| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/gamma.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, | 
| 38 | //       Section 6, pp. 253-266 | 
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
| 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
| 42 | //       2nd ed, pp. 213-216 | 
| 43 | //   (4) Gamma, Exploring Euler's Constant, Julian Havil, | 
| 44 | //       Princeton, 2003. | 
| 45 |  | 
| 46 | #ifndef _GLIBCXX_TR1_GAMMA_TCC | 
| 47 | #define _GLIBCXX_TR1_GAMMA_TCC 1 | 
| 48 |  | 
| 49 | #include <tr1/special_function_util.h> | 
| 50 |  | 
| 51 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 52 | { | 
| 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 54 |  | 
| 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 56 | # define _GLIBCXX_MATH_NS ::std | 
| 57 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 58 | namespace tr1 | 
| 59 | { | 
| 60 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 61 | #else | 
| 62 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 63 | #endif | 
| 64 |   // Implementation-space details. | 
| 65 |   namespace __detail | 
| 66 |   { | 
| 67 |     /** | 
| 68 |      *   @brief This returns Bernoulli numbers from a table or by summation | 
| 69 |      *          for larger values. | 
| 70 |      * | 
| 71 |      *   Recursion is unstable. | 
| 72 |      * | 
| 73 |      *   @param __n the order n of the Bernoulli number. | 
| 74 |      *   @return  The Bernoulli number of order n. | 
| 75 |      */ | 
| 76 |     template <typename _Tp> | 
| 77 |     _Tp | 
| 78 |     __bernoulli_series(unsigned int __n) | 
| 79 |     { | 
| 80 |  | 
| 81 |       static const _Tp __num[28] = { | 
| 82 |         _Tp(1UL),                        -_Tp(1UL) / _Tp(2UL), | 
| 83 |         _Tp(1UL) / _Tp(6UL),             _Tp(0UL), | 
| 84 |         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL), | 
| 85 |         _Tp(1UL) / _Tp(42UL),            _Tp(0UL), | 
| 86 |         -_Tp(1UL) / _Tp(30UL),           _Tp(0UL), | 
| 87 |         _Tp(5UL) / _Tp(66UL),            _Tp(0UL), | 
| 88 |         -_Tp(691UL) / _Tp(2730UL),       _Tp(0UL), | 
| 89 |         _Tp(7UL) / _Tp(6UL),             _Tp(0UL), | 
| 90 |         -_Tp(3617UL) / _Tp(510UL),       _Tp(0UL), | 
| 91 |         _Tp(43867UL) / _Tp(798UL),       _Tp(0UL), | 
| 92 |         -_Tp(174611) / _Tp(330UL),       _Tp(0UL), | 
| 93 |         _Tp(854513UL) / _Tp(138UL),      _Tp(0UL), | 
| 94 |         -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL), | 
| 95 |         _Tp(8553103UL) / _Tp(6UL),       _Tp(0UL) | 
| 96 |       }; | 
| 97 |  | 
| 98 |       if (__n == 0) | 
| 99 |         return _Tp(1); | 
| 100 |  | 
| 101 |       if (__n == 1) | 
| 102 |         return -_Tp(1) / _Tp(2); | 
| 103 |  | 
| 104 |       //  Take care of the rest of the odd ones. | 
| 105 |       if (__n % 2 == 1) | 
| 106 |         return _Tp(0); | 
| 107 |  | 
| 108 |       //  Take care of some small evens that are painful for the series. | 
| 109 |       if (__n < 28) | 
| 110 |         return __num[__n]; | 
| 111 |  | 
| 112 |  | 
| 113 |       _Tp __fact = _Tp(1); | 
| 114 |       if ((__n / 2) % 2 == 0) | 
| 115 |         __fact *= _Tp(-1); | 
| 116 |       for (unsigned int __k = 1; __k <= __n; ++__k) | 
| 117 |         __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi()); | 
| 118 |       __fact *= _Tp(2); | 
| 119 |  | 
| 120 |       _Tp __sum = _Tp(0); | 
| 121 |       for (unsigned int __i = 1; __i < 1000; ++__i) | 
| 122 |         { | 
| 123 |           _Tp __term = std::pow(_Tp(__i), -_Tp(__n)); | 
| 124 |           if (__term < std::numeric_limits<_Tp>::epsilon()) | 
