| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/modified_bessel_func.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland. | 
| 35 | // | 
| 36 | // References: | 
| 37 | //   (1) Handbook of Mathematical Functions, | 
| 38 | //       Ed. Milton Abramowitz and Irene A. Stegun, | 
| 39 | //       Dover Publications, | 
| 40 | //       Section 9, pp. 355-434, Section 10 pp. 435-478 | 
| 41 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 42 | //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, | 
| 43 | //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), | 
| 44 | //       2nd ed, pp. 246-249. | 
| 45 |  | 
| 46 | #ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC | 
| 47 | #define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1 | 
| 48 |  | 
| 49 | #include "special_function_util.h" | 
| 50 |  | 
| 51 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 52 | { | 
| 53 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 54 |  | 
| 55 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 56 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 57 | namespace tr1 | 
| 58 | { | 
| 59 | #else | 
| 60 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 61 | #endif | 
| 62 |   // [5.2] Special functions | 
| 63 |  | 
| 64 |   // Implementation-space details. | 
| 65 |   namespace __detail | 
| 66 |   { | 
| 67 |     /** | 
| 68 |      *   @brief  Compute the modified Bessel functions @f$ I_\nu(x) @f$ and | 
| 69 |      *           @f$ K_\nu(x) @f$ and their first derivatives | 
| 70 |      *           @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively. | 
| 71 |      *           These four functions are computed together for numerical | 
| 72 |      *           stability. | 
| 73 |      * | 
| 74 |      *   @param  __nu  The order of the Bessel functions. | 
| 75 |      *   @param  __x   The argument of the Bessel functions. | 
| 76 |      *   @param  __Inu  The output regular modified Bessel function. | 
| 77 |      *   @param  __Knu  The output irregular modified Bessel function. | 
| 78 |      *   @param  __Ipnu  The output derivative of the regular | 
| 79 |      *                   modified Bessel function. | 
| 80 |      *   @param  __Kpnu  The output derivative of the irregular | 
| 81 |      *                   modified Bessel function. | 
| 82 |      */ | 
| 83 |     template <typename _Tp> | 
| 84 |     void | 
| 85 |     __bessel_ik(_Tp __nu, _Tp __x, | 
| 86 |                 _Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu) | 
| 87 |     { | 
| 88 |       if (__x == _Tp(0)) | 
| 89 |         { | 
| 90 |           if (__nu == _Tp(0)) | 
| 91 |             { | 
| 92 |               __Inu = _Tp(1); | 
| 93 |               __Ipnu = _Tp(0); | 
| 94 |             } | 
| 95 |           else if (__nu == _Tp(1)) | 
| 96 |             { | 
| 97 |               __Inu = _Tp(0); | 
| 98 |               __Ipnu = _Tp(0.5L); | 
| 99 |             } | 
| 100 |           else | 
| 101 |             { | 
| 102 |               __Inu = _Tp(0); | 
| 103 |               __Ipnu = _Tp(0); | 
| 104 |             } | 
| 105 |           __Knu = std::numeric_limits<_Tp>::infinity(); | 
| 106 |           __Kpnu = -std::numeric_limits<_Tp>::infinity(); | 
| 107 |           return; | 
| 108 |         } | 
| 109 |  | 
| 110 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 111 |       const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon(); | 
| 112 |       const int __max_iter = 15000; | 
| 113 |       const _Tp __x_min = _Tp(2); | 
| 114 |  | 
| 115 |       const int __nl = static_cast<int>(__nu + _Tp(0.5L)); | 
| 116 |  | 
| 117 |       const _Tp __mu = __nu - __nl; | 
| 118 |       const _Tp __mu2 = __mu * __mu; | 
| 119 |       const _Tp __xi = _Tp(1) / __x; | 
| 120 |       const _Tp __xi2 = _Tp(2) * __xi; | 
| 121 |       _Tp __h = __nu * __xi; | 
| 122 |       if ( __h < __fp_min ) | 
| 123 |         __h = __fp_min; | 
| 124 |       _Tp __b = __xi2 * __nu; | 
