| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/hypergeometric.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, | 
| 38 | //       Section 6, pp. 555-566 | 
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 40 |  | 
| 41 | #ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC | 
| 42 | #define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1 | 
| 43 |  | 
| 44 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 45 | { | 
| 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 47 |  | 
| 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 49 | # define _GLIBCXX_MATH_NS ::std | 
| 50 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 51 | namespace tr1 | 
| 52 | { | 
| 53 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 54 | #else | 
| 55 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 56 | #endif | 
| 57 |   // [5.2] Special functions | 
| 58 |  | 
| 59 |   // Implementation-space details. | 
| 60 |   namespace __detail | 
| 61 |   { | 
| 62 |     /** | 
| 63 |      *   @brief This routine returns the confluent hypergeometric function | 
| 64 |      *          by series expansion. | 
| 65 |      *  | 
| 66 |      *   @f[ | 
| 67 |      *     _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)} | 
| 68 |      *                      \sum_{n=0}^{\infty} | 
| 69 |      *                      \frac{\Gamma(a+n)}{\Gamma(c+n)} | 
| 70 |      *                      \frac{x^n}{n!} | 
| 71 |      *   @f] | 
| 72 |      *  | 
| 73 |      *   If a and b are integers and a < 0 and either b > 0 or b < a | 
| 74 |      *   then the series is a polynomial with a finite number of | 
| 75 |      *   terms.  If b is an integer and b <= 0 the confluent | 
| 76 |      *   hypergeometric function is undefined. | 
| 77 |      * | 
| 78 |      *   @param  __a  The "numerator" parameter. | 
| 79 |      *   @param  __c  The "denominator" parameter. | 
| 80 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
| 81 |      *   @return  The confluent hypergeometric function. | 
| 82 |      */ | 
| 83 |     template<typename _Tp> | 
| 84 |     _Tp | 
| 85 |     __conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x) | 
| 86 |     { | 
| 87 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 88 |  | 
| 89 |       _Tp __term = _Tp(1); | 
| 90 |       _Tp __Fac = _Tp(1); | 
| 91 |       const unsigned int __max_iter = 100000; | 
| 92 |       unsigned int __i; | 
| 93 |       for (__i = 0; __i < __max_iter; ++__i) | 
| 94 |         { | 
| 95 |           __term *= (__a + _Tp(__i)) * __x | 
| 96 |                   / ((__c + _Tp(__i)) * _Tp(1 + __i)); | 
| 97 |           if (std::abs(__term) < __eps) | 
| 98 |             { | 
| 99 |               break; | 
| 100 |             } | 
| 101 |           __Fac += __term; | 
| 102 |         } | 
| 103 |       if (__i == __max_iter) | 
| 104 |         std::__throw_runtime_error(__N("Series failed to converge "  | 
| 105 |                                        "in __conf_hyperg_series." )); | 
| 106 |  | 
| 107 |       return __Fac; | 
| 108 |     } | 
| 109 |  | 
| 110 |  | 
| 111 |     /** | 
| 112 |      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
| 113 |      *          by an iterative procedure described in | 
| 114 |      *          Luke, Algorithms for the Computation of Mathematical Functions. | 
| 115 |      * | 
| 116 |      *  Like the case of the 2F1 rational approximations, these are  | 
| 117 |      *  probably guaranteed to converge for x < 0, barring gross     | 
| 118 |      *  numerical instability in the pre-asymptotic regime.          | 
| 119 |      */ | 
| 120 |     template<typename _Tp> | 
| 121 |     _Tp | 
| 122 |     __conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin) | 
| 123 |     { | 
| 124 |       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); | 
| 125 |       const int __nmax = 20000; | 
| 126 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 127 |       const _Tp __x  = -__xin; | 
| 128 |       const _Tp __x3 = __x * __x * __x; | 
| 129 |       const _Tp __t0 = __a / __c; | 
| 130 |       const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c); | 
| 131 |       const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1))); | 
| 132 |       _Tp __F = _Tp(1); | 
| 133 |       _Tp __prec; | 
| 134 |  | 
| 135 |       _Tp __Bnm3 = _Tp(1); | 
| 136 |       _Tp __Bnm2 = _Tp(1) + __t1 * __x; | 
