | 
| 203 |     __expint_En_cont_frac(unsigned int __n, _Tp __x) | 
| 204 |     { | 
| 205 |       const unsigned int __max_iter = 1000; | 
| 206 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 207 |       const _Tp __fp_min = std::numeric_limits<_Tp>::min(); | 
| 208 |       const int __nm1 = __n - 1; | 
| 209 |       _Tp __b = __x + _Tp(__n); | 
| 210 |       _Tp __c = _Tp(1) / __fp_min; | 
| 211 |       _Tp __d = _Tp(1) / __b; | 
| 212 |       _Tp __h = __d; | 
| 213 |       for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) | 
| 214 |         { | 
| 215 |           _Tp __a = -_Tp(__i * (__nm1 + __i)); | 
| 216 |           __b += _Tp(2); | 
| 217 |           __d = _Tp(1) / (__a * __d + __b); | 
| 218 |           __c = __b + __a / __c; | 
| 219 |           const _Tp __del = __c * __d; | 
| 220 |           __h *= __del; | 
| 221 |           if (std::abs(__del - _Tp(1)) < __eps) | 
| 222 |             { | 
| 223 |               const _Tp __ans = __h * std::exp(-__x); | 
| 224 |               return __ans; | 
| 225 |             } | 
| 226 |         } | 
| 227 |       std::__throw_runtime_error(__N("Continued fraction failed "  | 
| 228 |                                      "in __expint_En_cont_frac." )); | 
| 229 |     } | 
| 230 |  | 
| 231 |  | 
| 232 |     /** | 
| 233 |      *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
| 234 |      *          by recursion.  Use upward recursion for @f$ x < n @f$ | 
| 235 |      *          and downward recursion (Miller's algorithm) otherwise. | 
| 236 |      *  | 
| 237 |      *   The exponential integral is given by | 
| 238 |      *          \f[ | 
| 239 |      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
| 240 |      *          \f] | 
| 241 |      *  | 
| 242 |      *   @param  __n  The order of the exponential integral function. | 
| 243 |      *   @param  __x  The argument of the exponential integral function. | 
| 244 |      *   @return  The exponential integral. | 
| 245 |      */ | 
| 246 |     template<typename _Tp> | 
| 247 |     _Tp | 
| 248 |     __expint_En_recursion(unsigned int __n, _Tp __x) | 
| 249 |     { | 
| 250 |       _Tp __En; | 
| 251 |       _Tp __E1 = __expint_E1(__x); | 
| 252 |       if (__x < _Tp(__n)) | 
| 253 |         { | 
| 254 |           //  Forward recursion is stable only for n < x. | 
| 255 |           __En = __E1; | 
| 256 |           for (unsigned int __j = 2; __j < __n; ++__j) | 
| 257 |             __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); | 
| 258 |         } | 
| 259 |       else | 
| 260 |         { | 
| 261 |           //  Backward recursion is stable only for n >= x. | 
| 262 |           __En = _Tp(1); | 
| 263 |           const int __N = __n + 20;  //  TODO: Check this starting number. | 
| 264 |           _Tp __save = _Tp(0); | 
| 265 |           for (int __j = __N; __j > 0; --__j) | 
| 266 |             { | 
| 267 |               __En = (std::exp(-__x) - __j * __En) / __x; | 
| 268 |               if (__j == __n) | 
| 269 |                 __save = __En; | 
| 270 |             } | 
| 271 |             _Tp __norm = __En / __E1; | 
| 272 |             __En /= __norm; | 
| 273 |         } | 
| 274 |  | 
| 275 |       return __En; | 
| 276 |     } | 
| 277 |  | 
| 278 |     /** | 
| 279 |      *   @brief Return the exponential integral @f$ Ei(x) @f$ | 
| 280 |      *          by series summation. | 
| 281 |      *  | 
| 282 |      *   The exponential integral is given by | 
| 283 |      *          \f[ | 
| 284 |      *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
| 285 |      *          \f] | 
| 286 |      *  | 
| 287 |      *   @param  __x  The argument of the exponential integral function. | 
| 288 |      *   @return  The exponential integral. | 
| 289 |      */ | 
| 290 |     template<typename _Tp> | 
| 291 |     _Tp | 
| 292 |     __expint_Ei_series(_Tp __x) | 
| 293 |     { | 
| 294 |       _Tp __term = _Tp(1); | 
| 295 |       _Tp __sum = _Tp(0); | 
| 296 |       const unsigned int __max_iter = 1000; | 
| 297 |       for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
| 298 |         { | 
| 299 |           __term *= __x / __i; | 
| 300 |           __sum += __term / __i; | 
| 301 |           if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) | 
| 302 |             break; | 
| 303 |         } | 
| 304 |  | 
| 305 |       return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); | 
