| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/legendre_function.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       ed. Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, | 
| 38 | //       Section 8, pp. 331-341 | 
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 40 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
| 41 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
| 42 | //       2nd ed, pp. 252-254 | 
| 43 |  | 
| 44 | #ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC | 
| 45 | #define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1 | 
| 46 |  | 
| 47 | #include "special_function_util.h" | 
| 48 |  | 
| 49 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 50 | { | 
| 51 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 52 |  | 
| 53 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 54 | # define _GLIBCXX_MATH_NS ::std | 
| 55 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 56 | namespace tr1 | 
| 57 | { | 
| 58 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 59 | #else | 
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 61 | #endif | 
| 62 |   // [5.2] Special functions | 
| 63 |  | 
| 64 |   // Implementation-space details. | 
| 65 |   namespace __detail | 
| 66 |   { | 
| 67 |     /** | 
| 68 |      *   @brief  Return the Legendre polynomial by recursion on order | 
| 69 |      *           @f$ l @f$. | 
| 70 |      *  | 
| 71 |      *   The Legendre function of @f$ l @f$ and @f$ x @f$, | 
| 72 |      *   @f$ P_l(x) @f$, is defined by: | 
| 73 |      *   @f[ | 
| 74 |      *     P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} | 
| 75 |      *   @f] | 
| 76 |      *  | 
| 77 |      *   @param  l  The order of the Legendre polynomial.  @f$l >= 0@f$. | 
| 78 |      *   @param  x  The argument of the Legendre polynomial.  @f$|x| <= 1@f$. | 
| 79 |      */ | 
| 80 |     template<typename _Tp> | 
| 81 |     _Tp | 
| 82 |     __poly_legendre_p(unsigned int __l, _Tp __x) | 
| 83 |     { | 
| 84 |  | 
| 85 |       if ((__x < _Tp(-1)) || (__x > _Tp(+1))) | 
| 86 |         std::__throw_domain_error(__N("Argument out of range"  | 
| 87 |                                       " in __poly_legendre_p." )); | 
| 88 |       else if (__isnan(__x)) | 
| 89 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 90 |       else if (__x == +_Tp(1)) | 
| 91 |         return +_Tp(1); | 
| 92 |       else if (__x == -_Tp(1)) | 
| 93 |         return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1)); | 
| 94 |       else | 
| 95 |         { | 
| 96 |           _Tp __p_lm2 = _Tp(1); | 
| 97 |           if (__l == 0) | 
| 98 |             return __p_lm2; | 
| 99 |  | 
| 100 |           _Tp __p_lm1 = __x; | 
| 101 |           if (__l == 1) | 
| 102 |             return __p_lm1; | 
| 103 |  | 
| 104 |           _Tp __p_l = 0; | 
| 105 |           for (unsigned int __ll = 2; __ll <= __l; ++__ll) | 
| 106 |             { | 
| 107 |               //  This arrangement is supposed to be better for roundoff | 
| 108 |               //  protection, Arfken, 2nd Ed, Eq 12.17a. | 
| 109 |               __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2 | 
| 110 |                     - (__x * __p_lm1 - __p_lm2) / _Tp(__ll); | 
| 111 |               __p_lm2 = __p_lm1; | 
| 112 |               __p_lm1 = __p_l; | 
| 113 |             } | 
| 114 |  | 
| 115 |           return __p_l; | 
| 116 |         } | 
| 117 |     } | 
| 118 |  | 
| 119 |  | 
| 120 |     /** | 
| 121 |      *   @brief  Return the associated Legendre function by recursion | 
| 122 |      *           on @f$ l @f$. | 
| 123 |      *  | 
| 124 |      *   The associated Legendre function is derived from the Legendre function | 
| 125 |      *   @f$ P_l(x) @f$ by the Rodrigues formula: | 
| 126 |      *   @f[ | 
| 127 |      *     P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) | 
| 128 |      *   @f] | 
| 129 |      *  | 
| 130 |      *   @param  l  The order of the associated Legendre function. | 
| 131 |      *              @f$ l >= 0 @f$. | 
| 132 |      *   @param  m  The order of the associated Legendre function. | 
| 133 |      *              @f$ m <= l @f$. | 
| 134 |      *   @param  x  The argument of the associated Legendre function. | 