| 137 |       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); | 
| 138 |  | 
| 139 |       _Tp __Anm3 = _Tp(1); | 
| 140 |       _Tp __Anm2 = __Bnm2 - __t0 * __x; | 
| 141 |       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x | 
| 142 |                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; | 
| 143 |  | 
| 144 |       int __n = 3; | 
| 145 |       while(1) | 
| 146 |         { | 
| 147 |           _Tp __npam1 = _Tp(__n - 1) + __a; | 
| 148 |           _Tp __npcm1 = _Tp(__n - 1) + __c; | 
| 149 |           _Tp __npam2 = _Tp(__n - 2) + __a; | 
| 150 |           _Tp __npcm2 = _Tp(__n - 2) + __c; | 
| 151 |           _Tp __tnm1  = _Tp(2 * __n - 1); | 
| 152 |           _Tp __tnm3  = _Tp(2 * __n - 3); | 
| 153 |           _Tp __tnm5  = _Tp(2 * __n - 5); | 
| 154 |           _Tp __F1 =  (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1); | 
| 155 |           _Tp __F2 =  (_Tp(__n) + __a) * __npam1 | 
| 156 |                    / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); | 
| 157 |           _Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a) | 
| 158 |                    / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 | 
| 159 |                    * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); | 
| 160 |           _Tp __E  = -__npam1 * (_Tp(__n - 1) - __c) | 
| 161 |                    / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); | 
| 162 |  | 
| 163 |           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 | 
| 164 |                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; | 
| 165 |           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 | 
| 166 |                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; | 
| 167 |           _Tp __r = __An / __Bn; | 
| 168 |  | 
| 169 |           __prec = std::abs((__F - __r) / __F); | 
| 170 |           __F = __r; | 
| 171 |  | 
| 172 |           if (__prec < __eps || __n > __nmax) | 
| 173 |             break; | 
| 174 |  | 
| 175 |           if (std::abs(__An) > __big || std::abs(__Bn) > __big) | 
| 176 |             { | 
| 177 |               __An   /= __big; | 
| 178 |               __Bn   /= __big; | 
| 179 |               __Anm1 /= __big; | 
| 180 |               __Bnm1 /= __big; | 
| 181 |               __Anm2 /= __big; | 
| 182 |               __Bnm2 /= __big; | 
| 183 |               __Anm3 /= __big; | 
| 184 |               __Bnm3 /= __big; | 
| 185 |             } | 
| 186 |           else if (std::abs(__An) < _Tp(1) / __big | 
| 187 |                 || std::abs(__Bn) < _Tp(1) / __big) | 
| 188 |             { | 
| 189 |               __An   *= __big; | 
| 190 |               __Bn   *= __big; | 
| 191 |               __Anm1 *= __big; | 
| 192 |               __Bnm1 *= __big; | 
| 193 |               __Anm2 *= __big; | 
| 194 |               __Bnm2 *= __big; | 
| 195 |               __Anm3 *= __big; | 
| 196 |               __Bnm3 *= __big; | 
| 197 |             } | 
| 198 |  | 
| 199 |           ++__n; | 
| 200 |           __Bnm3 = __Bnm2; | 
| 201 |           __Bnm2 = __Bnm1; | 
| 202 |           __Bnm1 = __Bn; | 
| 203 |           __Anm3 = __Anm2; | 
| 204 |           __Anm2 = __Anm1; | 
| 205 |           __Anm1 = __An; | 
| 206 |         } | 
| 207 |  | 
| 208 |       if (__n >= __nmax) | 
| 209 |         std::__throw_runtime_error(__N("Iteration failed to converge "  | 
| 210 |                                        "in __conf_hyperg_luke." )); | 
| 211 |  | 
| 212 |       return __F; | 
| 213 |     } | 
| 214 |  | 
| 215 |  | 
| 216 |     /** | 
| 217 |      *   @brief  Return the confluent hypogeometric function | 
| 218 |      *           @f$ _1F_1(a;c;x) @f$. | 
| 219 |      *  | 
| 220 |      *   @todo  Handle b == nonpositive integer blowup - return NaN. | 
| 221 |      * | 
| 222 |      *   @param  __a  The @a numerator parameter. | 
| 223 |      *   @param  __c  The @a denominator parameter. | 
| 224 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
| 225 |      *   @return  The confluent hypergeometric function. | 
| 226 |      */ | 
| 227 |     template<typename _Tp> | 
| 228 |     _Tp | 
| 229 |     __conf_hyperg(_Tp __a, _Tp __c, _Tp __x) | 
| 230 |     { | 
| 231 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 232 |       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); | 