| 125 |             break; | 
| 126 |           __sum += __term; | 
| 127 |         } | 
| 128 |  | 
| 129 |       return __fact * __sum; | 
| 130 |     } | 
| 131 |  | 
| 132 |  | 
| 133 |     /** | 
| 134 |      *   @brief This returns Bernoulli number \f$B_n\f$. | 
| 135 |      * | 
| 136 |      *   @param __n the order n of the Bernoulli number. | 
| 137 |      *   @return  The Bernoulli number of order n. | 
| 138 |      */ | 
| 139 |     template<typename _Tp> | 
| 140 |     inline _Tp | 
| 141 |     __bernoulli(int __n) | 
| 142 |     { return __bernoulli_series<_Tp>(__n); } | 
| 143 |  | 
| 144 |  | 
| 145 |     /** | 
| 146 |      *   @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion | 
| 147 |      *          with Bernoulli number coefficients.  This is like | 
| 148 |      *          Sterling's approximation. | 
| 149 |      * | 
| 150 |      *   @param __x The argument of the log of the gamma function. | 
| 151 |      *   @return  The logarithm of the gamma function. | 
| 152 |      */ | 
| 153 |     template<typename _Tp> | 
| 154 |     _Tp | 
| 155 |     __log_gamma_bernoulli(_Tp __x) | 
| 156 |     { | 
| 157 |       _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x | 
| 158 |                + _Tp(0.5L) * std::log(_Tp(2) | 
| 159 |                * __numeric_constants<_Tp>::__pi()); | 
| 160 |  | 
| 161 |       const _Tp __xx = __x * __x; | 
| 162 |       _Tp __help = _Tp(1) / __x; | 
| 163 |       for ( unsigned int __i = 1; __i < 20; ++__i ) | 
| 164 |         { | 
| 165 |           const _Tp __2i = _Tp(2 * __i); | 
| 166 |           __help /= __2i * (__2i - _Tp(1)) * __xx; | 
| 167 |           __lg += __bernoulli<_Tp>(2 * __i) * __help; | 
| 168 |         } | 
| 169 |  | 
| 170 |       return __lg; | 
| 171 |     } | 
| 172 |  | 
| 173 |  | 
| 174 |     /** | 
| 175 |      *   @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method. | 
| 176 |      *          This method dominates all others on the positive axis I think. | 
| 177 |      * | 
| 178 |      *   @param __x The argument of the log of the gamma function. | 
| 179 |      *   @return  The logarithm of the gamma function. | 
| 180 |      */ | 
| 181 |     template<typename _Tp> | 
| 182 |     _Tp | 
| 183 |     __log_gamma_lanczos(_Tp __x) | 
| 184 |     { | 
| 185 |       const _Tp __xm1 = __x - _Tp(1); | 
| 186 |  | 
| 187 |       static const _Tp __lanczos_cheb_7[9] = { | 
| 188 |        _Tp( 0.99999999999980993227684700473478L), | 
| 189 |        _Tp( 676.520368121885098567009190444019L), | 
| 190 |        _Tp(-1259.13921672240287047156078755283L), | 
| 191 |        _Tp( 771.3234287776530788486528258894L), | 
| 192 |        _Tp(-176.61502916214059906584551354L), | 
| 193 |        _Tp( 12.507343278686904814458936853L), | 
| 194 |        _Tp(-0.13857109526572011689554707L), | 
| 195 |        _Tp( 9.984369578019570859563e-6L), | 
| 196 |        _Tp( 1.50563273514931155834e-7L) | 
| 197 |       }; | 
| 198 |  | 
| 199 |       static const _Tp __LOGROOT2PI | 
| 200 |           = _Tp(0.9189385332046727417803297364056176L); | 
| 201 |  | 
| 202 |       _Tp __sum = __lanczos_cheb_7[0]; | 
| 203 |       for(unsigned int __k = 1; __k < 9; ++__k) | 
| 204 |         __sum += __lanczos_cheb_7[__k] / (__xm1 + __k); | 
| 205 |  | 
| 206 |       const _Tp __term1 = (__xm1 + _Tp(0.5L)) | 
| 207 |                         * std::log((__xm1 + _Tp(7.5L)) | 
| 208 |                        / __numeric_constants<_Tp>::__euler()); | 
| 209 |       const _Tp __term2 = __LOGROOT2PI + std::log(__sum); | 
| 210 |       const _Tp __result = __term1 + (__term2 - _Tp(7)); | 