| 306 |     } | 
| 307 |  | 
| 308 |  | 
| 309 |     /** | 
| 310 |      *   @brief Return the exponential integral @f$ Ei(x) @f$ | 
| 311 |      *          by asymptotic expansion. | 
| 312 |      *  | 
| 313 |      *   The exponential integral is given by | 
| 314 |      *          \f[ | 
| 315 |      *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
| 316 |      *          \f] | 
| 317 |      *  | 
| 318 |      *   @param  __x  The argument of the exponential integral function. | 
| 319 |      *   @return  The exponential integral. | 
| 320 |      */ | 
| 321 |     template<typename _Tp> | 
| 322 |     _Tp | 
| 323 |     __expint_Ei_asymp(_Tp __x) | 
| 324 |     { | 
| 325 |       _Tp __term = _Tp(1); | 
| 326 |       _Tp __sum = _Tp(1); | 
| 327 |       const unsigned int __max_iter = 1000; | 
| 328 |       for (unsigned int __i = 1; __i < __max_iter; ++__i) | 
| 329 |         { | 
| 330 |           _Tp __prev = __term; | 
| 331 |           __term *= __i / __x; | 
| 332 |           if (__term < std::numeric_limits<_Tp>::epsilon()) | 
| 333 |             break; | 
| 334 |           if (__term >= __prev) | 
| 335 |             break; | 
| 336 |           __sum += __term; | 
| 337 |         } | 
| 338 |  | 
| 339 |       return std::exp(__x) * __sum / __x; | 
| 340 |     } | 
| 341 |  | 
| 342 |  | 
| 343 |     /** | 
| 344 |      *   @brief Return the exponential integral @f$ Ei(x) @f$. | 
| 345 |      *  | 
| 346 |      *   The exponential integral is given by | 
| 347 |      *          \f[ | 
| 348 |      *            Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
| 349 |      *          \f] | 
| 350 |      *  | 
| 351 |      *   @param  __x  The argument of the exponential integral function. | 
| 352 |      *   @return  The exponential integral. | 
| 353 |      */ | 
| 354 |     template<typename _Tp> | 
| 355 |     _Tp | 
| 356 |     __expint_Ei(_Tp __x) | 
| 357 |     { | 
| 358 |       if (__x < _Tp(0)) | 
| 359 |         return -__expint_E1(-__x); | 
| 360 |       else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) | 
| 361 |         return __expint_Ei_series(__x); | 
| 362 |       else | 
| 363 |         return __expint_Ei_asymp(__x); | 
| 364 |     } | 
| 365 |  | 
| 366 |  | 
| 367 |     /** | 
| 368 |      *   @brief Return the exponential integral @f$ E_1(x) @f$. | 
| 369 |      *  | 
| 370 |      *   The exponential integral is given by | 
| 371 |      *          \f[ | 
| 372 |      *            E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt | 
| 373 |      *          \f] | 
| 374 |      *  | 
| 375 |      *   @param  __x  The argument of the exponential integral function. | 
| 376 |      *   @return  The exponential integral. | 
| 377 |      */ | 
| 378 |     template<typename _Tp> | 
| 379 |     _Tp | 
| 380 |     __expint_E1(_Tp __x) | 
| 381 |     { | 
| 382 |       if (__x < _Tp(0)) | 
| 383 |         return -__expint_Ei(-__x); | 
| 384 |       else if (__x < _Tp(1)) | 
| 385 |         return __expint_E1_series(__x); | 
| 386 |       else if (__x < _Tp(100))  //  TODO: Find a good asymptotic switch point. | 
| 387 |         return __expint_En_cont_frac(1, __x); | 
| 388 |       else | 
| 389 |         return __expint_E1_asymp(__x); | 
| 390 |     } | 
| 391 |  | 
| 392 |  | 
| 393 |     /** | 
| 394 |      *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
| 395 |      *          for large argument. | 
| 396 |      *  | 
| 397 |      *   The exponential integral is given by | 
| 398 |      *          \f[ | 
| 399 |      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
| 400 |      *          \f] | 
| 401 |      *  | 
| 402 |      *   This is something of an extension. | 
| 403 |      *  | 
| 404 |      *   @param  __n  The order of the exponential integral function. | 
| 405 |      *   @param  __x  The argument of the exponential integral function. | 
| 406 |      *   @return  The exponential integral. | 
| 407 |      */ | 
| 408 |     template<typename _Tp> | 
| 409 |     _Tp | 
| 410 |     __expint_asymp(unsigned int __n, _Tp __x) | 
| 411 |     { | 
| 412 |       _Tp __term = _Tp(1); | 
| 413 |       _Tp __sum = _Tp(1); | 
| 414 |       for (unsigned int __i = 1; __i <= __n; ++__i) | 
| 415 |         { | 
| 416 |           _Tp __prev = __term; | 
| 417 |           __term *= -(__n - __i + 1) / __x; | 