| 233 | #else | 
| 234 |       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); | 
| 235 | #endif | 
| 236 |       if (__isnan(__a) || __isnan(__c) || __isnan(__x)) | 
| 237 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 238 |       else if (__c_nint == __c && __c_nint <= 0) | 
| 239 |         return std::numeric_limits<_Tp>::infinity(); | 
| 240 |       else if (__a == _Tp(0)) | 
| 241 |         return _Tp(1); | 
| 242 |       else if (__c == __a) | 
| 243 |         return std::exp(__x); | 
| 244 |       else if (__x < _Tp(0)) | 
| 245 |         return __conf_hyperg_luke(__a, __c, __x); | 
| 246 |       else | 
| 247 |         return __conf_hyperg_series(__a, __c, __x); | 
| 248 |     } | 
| 249 |  | 
| 250 |  | 
| 251 |     /** | 
| 252 |      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
| 253 |      *   by series expansion. | 
| 254 |      *  | 
| 255 |      *   The hypogeometric function is defined by | 
| 256 |      *   @f[ | 
| 257 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
| 258 |      *                      \sum_{n=0}^{\infty} | 
| 259 |      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
| 260 |      *                      \frac{x^n}{n!} | 
| 261 |      *   @f] | 
| 262 |      *  | 
| 263 |      *   This works and it's pretty fast. | 
| 264 |      * | 
| 265 |      *   @param  __a  The first @a numerator parameter. | 
| 266 |      *   @param  __a  The second @a numerator parameter. | 
| 267 |      *   @param  __c  The @a denominator parameter. | 
| 268 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
| 269 |      *   @return  The confluent hypergeometric function. | 
| 270 |      */ | 
| 271 |     template<typename _Tp> | 
| 272 |     _Tp | 
| 273 |     __hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
| 274 |     { | 
| 275 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 276 |  | 
| 277 |       _Tp __term = _Tp(1); | 
| 278 |       _Tp __Fabc = _Tp(1); | 
| 279 |       const unsigned int __max_iter = 100000; | 
| 280 |       unsigned int __i; | 
| 281 |       for (__i = 0; __i < __max_iter; ++__i) | 
| 282 |         { | 
| 283 |           __term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x | 
| 284 |                   / ((__c + _Tp(__i)) * _Tp(1 + __i)); | 
| 285 |           if (std::abs(__term) < __eps) | 
| 286 |             { | 
| 287 |               break; | 
| 288 |             } | 
| 289 |           __Fabc += __term; | 
| 290 |         } | 
| 291 |       if (__i == __max_iter) | 
| 292 |         std::__throw_runtime_error(__N("Series failed to converge "  | 
| 293 |                                        "in __hyperg_series." )); | 
| 294 |  | 
| 295 |       return __Fabc; | 
| 296 |     } | 
| 297 |  | 
| 298 |  | 
| 299 |     /** | 
| 300 |      *   @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$ | 
| 301 |      *           by an iterative procedure described in | 
| 302 |      *           Luke, Algorithms for the Computation of Mathematical Functions. | 
| 303 |      */ | 
| 304 |     template<typename _Tp> | 
| 305 |     _Tp | 
| 306 |     __hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin) | 
| 307 |     { | 
| 308 |       const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L)); | 
| 309 |       const int __nmax = 20000; | 
| 310 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 311 |       const _Tp __x  = -__xin; | 
| 312 |       const _Tp __x3 = __x * __x * __x; | 
| 313 |       const _Tp __t0 = __a * __b / __c; | 
| 314 |       const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c); | 
| 315 |       const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2)) | 
| 316 |                      / (_Tp(2) * (__c + _Tp(1))); | 
| 317 |  | 
| 318 |       _Tp __F = _Tp(1); | 
| 319 |  | 
| 320 |       _Tp __Bnm3 = _Tp(1); | 
| 321 |       _Tp __Bnm2 = _Tp(1) + __t1 * __x; | 
| 322 |       _Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x); | 
| 323 |  | 
| 324 |       _Tp __Anm3 = _Tp(1); | 
| 325 |       _Tp __Anm2 = __Bnm2 - __t0 * __x; | 
| 326 |       _Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x | 
| 327 |                  + __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x; | 
| 328 |  | 
| 329 |       int __n = 3; | 
| 330 |       while (1) | 
| 331 |         { | 
| 332 |           const _Tp __npam1 = _Tp(__n - 1) + __a; | 