| 211 |  | 
| 212 |       return __result; | 
| 213 |     } | 
| 214 |  | 
| 215 |  | 
| 216 |     /** | 
| 217 |      *   @brief Return \f$ log(|\Gamma(x)|) \f$. | 
| 218 |      *          This will return values even for \f$ x < 0 \f$. | 
| 219 |      *          To recover the sign of \f$ \Gamma(x) \f$ for | 
| 220 |      *          any argument use @a __log_gamma_sign. | 
| 221 |      * | 
| 222 |      *   @param __x The argument of the log of the gamma function. | 
| 223 |      *   @return  The logarithm of the gamma function. | 
| 224 |      */ | 
| 225 |     template<typename _Tp> | 
| 226 |     _Tp | 
| 227 |     __log_gamma(_Tp __x) | 
| 228 |     { | 
| 229 |       if (__x > _Tp(0.5L)) | 
| 230 |         return __log_gamma_lanczos(__x); | 
| 231 |       else | 
| 232 |         { | 
| 233 |           const _Tp __sin_fact | 
| 234 |                  = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x)); | 
| 235 |           if (__sin_fact == _Tp(0)) | 
| 236 |             std::__throw_domain_error(__N("Argument is nonpositive integer "  | 
| 237 |                                           "in __log_gamma" )); | 
| 238 |           return __numeric_constants<_Tp>::__lnpi() | 
| 239 |                      - std::log(__sin_fact) | 
| 240 |                      - __log_gamma_lanczos(_Tp(1) - __x); | 
| 241 |         } | 
| 242 |     } | 
| 243 |  | 
| 244 |  | 
| 245 |     /** | 
| 246 |      *   @brief Return the sign of \f$ \Gamma(x) \f$. | 
| 247 |      *          At nonpositive integers zero is returned. | 
| 248 |      * | 
| 249 |      *   @param __x The argument of the gamma function. | 
| 250 |      *   @return  The sign of the gamma function. | 
| 251 |      */ | 
| 252 |     template<typename _Tp> | 
| 253 |     _Tp | 
| 254 |     __log_gamma_sign(_Tp __x) | 
| 255 |     { | 
| 256 |       if (__x > _Tp(0)) | 
| 257 |         return _Tp(1); | 
| 258 |       else | 
| 259 |         { | 
| 260 |           const _Tp __sin_fact | 
| 261 |                   = std::sin(__numeric_constants<_Tp>::__pi() * __x); | 
| 262 |           if (__sin_fact > _Tp(0)) | 
| 263 |             return (1); | 
| 264 |           else if (__sin_fact < _Tp(0)) | 
| 265 |             return -_Tp(1); | 
| 266 |           else | 
| 267 |             return _Tp(0); | 
| 268 |         } | 
| 269 |     } | 
| 270 |  | 
| 271 |  | 
| 272 |     /** | 
| 273 |      *   @brief Return the logarithm of the binomial coefficient. | 
| 274 |      *   The binomial coefficient is given by: | 
| 275 |      *   @f[ | 
| 276 |      *   \left(  \right) = \frac{n!}{(n-k)! k!} | 
| 277 |      *   @f] | 
| 278 |      * | 
| 279 |      *   @param __n The first argument of the binomial coefficient. | 
| 280 |      *   @param __k The second argument of the binomial coefficient. | 
| 281 |      *   @return  The binomial coefficient. | 
| 282 |      */ | 
| 283 |     template<typename _Tp> | 
| 284 |     _Tp | 
| 285 |     __log_bincoef(unsigned int __n, unsigned int __k) | 
| 286 |     { | 
| 287 |       //  Max e exponent before overflow. | 
| 288 |       static const _Tp __max_bincoeff | 
| 289 |                       = std::numeric_limits<_Tp>::max_exponent10 | 
| 290 |                       * std::log(_Tp(10)) - _Tp(1); | 
| 291 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 292 |       _Tp __coeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n)) | 
| 293 |                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k)) | 
| 294 |                   - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k)); | 
| 295 | #else | 
| 296 |       _Tp __coeff =  __log_gamma(_Tp(1 + __n)) | 