| 418 |           if (std::abs(__term) > std::abs(__prev)) | 
| 419 |             break; | 
| 420 |           __sum += __term; | 
| 421 |         } | 
| 422 |  | 
| 423 |       return std::exp(-__x) * __sum / __x; | 
| 424 |     } | 
| 425 |  | 
| 426 |  | 
| 427 |     /** | 
| 428 |      *   @brief Return the exponential integral @f$ E_n(x) @f$ | 
| 429 |      *          for large order. | 
| 430 |      *  | 
| 431 |      *   The exponential integral is given by | 
| 432 |      *          \f[ | 
| 433 |      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
| 434 |      *          \f] | 
| 435 |      *         | 
| 436 |      *   This is something of an extension. | 
| 437 |      *  | 
| 438 |      *   @param  __n  The order of the exponential integral function. | 
| 439 |      *   @param  __x  The argument of the exponential integral function. | 
| 440 |      *   @return  The exponential integral. | 
| 441 |      */ | 
| 442 |     template<typename _Tp> | 
| 443 |     _Tp | 
| 444 |     __expint_large_n(unsigned int __n, _Tp __x) | 
| 445 |     { | 
| 446 |       const _Tp __xpn = __x + __n; | 
| 447 |       const _Tp __xpn2 = __xpn * __xpn; | 
| 448 |       _Tp __term = _Tp(1); | 
| 449 |       _Tp __sum = _Tp(1); | 
| 450 |       for (unsigned int __i = 1; __i <= __n; ++__i) | 
| 451 |         { | 
| 452 |           _Tp __prev = __term; | 
| 453 |           __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; | 
| 454 |           if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) | 
| 455 |             break; | 
| 456 |           __sum += __term; | 
| 457 |         } | 
| 458 |  | 
| 459 |       return std::exp(-__x) * __sum / __xpn; | 
| 460 |     } | 
| 461 |  | 
| 462 |  | 
| 463 |     /** | 
| 464 |      *   @brief Return the exponential integral @f$ E_n(x) @f$. | 
| 465 |      *  | 
| 466 |      *   The exponential integral is given by | 
| 467 |      *          \f[ | 
| 468 |      *            E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt | 
| 469 |      *          \f] | 
| 470 |      *   This is something of an extension. | 
| 471 |      *  | 
| 472 |      *   @param  __n  The order of the exponential integral function. | 
| 473 |      *   @param  __x  The argument of the exponential integral function. | 
| 474 |      *   @return  The exponential integral. | 
| 475 |      */ | 
| 476 |     template<typename _Tp> | 
| 477 |     _Tp | 
| 478 |     __expint(unsigned int __n, _Tp __x) | 
| 479 |     { | 
| 480 |       //  Return NaN on NaN input. | 
| 481 |       if (__isnan(__x)) | 
| 482 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 483 |       else if (__n <= 1 && __x == _Tp(0)) | 
| 484 |         return std::numeric_limits<_Tp>::infinity(); | 
| 485 |       else | 
| 486 |         { | 
| 487 |           _Tp __E0 = std::exp(__x) / __x; | 
| 488 |           if (__n == 0) | 
| 489 |             return __E0; | 
| 490 |  | 
| 491 |           _Tp __E1 = __expint_E1(__x); | 
| 492 |           if (__n == 1) | 
| 493 |             return __E1; | 
| 494 |  | 
| 495 |           if (__x == _Tp(0)) | 
| 496 |             return _Tp(1) / static_cast<_Tp>(__n - 1); | 
| 497 |  | 
| 498 |           _Tp __En = __expint_En_recursion(__n, __x); | 
| 499 |  | 
| 500 |           return __En; | 
| 501 |         } | 
| 502 |     } | 
| 503 |  | 
| 504 |  | 
| 505 |     /** | 
| 506 |      *   @brief Return the exponential integral @f$ Ei(x) @f$. | 
| 507 |      *  | 
| 508 |      *   The exponential integral is given by | 
| 509 |      *   \f[ | 
| 510 |      *     Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt | 
| 511 |      *   \f] | 
| 512 |      *  | 
| 513 |      *   @param  __x  The argument of the exponential integral function. | 
| 514 |      *   @return  The exponential integral. | 
| 515 |      */ | 
| 516 |     template<typename _Tp> | 
| 517 |     inline _Tp | 
| 518 |     __expint(_Tp __x) | 
| 519 |     { | 
| 520 |       if (__isnan(__x)) | 
| 521 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 522 |       else | 
| 523 |         return __expint_Ei(__x); | 
| 524 |     } | 
| 525 |   } // namespace __detail | 
| 526 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 527 | } // namespace tr1 | 
| 528 | #endif | 
| 529 |  | 
| 530 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 531 | } | 
| 532 |  | 
| 533 | #endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC | 
| 534 |  |