| 333 |           const _Tp __npbm1 = _Tp(__n - 1) + __b; | 
| 334 |           const _Tp __npcm1 = _Tp(__n - 1) + __c; | 
| 335 |           const _Tp __npam2 = _Tp(__n - 2) + __a; | 
| 336 |           const _Tp __npbm2 = _Tp(__n - 2) + __b; | 
| 337 |           const _Tp __npcm2 = _Tp(__n - 2) + __c; | 
| 338 |           const _Tp __tnm1  = _Tp(2 * __n - 1); | 
| 339 |           const _Tp __tnm3  = _Tp(2 * __n - 3); | 
| 340 |           const _Tp __tnm5  = _Tp(2 * __n - 5); | 
| 341 |           const _Tp __n2 = __n * __n; | 
| 342 |           const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n | 
| 343 |                          + _Tp(2) - __a * __b - _Tp(2) * (__a + __b)) | 
| 344 |                          / (_Tp(2) * __tnm3 * __npcm1); | 
| 345 |           const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n | 
| 346 |                          + _Tp(2) - __a * __b) * __npam1 * __npbm1 | 
| 347 |                          / (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1); | 
| 348 |           const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1 | 
| 349 |                          * (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b)) | 
| 350 |                          / (_Tp(8) * __tnm3 * __tnm3 * __tnm5 | 
| 351 |                          * (_Tp(__n - 3) + __c) * __npcm2 * __npcm1); | 
| 352 |           const _Tp __E  = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c) | 
| 353 |                          / (_Tp(2) * __tnm3 * __npcm2 * __npcm1); | 
| 354 |  | 
| 355 |           _Tp __An = (_Tp(1) + __F1 * __x) * __Anm1 | 
| 356 |                    + (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3; | 
| 357 |           _Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1 | 
| 358 |                    + (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3; | 
| 359 |           const _Tp __r = __An / __Bn; | 
| 360 |  | 
| 361 |           const _Tp __prec = std::abs((__F - __r) / __F); | 
| 362 |           __F = __r; | 
| 363 |  | 
| 364 |           if (__prec < __eps || __n > __nmax) | 
| 365 |             break; | 
| 366 |  | 
| 367 |           if (std::abs(__An) > __big || std::abs(__Bn) > __big) | 
| 368 |             { | 
| 369 |               __An   /= __big; | 
| 370 |               __Bn   /= __big; | 
| 371 |               __Anm1 /= __big; | 
| 372 |               __Bnm1 /= __big; | 
| 373 |               __Anm2 /= __big; | 
| 374 |               __Bnm2 /= __big; | 
| 375 |               __Anm3 /= __big; | 
| 376 |               __Bnm3 /= __big; | 
| 377 |             } | 
| 378 |           else if (std::abs(__An) < _Tp(1) / __big | 
| 379 |                 || std::abs(__Bn) < _Tp(1) / __big) | 
| 380 |             { | 
| 381 |               __An   *= __big; | 
| 382 |               __Bn   *= __big; | 
| 383 |               __Anm1 *= __big; | 
| 384 |               __Bnm1 *= __big; | 
| 385 |               __Anm2 *= __big; | 
| 386 |               __Bnm2 *= __big; | 
| 387 |               __Anm3 *= __big; | 
| 388 |               __Bnm3 *= __big; | 
| 389 |             } | 
| 390 |  | 
| 391 |           ++__n; | 
| 392 |           __Bnm3 = __Bnm2; | 
| 393 |           __Bnm2 = __Bnm1; | 
| 394 |           __Bnm1 = __Bn; | 
| 395 |           __Anm3 = __Anm2; | 
| 396 |           __Anm2 = __Anm1; | 
| 397 |           __Anm1 = __An; | 
| 398 |         } | 
| 399 |  | 
| 400 |       if (__n >= __nmax) | 
| 401 |         std::__throw_runtime_error(__N("Iteration failed to converge "  | 
| 402 |                                        "in __hyperg_luke." )); | 
| 403 |  | 
| 404 |       return __F; | 
| 405 |     } | 
| 406 |  | 
| 407 |  | 
| 408 |     /** | 
| 409 |      *  @brief  Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$  | 
| 410 |      *  by the reflection formulae in Abramowitz & Stegun formula | 
| 411 |      *  15.3.6 for d = c - a - b not integral and formula 15.3.11 for | 
| 412 |      *  d = c - a - b integral.  This assumes a, b, c != negative | 
| 413 |      *  integer. | 
| 414 |      * | 
| 415 |      *   The hypogeometric function is defined by | 
| 416 |      *   @f[ | 
| 417 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
| 418 |      *                      \sum_{n=0}^{\infty} | 
| 419 |      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
| 420 |      *                      \frac{x^n}{n!} | 
| 421 |      *   @f] | 