| 297 |                   - __log_gamma(_Tp(1 + __k)) | 
| 298 |                   - __log_gamma(_Tp(1 + __n - __k)); | 
| 299 | #endif | 
| 300 |     } | 
| 301 |  | 
| 302 |  | 
| 303 |     /** | 
| 304 |      *   @brief Return the binomial coefficient. | 
| 305 |      *   The binomial coefficient is given by: | 
| 306 |      *   @f[ | 
| 307 |      *   \left(  \right) = \frac{n!}{(n-k)! k!} | 
| 308 |      *   @f] | 
| 309 |      * | 
| 310 |      *   @param __n The first argument of the binomial coefficient. | 
| 311 |      *   @param __k The second argument of the binomial coefficient. | 
| 312 |      *   @return  The binomial coefficient. | 
| 313 |      */ | 
| 314 |     template<typename _Tp> | 
| 315 |     _Tp | 
| 316 |     __bincoef(unsigned int __n, unsigned int __k) | 
| 317 |     { | 
| 318 |       //  Max e exponent before overflow. | 
| 319 |       static const _Tp __max_bincoeff | 
| 320 |                       = std::numeric_limits<_Tp>::max_exponent10 | 
| 321 |                       * std::log(_Tp(10)) - _Tp(1); | 
| 322 |  | 
| 323 |       const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k); | 
| 324 |       if (__log_coeff > __max_bincoeff) | 
| 325 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 326 |       else | 
| 327 |         return std::exp(__log_coeff); | 
| 328 |     } | 
| 329 |  | 
| 330 |  | 
| 331 |     /** | 
| 332 |      *   @brief Return \f$ \Gamma(x) \f$. | 
| 333 |      * | 
| 334 |      *   @param __x The argument of the gamma function. | 
| 335 |      *   @return  The gamma function. | 
| 336 |      */ | 
| 337 |     template<typename _Tp> | 
| 338 |     inline _Tp | 
| 339 |     __gamma(_Tp __x) | 
| 340 |     { return std::exp(__log_gamma(__x)); } | 
| 341 |  | 
| 342 |  | 
| 343 |     /** | 
| 344 |      *   @brief  Return the digamma function by series expansion. | 
| 345 |      *   The digamma or @f$ \psi(x) @f$ function is defined by | 
| 346 |      *   @f[ | 
| 347 |      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
| 348 |      *   @f] | 
| 349 |      * | 
| 350 |      *   The series is given by: | 
| 351 |      *   @f[ | 
| 352 |      *     \psi(x) = -\gamma_E - \frac{1}{x} | 
| 353 |      *              \sum_{k=1}^{\infty} \frac{x}{k(x + k)} | 
| 354 |      *   @f] | 
| 355 |      */ | 
| 356 |     template<typename _Tp> | 
| 357 |     _Tp | 
| 358 |     __psi_series(_Tp __x) | 
| 359 |     { | 
| 360 |       _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x; | 
| 361 |       const unsigned int __max_iter = 100000; | 
| 362 |       for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
| 363 |         { | 
| 364 |           const _Tp __term = __x / (__k * (__k + __x)); | 
| 365 |           __sum += __term; | 
| 366 |           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) | 
| 367 |             break; | 
| 368 |         } | 
| 369 |       return __sum; | 
| 370 |     } | 
| 371 |  | 
| 372 |  | 
| 373 |     /** | 
| 374 |      *   @brief  Return the digamma function for large argument. | 
| 375 |      *   The digamma or @f$ \psi(x) @f$ function is defined by | 
| 376 |      *   @f[ | 
| 377 |      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
| 378 |      *   @f] | 
| 379 |      * | 
| 380 |      *   The asymptotic series is given by: | 
| 381 |      *   @f[ | 
| 382 |      *     \psi(x) = \ln(x) - \frac{1}{2x} | 
| 383 |      *             - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}} | 
| 384 |      *   @f] | 
| 385 |      */ | 
| 386 |     template<typename _Tp> | 
| 387 |     _Tp | 
| 388 |     __psi_asymp(_Tp __x) | 
| 389 |     { | 