| 135 |      *              @f$ |x| <= 1 @f$. | 
| 136 |      */ | 
| 137 |     template<typename _Tp> | 
| 138 |     _Tp | 
| 139 |     __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x) | 
| 140 |     { | 
| 141 |  | 
| 142 |       if (__x < _Tp(-1) || __x > _Tp(+1)) | 
| 143 |         std::__throw_domain_error(__N("Argument out of range"  | 
| 144 |                                       " in __assoc_legendre_p." )); | 
| 145 |       else if (__m > __l) | 
| 146 |         std::__throw_domain_error(__N("Degree out of range"  | 
| 147 |                                       " in __assoc_legendre_p." )); | 
| 148 |       else if (__isnan(__x)) | 
| 149 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 150 |       else if (__m == 0) | 
| 151 |         return __poly_legendre_p(__l, __x); | 
| 152 |       else | 
| 153 |         { | 
| 154 |           _Tp __p_mm = _Tp(1); | 
| 155 |           if (__m > 0) | 
| 156 |             { | 
| 157 |               //  Two square roots seem more accurate more of the time | 
| 158 |               //  than just one. | 
| 159 |               _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x); | 
| 160 |               _Tp __fact = _Tp(1); | 
| 161 |               for (unsigned int __i = 1; __i <= __m; ++__i) | 
| 162 |                 { | 
| 163 |                   __p_mm *= -__fact * __root; | 
| 164 |                   __fact += _Tp(2); | 
| 165 |                 } | 
| 166 |             } | 
| 167 |           if (__l == __m) | 
| 168 |             return __p_mm; | 
| 169 |  | 
| 170 |           _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm; | 
| 171 |           if (__l == __m + 1) | 
| 172 |             return __p_mp1m; | 
| 173 |  | 
| 174 |           _Tp __p_lm2m = __p_mm; | 
| 175 |           _Tp __P_lm1m = __p_mp1m; | 
| 176 |           _Tp __p_lm = _Tp(0); | 
| 177 |           for (unsigned int __j = __m + 2; __j <= __l; ++__j) | 
| 178 |             { | 
| 179 |               __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m | 
| 180 |                       - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m); | 
| 181 |               __p_lm2m = __P_lm1m; | 
| 182 |               __P_lm1m = __p_lm; | 
| 183 |             } | 
| 184 |  | 
| 185 |           return __p_lm; | 
| 186 |         } | 
| 187 |     } | 
| 188 |  | 
| 189 |  | 
| 190 |     /** | 
| 191 |      *   @brief  Return the spherical associated Legendre function. | 
| 192 |      *  | 
| 193 |      *   The spherical associated Legendre function of @f$ l @f$, @f$ m @f$, | 
| 194 |      *   and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where | 
| 195 |      *   @f[ | 
| 196 |      *      Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} | 
| 197 |      *                                  \frac{(l-m)!}{(l+m)!}] | 
| 198 |      *                     P_l^m(\cos\theta) \exp^{im\phi} | 
| 199 |      *   @f] | 
| 200 |      *   is the spherical harmonic function and @f$ P_l^m(x) @f$ is the | 
| 201 |      *   associated Legendre function. | 
| 202 |      *  | 
| 203 |      *   This function differs from the associated Legendre function by | 
| 204 |      *   argument (@f$x = \cos(\theta)@f$) and by a normalization factor | 
| 205 |      *   but this factor is rather large for large @f$ l @f$ and @f$ m @f$ | 
| 206 |      *   and so this function is stable for larger differences of @f$ l @f$ | 
| 207 |      *   and @f$ m @f$. | 
| 208 |      *  | 
| 209 |      *   @param  l  The order of the spherical associated Legendre function. | 
| 210 |      *              @f$ l >= 0 @f$. | 
| 211 |      *   @param  m  The order of the spherical associated Legendre function. | 
| 212 |      *              @f$ m <= l @f$. | 
| 213 |      *   @param  theta  The radian angle argument of the spherical associated | 
| 214 |      *                  Legendre function. | 
| 215 |      */ | 
| 216 |     template <typename _Tp> | 
| 217 |     _Tp | 
| 218 |     __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) | 
| 219 |     { | 
| 220 |       if (__isnan(__theta)) | 
| 221 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 222 |  | 
| 223 |       const _Tp __x = std::cos(__theta); | 
| 224 |  | 
| 225 |       if (__l < __m) | 