| 422 |      * | 
| 423 |      *   The reflection formula for nonintegral @f$ d = c - a - b @f$ is: | 
| 424 |      *   @f[ | 
| 425 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)} | 
| 426 |      *                            _2F_1(a,b;1-d;1-x) | 
| 427 |      *                    + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)} | 
| 428 |      *                            _2F_1(c-a,c-b;1+d;1-x) | 
| 429 |      *   @f] | 
| 430 |      * | 
| 431 |      *   The reflection formula for integral @f$ m = c - a - b @f$ is: | 
| 432 |      *   @f[ | 
| 433 |      *     _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)} | 
| 434 |      *                        \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k} | 
| 435 |      *                      -  | 
| 436 |      *   @f] | 
| 437 |      */ | 
| 438 |     template<typename _Tp> | 
| 439 |     _Tp | 
| 440 |     __hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
| 441 |     { | 
| 442 |       const _Tp __d = __c - __a - __b; | 
| 443 |       const int __intd  = std::floor(__d + _Tp(0.5L)); | 
| 444 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 445 |       const _Tp __toler = _Tp(1000) * __eps; | 
| 446 |       const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max()); | 
| 447 |       const bool __d_integer = (std::abs(__d - __intd) < __toler); | 
| 448 |  | 
| 449 |       if (__d_integer) | 
| 450 |         { | 
| 451 |           const _Tp __ln_omx = std::log(_Tp(1) - __x); | 
| 452 |           const _Tp __ad = std::abs(__d); | 
| 453 |           _Tp __F1, __F2; | 
| 454 |  | 
| 455 |           _Tp __d1, __d2; | 
| 456 |           if (__d >= _Tp(0)) | 
| 457 |             { | 
| 458 |               __d1 = __d; | 
| 459 |               __d2 = _Tp(0); | 
| 460 |             } | 
| 461 |           else | 
| 462 |             { | 
| 463 |               __d1 = _Tp(0); | 
| 464 |               __d2 = __d; | 
| 465 |             } | 
| 466 |  | 
| 467 |           const _Tp __lng_c = __log_gamma(__c); | 
| 468 |  | 
| 469 |           //  Evaluate F1. | 
| 470 |           if (__ad < __eps) | 
| 471 |             { | 
| 472 |               //  d = c - a - b = 0. | 
| 473 |               __F1 = _Tp(0); | 
| 474 |             } | 
| 475 |           else | 
| 476 |             { | 
| 477 |  | 
| 478 |               bool __ok_d1 = true; | 
| 479 |               _Tp __lng_ad, __lng_ad1, __lng_bd1; | 
| 480 |               __try | 
| 481 |                 { | 
| 482 |                   __lng_ad = __log_gamma(__ad); | 
| 483 |                   __lng_ad1 = __log_gamma(__a + __d1); | 
| 484 |                   __lng_bd1 = __log_gamma(__b + __d1); | 
| 485 |                 } | 
| 486 |               __catch(...) | 
| 487 |                 { | 
| 488 |                   __ok_d1 = false; | 
| 489 |                 } | 
| 490 |  | 
| 491 |               if (__ok_d1) | 
| 492 |                 { | 
| 493 |                   /* Gamma functions in the denominator are ok. | 
| 494 |                    * Proceed with evaluation. | 
| 495 |                    */ | 
| 496 |                   _Tp __sum1 = _Tp(1); | 
| 497 |                   _Tp __term = _Tp(1); | 
| 498 |                   _Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx | 
| 499 |                                 - __lng_ad1 - __lng_bd1; | 
| 500 |  | 
| 501 |                   /* Do F1 sum. | 
| 502 |                    */ | 
| 503 |                   for (int __i = 1; __i < __ad; ++__i) | 
| 504 |                     { | 
| 505 |                       const int __j = __i - 1; | 
| 506 |                       __term *= (__a + __d2 + __j) * (__b + __d2 + __j) | 
| 507 |                               / (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x); | 
| 508 |                       __sum1 += __term; | 
| 509 |                     } | 
| 510 |  | 
| 511 |                   if (__ln_pre1 > __log_max) | 
| 512 |                     std::__throw_runtime_error(__N("Overflow of gamma functions"  | 
| 513 |                                                    " in __hyperg_luke." )); | 
| 514 |                   else | 
| 515 |                     __F1 = std::exp(__ln_pre1) * __sum1; | 
| 516 |                 } | 
| 517 |               else | 
| 518 |                 { | 
| 519 |                   //  Gamma functions in the denominator were not ok. | 