| 390 |       _Tp __sum = std::log(__x) - _Tp(0.5L) / __x; | 
| 391 |       const _Tp __xx = __x * __x; | 
| 392 |       _Tp __xp = __xx; | 
| 393 |       const unsigned int __max_iter = 100; | 
| 394 |       for (unsigned int __k = 1; __k < __max_iter; ++__k) | 
| 395 |         { | 
| 396 |           const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp); | 
| 397 |           __sum -= __term; | 
| 398 |           if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) | 
| 399 |             break; | 
| 400 |           __xp *= __xx; | 
| 401 |         } | 
| 402 |       return __sum; | 
| 403 |     } | 
| 404 |  | 
| 405 |  | 
| 406 |     /** | 
| 407 |      *   @brief  Return the digamma function. | 
| 408 |      *   The digamma or @f$ \psi(x) @f$ function is defined by | 
| 409 |      *   @f[ | 
| 410 |      *     \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} | 
| 411 |      *   @f] | 
| 412 |      *   For negative argument the reflection formula is used: | 
| 413 |      *   @f[ | 
| 414 |      *     \psi(x) = \psi(1-x) - \pi \cot(\pi x) | 
| 415 |      *   @f] | 
| 416 |      */ | 
| 417 |     template<typename _Tp> | 
| 418 |     _Tp | 
| 419 |     __psi(_Tp __x) | 
| 420 |     { | 
| 421 |       const int __n = static_cast<int>(__x + 0.5L); | 
| 422 |       const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon(); | 
| 423 |       if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps) | 
| 424 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 425 |       else if (__x < _Tp(0)) | 
| 426 |         { | 
| 427 |           const _Tp __pi = __numeric_constants<_Tp>::__pi(); | 
| 428 |           return __psi(_Tp(1) - __x) | 
| 429 |                - __pi * std::cos(__pi * __x) / std::sin(__pi * __x); | 
| 430 |         } | 
| 431 |       else if (__x > _Tp(100)) | 
| 432 |         return __psi_asymp(__x); | 
| 433 |       else | 
| 434 |         return __psi_series(__x); | 
| 435 |     } | 
| 436 |  | 
| 437 |  | 
| 438 |     /** | 
| 439 |      *   @brief  Return the polygamma function @f$ \psi^{(n)}(x) @f$. | 
| 440 |      *  | 
| 441 |      *   The polygamma function is related to the Hurwitz zeta function: | 
| 442 |      *   @f[ | 
| 443 |      *     \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x) | 
| 444 |      *   @f] | 
| 445 |      */ | 
| 446 |     template<typename _Tp> | 
| 447 |     _Tp | 
| 448 |     __psi(unsigned int __n, _Tp __x) | 
| 449 |     { | 
| 450 |       if (__x <= _Tp(0)) | 
| 451 |         std::__throw_domain_error(__N("Argument out of range "  | 
| 452 |                                       "in __psi" )); | 
| 453 |       else if (__n == 0) | 
| 454 |         return __psi(__x); | 
| 455 |       else | 
| 456 |         { | 
| 457 |           const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x); | 
| 458 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 459 |           const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); | 
| 460 | #else | 
| 461 |           const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1)); | 
| 462 | #endif | 
| 463 |           _Tp __result = std::exp(__ln_nfact) * __hzeta; | 
| 464 |           if (__n % 2 == 1) | 
| 465 |             __result = -__result; | 
| 466 |           return __result; | 
| 467 |         } | 
| 468 |     } | 
| 469 |   } // namespace __detail | 
| 470 | #undef _GLIBCXX_MATH_NS | 
| 471 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 472 | } // namespace tr1 | 
| 473 | #endif | 
| 474 |  | 
| 475 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 476 | } // namespace std | 
| 477 |  | 
| 478 | #endif // _GLIBCXX_TR1_GAMMA_TCC | 
| 479 |  | 
| 480 |  |