| 226 |         { | 
| 227 |           std::__throw_domain_error(__N("Bad argument "  | 
| 228 |                                         "in __sph_legendre." )); | 
| 229 |         } | 
| 230 |       else if (__m == 0) | 
| 231 |         { | 
| 232 |           _Tp __P = __poly_legendre_p(__l, __x); | 
| 233 |           _Tp __fact = std::sqrt(_Tp(2 * __l + 1) | 
| 234 |                      / (_Tp(4) * __numeric_constants<_Tp>::__pi())); | 
| 235 |           __P *= __fact; | 
| 236 |           return __P; | 
| 237 |         } | 
| 238 |       else if (__x == _Tp(1) || __x == -_Tp(1)) | 
| 239 |         { | 
| 240 |           //  m > 0 here | 
| 241 |           return _Tp(0); | 
| 242 |         } | 
| 243 |       else | 
| 244 |         { | 
| 245 |           // m > 0 and |x| < 1 here | 
| 246 |  | 
| 247 |           // Starting value for recursion. | 
| 248 |           // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) | 
| 249 |           //             (-1)^m (1-x^2)^(m/2) / pi^(1/4) | 
| 250 |           const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1)); | 
| 251 |           const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3)); | 
| 252 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 253 |           const _Tp __lncirc = _GLIBCXX_MATH_NS::log1p(-__x * __x); | 
| 254 | #else | 
| 255 |           const _Tp __lncirc = std::log(_Tp(1) - __x * __x); | 
| 256 | #endif | 
| 257 |           //  Gamma(m+1/2) / Gamma(m) | 
| 258 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 259 |           const _Tp __lnpoch = _GLIBCXX_MATH_NS::lgamma(_Tp(__m + _Tp(0.5L))) | 
| 260 |                              - _GLIBCXX_MATH_NS::lgamma(_Tp(__m)); | 
| 261 | #else | 
| 262 |           const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L))) | 
| 263 |                              - __log_gamma(_Tp(__m)); | 
| 264 | #endif | 
| 265 |           const _Tp __lnpre_val = | 
| 266 |                     -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi() | 
| 267 |                     + _Tp(0.5L) * (__lnpoch + __m * __lncirc); | 
| 268 |           _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m) | 
| 269 |                    / (_Tp(4) * __numeric_constants<_Tp>::__pi())); | 
| 270 |           _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val); | 
| 271 |           _Tp __y_mp1m = __y_mp1m_factor * __y_mm; | 
| 272 |  | 
| 273 |           if (__l == __m) | 
| 274 |             { | 
| 275 |               return __y_mm; | 
| 276 |             } | 
| 277 |           else if (__l == __m + 1) | 
| 278 |             { | 
| 279 |               return __y_mp1m; | 
| 280 |             } | 
| 281 |           else | 
| 282 |             { | 
| 283 |               _Tp __y_lm = _Tp(0); | 
| 284 |  | 
| 285 |               // Compute Y_l^m, l > m+1, upward recursion on l. | 
| 286 |               for ( int __ll = __m + 2; __ll <= __l; ++__ll) | 
| 287 |                 { | 
| 288 |                   const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m); | 
| 289 |                   const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1); | 
| 290 |                   const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1) | 
| 291 |                                                        * _Tp(2 * __ll - 1)); | 
| 292 |                   const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1) | 
| 293 |                                                                 / _Tp(2 * __ll - 3)); | 
| 294 |                   __y_lm = (__x * __y_mp1m * __fact1 | 
| 295 |                          - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m); | 
| 296 |                   __y_mm = __y_mp1m; | 
| 297 |                   __y_mp1m = __y_lm; | 
| 298 |                 } | 
| 299 |  | 
| 300 |               return __y_lm; | 
| 301 |             } | 
| 302 |         } | 
| 303 |     } | 
| 304 |   } // namespace __detail | 
| 305 | #undef _GLIBCXX_MATH_NS | 
| 306 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 307 | } // namespace tr1 | 
| 308 | #endif | 
| 309 |  | 
| 310 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 311 | } | 
| 312 |  | 
| 313 | #endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC | 
| 314 |  |