| 520 |                   //  So the F1 term is zero. | 
| 521 |                   __F1 = _Tp(0); | 
| 522 |                 } | 
| 523 |             } // end F1 evaluation | 
| 524 |  | 
| 525 |           // Evaluate F2. | 
| 526 |           bool __ok_d2 = true; | 
| 527 |           _Tp __lng_ad2, __lng_bd2; | 
| 528 |           __try | 
| 529 |             { | 
| 530 |               __lng_ad2 = __log_gamma(__a + __d2); | 
| 531 |               __lng_bd2 = __log_gamma(__b + __d2); | 
| 532 |             } | 
| 533 |           __catch(...) | 
| 534 |             { | 
| 535 |               __ok_d2 = false; | 
| 536 |             } | 
| 537 |  | 
| 538 |           if (__ok_d2) | 
| 539 |             { | 
| 540 |               //  Gamma functions in the denominator are ok. | 
| 541 |               //  Proceed with evaluation. | 
| 542 |               const int __maxiter = 2000; | 
| 543 |               const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e(); | 
| 544 |               const _Tp __psi_1pd = __psi(_Tp(1) + __ad); | 
| 545 |               const _Tp __psi_apd1 = __psi(__a + __d1); | 
| 546 |               const _Tp __psi_bpd1 = __psi(__b + __d1); | 
| 547 |  | 
| 548 |               _Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1 | 
| 549 |                              - __psi_bpd1 - __ln_omx; | 
| 550 |               _Tp __fact = _Tp(1); | 
| 551 |               _Tp __sum2 = __psi_term; | 
| 552 |               _Tp __ln_pre2 = __lng_c + __d1 * __ln_omx | 
| 553 |                             - __lng_ad2 - __lng_bd2; | 
| 554 |  | 
| 555 |               // Do F2 sum. | 
| 556 |               int __j; | 
| 557 |               for (__j = 1; __j < __maxiter; ++__j) | 
| 558 |                 { | 
| 559 |                   //  Values for psi functions use recurrence; | 
| 560 |                   //  Abramowitz & Stegun 6.3.5 | 
| 561 |                   const _Tp __term1 = _Tp(1) / _Tp(__j) | 
| 562 |                                     + _Tp(1) / (__ad + __j); | 
| 563 |                   const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1)) | 
| 564 |                                     + _Tp(1) / (__b + __d1 + _Tp(__j - 1)); | 
| 565 |                   __psi_term += __term1 - __term2; | 
| 566 |                   __fact *= (__a + __d1 + _Tp(__j - 1)) | 
| 567 |                           * (__b + __d1 + _Tp(__j - 1)) | 
| 568 |                           / ((__ad + __j) * __j) * (_Tp(1) - __x); | 
| 569 |                   const _Tp __delta = __fact * __psi_term; | 
| 570 |                   __sum2 += __delta; | 
| 571 |                   if (std::abs(__delta) < __eps * std::abs(__sum2)) | 
| 572 |                     break; | 
| 573 |                 } | 
| 574 |               if (__j == __maxiter) | 
| 575 |                 std::__throw_runtime_error(__N("Sum F2 failed to converge "  | 
| 576 |                                                "in __hyperg_reflect" )); | 
| 577 |  | 
| 578 |               if (__sum2 == _Tp(0)) | 
| 579 |                 __F2 = _Tp(0); | 
| 580 |               else | 
| 581 |                 __F2 = std::exp(__ln_pre2) * __sum2; | 
| 582 |             } | 
| 583 |           else | 
| 584 |             { | 
| 585 |               // Gamma functions in the denominator not ok. | 
| 586 |               // So the F2 term is zero. | 
| 587 |               __F2 = _Tp(0); | 
| 588 |             } // end F2 evaluation | 
| 589 |  | 
| 590 |           const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1)); | 
| 591 |           const _Tp __F = __F1 + __sgn_2 * __F2; | 
| 592 |  | 
| 593 |           return __F; | 
| 594 |         } | 
| 595 |       else | 
| 596 |         { | 
| 597 |           //  d = c - a - b not an integer. | 
| 598 |  | 
| 599 |           //  These gamma functions appear in the denominator, so we | 
| 600 |           //  catch their harmless domain errors and set the terms to zero. | 
| 601 |           bool __ok1 = true; | 
| 602 |           _Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0); | 
| 603 |           _Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0); | 
| 604 |           __try | 
| 605 |             { | 
| 606 |               __sgn_g1ca = __log_gamma_sign(__c - __a); | 
| 607 |               __ln_g1ca = __log_gamma(__c - __a); | 
| 608 |               __sgn_g1cb = __log_gamma_sign(__c - __b); | 
| 609 |               __ln_g1cb = __log_gamma(__c - __b); | 
| 610 |             } | 
| 611 |           __catch(...) | 
| 612 |             { | 
| 613 |               __ok1 = false; | 
| 614 |             } | 
| 615 |  | 
| 616 |           bool __ok2 = true; | 
| 617 |           _Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0); | 
| 618 |           _Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0); | 
| 619 |           __try | 
| 620 |             { | 
| 621 |               __sgn_g2a = __log_gamma_sign(__a); | 
| 622 |               __ln_g2a = __log_gamma(__a); | 
| 623 |               __sgn_g2b = __log_gamma_sign(__b); | 
| 624 |               __ln_g2b = __log_gamma(__b); | 
| 625 |             } | 
| 626 |           __catch(...) | 
| 627 |             { | 
| 628 |               __ok2 = false; | 
| 629 |             } | 
| 630 |  | 
| 631 |           const _Tp __sgn_gc = __log_gamma_sign(__c); | 
| 632 |           const _Tp __ln_gc = __log_gamma(__c); | 
| 633 |           const _Tp __sgn_gd = __log_gamma_sign(__d); | 
| 634 |           const _Tp __ln_gd = __log_gamma(__d); | 
| 635 |           const _Tp __sgn_gmd = __log_gamma_sign(-__d); | 
| 636 |           const _Tp __ln_gmd = __log_gamma(-__d); | 
| 637 |  | 
| 638 |           const _Tp __sgn1 = __sgn_gc * __sgn_gd  * __sgn_g1ca * __sgn_g1cb; | 
| 639 |           const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a  * __sgn_g2b; | 
| 640 |  | 
| 641 |           _Tp __pre1, __pre2; | 
| 642 |           if (__ok1 && __ok2) | 
| 643 |             { | 
| 644 |               _Tp __ln_pre1 = __ln_gc + __ln_gd  - __ln_g1ca - __ln_g1cb; | 
| 645 |               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a  - __ln_g2b | 
| 646 |                             + __d * std::log(_Tp(1) - __x); | 
| 647 |               if (__ln_pre1 < __log_max && __ln_pre2 < __log_max) | 
| 648 |                 { | 
| 649 |                   __pre1 = std::exp(__ln_pre1); | 
| 650 |                   __pre2 = std::exp(__ln_pre2); | 
| 651 |                   __pre1 *= __sgn1; | 
| 652 |                   __pre2 *= __sgn2; | 
| 653 |                 } | 
| 654 |               else | 
| 655 |                 { | 
| 656 |                   std::__throw_runtime_error(__N("Overflow of gamma functions "  | 
| 657 |                                                  "in __hyperg_reflect" )); | 
| 658 |                 } | 
| 659 |             } | 
| 660 |           else if (__ok1 && !__ok2) | 
| 661 |             { | 
| 662 |               _Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb; | 
| 663 |               if (__ln_pre1 < __log_max) | 
| 664 |                 { | 
| 665 |                   __pre1 = std::exp(__ln_pre1); | 
| 666 |                   __pre1 *= __sgn1; | 
| 667 |                   __pre2 = _Tp(0); | 
| 668 |                 } | 
| 669 |               else | 
| 670 |                 { | 
| 671 |                   std::__throw_runtime_error(__N("Overflow of gamma functions "  | 
| 672 |                                                  "in __hyperg_reflect" )); | 
| 673 |                 } | 
| 674 |             } | 
| 675 |           else if (!__ok1 && __ok2) | 
| 676 |             { | 
| 677 |               _Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b | 
| 678 |                             + __d * std::log(_Tp(1) - __x); | 
| 679 |               if (__ln_pre2 < __log_max) | 
| 680 |                 { | 
| 681 |                   __pre1 = _Tp(0); | 
| 682 |                   __pre2 = std::exp(__ln_pre2); | 
| 683 |                   __pre2 *= __sgn2; | 
| 684 |                 } | 
| 685 |               else | 
| 686 |                 { | 
| 687 |                   std::__throw_runtime_error(__N("Overflow of gamma functions "  | 
| 688 |                                                  "in __hyperg_reflect" )); | 
| 689 |                 } | 
| 690 |             } | 
| 691 |           else | 
| 692 |             { | 
| 693 |               __pre1 = _Tp(0); | 
| 694 |               __pre2 = _Tp(0); | 
| 695 |               std::__throw_runtime_error(__N("Underflow of gamma functions "  | 
| 696 |                                              "in __hyperg_reflect" )); | 
| 697 |             } | 
| 698 |  | 
| 699 |           const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d, | 
| 700 |                                            _Tp(1) - __x); | 
| 701 |           const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d, | 
| 702 |                                            _Tp(1) - __x); | 
| 703 |  | 
| 704 |           const _Tp __F = __pre1 * __F1 + __pre2 * __F2; | 
| 705 |  | 
| 706 |           return __F; | 
| 707 |         } | 
| 708 |     } | 
| 709 |  | 
| 710 |  | 
| 711 |     /** | 
| 712 |      *   @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$. | 
| 713 |      * | 
| 714 |      *   The hypogeometric function is defined by | 
| 715 |      *   @f[ | 
| 716 |      *     _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} | 
| 717 |      *                      \sum_{n=0}^{\infty} | 
| 718 |      *                      \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)} | 
| 719 |      *                      \frac{x^n}{n!} | 
| 720 |      *   @f] | 
| 721 |      * | 
| 722 |      *   @param  __a  The first @a numerator parameter. | 
| 723 |      *   @param  __a  The second @a numerator parameter. | 
| 724 |      *   @param  __c  The @a denominator parameter. | 
| 725 |      *   @param  __x  The argument of the confluent hypergeometric function. | 
| 726 |      *   @return  The confluent hypergeometric function. | 
| 727 |      */ | 
| 728 |     template<typename _Tp> | 
| 729 |     _Tp | 
| 730 |     __hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x) | 
| 731 |     { | 
| 732 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 733 |       const _Tp __a_nint = _GLIBCXX_MATH_NS::nearbyint(__a); | 
| 734 |       const _Tp __b_nint = _GLIBCXX_MATH_NS::nearbyint(__b); | 
| 735 |       const _Tp __c_nint = _GLIBCXX_MATH_NS::nearbyint(__c); | 
| 736 | #else | 
| 737 |       const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L)); | 
| 738 |       const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L)); | 
| 739 |       const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L)); | 
| 740 | #endif | 
| 741 |       const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon(); | 
| 742 |       if (std::abs(__x) >= _Tp(1)) | 
| 743 |         std::__throw_domain_error(__N("Argument outside unit circle "  | 
| 744 |                                       "in __hyperg." )); | 
| 745 |       else if (__isnan(__a) || __isnan(__b) | 
| 746 |             || __isnan(__c) || __isnan(__x)) | 
| 747 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 748 |       else if (__c_nint == __c && __c_nint <= _Tp(0)) | 
| 749 |         return std::numeric_limits<_Tp>::infinity(); | 
| 750 |       else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler) | 
| 751 |         return std::pow(_Tp(1) - __x, __c - __a - __b); | 
| 752 |       else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0) | 
| 753 |             && __x >= _Tp(0) && __x < _Tp(0.995L)) | 
| 754 |         return __hyperg_series(__a, __b, __c, __x); | 
| 755 |       else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10)) | 
| 756 |         { | 
| 757 |           //  For integer a and b the hypergeometric function is a | 
| 758 |           //  finite polynomial. | 
| 759 |           if (__a < _Tp(0)  &&  std::abs(__a - __a_nint) < __toler) | 
| 760 |             return __hyperg_series(__a_nint, __b, __c, __x); | 
| 761 |           else if (__b < _Tp(0)  &&  std::abs(__b - __b_nint) < __toler) | 
| 762 |             return __hyperg_series(__a, __b_nint, __c, __x); | 
| 763 |           else if (__x < -_Tp(0.25L)) | 
| 764 |             return __hyperg_luke(__a, __b, __c, __x); | 
| 765 |           else if (__x < _Tp(0.5L)) | 
| 766 |             return __hyperg_series(__a, __b, __c, __x); | 
| 767 |           else | 
| 768 |             if (std::abs(__c) > _Tp(10)) | 
| 769 |               return __hyperg_series(__a, __b, __c, __x); | 
| 770 |             else | 
| 771 |               return __hyperg_reflect(__a, __b, __c, __x); | 
| 772 |         } | 
| 773 |       else | 
| 774 |         return __hyperg_luke(__a, __b, __c, __x); | 
| 775 |     } | 
| 776 |   } // namespace __detail | 
| 777 | #undef _GLIBCXX_MATH_NS | 
| 778 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 779 | } // namespace tr1 | 
| 780 | #endif | 
| 781 |  | 
| 782 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 783 | } | 
| 784 |  | 
| 785 | #endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC | 
| 786 |  |