| 125 |       _Tp __d = _Tp(0); | 
| 126 |       _Tp __c = __h; | 
| 127 |       int __i; | 
| 128 |       for ( __i = 1; __i <= __max_iter; ++__i ) | 
| 129 |         { | 
| 130 |           __b += __xi2; | 
| 131 |           __d = _Tp(1) / (__b + __d); | 
| 132 |           __c = __b + _Tp(1) / __c; | 
| 133 |           const _Tp __del = __c * __d; | 
| 134 |           __h *= __del; | 
| 135 |           if (std::abs(__del - _Tp(1)) < __eps) | 
| 136 |             break; | 
| 137 |         } | 
| 138 |       if (__i > __max_iter) | 
| 139 |         std::__throw_runtime_error(__N("Argument x too large "  | 
| 140 |                                        "in __bessel_ik; "  | 
| 141 |                                        "try asymptotic expansion." )); | 
| 142 |       _Tp __Inul = __fp_min; | 
| 143 |       _Tp __Ipnul = __h * __Inul; | 
| 144 |       _Tp __Inul1 = __Inul; | 
| 145 |       _Tp __Ipnu1 = __Ipnul; | 
| 146 |       _Tp __fact = __nu * __xi; | 
| 147 |       for (int __l = __nl; __l >= 1; --__l) | 
| 148 |         { | 
| 149 |           const _Tp __Inutemp = __fact * __Inul + __Ipnul; | 
| 150 |           __fact -= __xi; | 
| 151 |           __Ipnul = __fact * __Inutemp + __Inul; | 
| 152 |           __Inul = __Inutemp; | 
| 153 |         } | 
| 154 |       _Tp __f = __Ipnul / __Inul; | 
| 155 |       _Tp __Kmu, __Knu1; | 
| 156 |       if (__x < __x_min) | 
| 157 |         { | 
| 158 |           const _Tp __x2 = __x / _Tp(2); | 
| 159 |           const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu; | 
| 160 |           const _Tp __fact = (std::abs(__pimu) < __eps | 
| 161 |                             ? _Tp(1) : __pimu / std::sin(__pimu)); | 
| 162 |           _Tp __d = -std::log(__x2); | 
| 163 |           _Tp __e = __mu * __d; | 
| 164 |           const _Tp __fact2 = (std::abs(__e) < __eps | 
| 165 |                             ? _Tp(1) : std::sinh(__e) / __e); | 
| 166 |           _Tp __gam1, __gam2, __gampl, __gammi; | 
| 167 |           __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi); | 
| 168 |           _Tp __ff = __fact | 
| 169 |                    * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d); | 
| 170 |           _Tp __sum = __ff; | 
| 171 |           __e = std::exp(__e); | 
| 172 |           _Tp __p = __e / (_Tp(2) * __gampl); | 
| 173 |           _Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi); | 
| 174 |           _Tp __c = _Tp(1); | 
| 175 |           __d = __x2 * __x2; | 
| 176 |           _Tp __sum1 = __p; | 
| 177 |           int __i; | 
| 178 |           for (__i = 1; __i <= __max_iter; ++__i) | 
| 179 |             { | 
| 180 |               __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2); | 
| 181 |               __c *= __d / __i; | 
| 182 |               __p /= __i - __mu; | 
| 183 |               __q /= __i + __mu; | 
| 184 |               const _Tp __del = __c * __ff; | 
| 185 |               __sum += __del;  | 
| 186 |               const _Tp __del1 = __c * (__p - __i * __ff); | 
| 187 |               __sum1 += __del1; | 
| 188 |               if (std::abs(__del) < __eps * std::abs(__sum)) | 
| 189 |                 break; | 
| 190 |             } | 
| 191 |           if (__i > __max_iter) | 
| 192 |             std::__throw_runtime_error(__N("Bessel k series failed to converge "  | 
| 193 |                                            "in __bessel_ik." )); | 
| 194 |           __Kmu = __sum; | 
| 195 |           __Knu1 = __sum1 * __xi2; | 
| 196 |         } | 
| 197 |       else | 
| 198 |         { | 
| 199 |           _Tp __b = _Tp(2) * (_Tp(1) + __x); | 
| 200 |           _Tp __d = _Tp(1) / __b; | 
| 201 |           _Tp __delh = __d; | 
| 202 |           _Tp __h = __delh; | 
| 203 |           _Tp __q1 = _Tp(0); | 
| 204 |           _Tp __q2 = _Tp(1); | 
| 205 |           _Tp __a1 = _Tp(0.25L) - __mu2; | 
| 206 |           _Tp __q = __c = __a1; | 
| 207 |           _Tp __a = -__a1; | 
| 208 |           _Tp __s = _Tp(1) + __q * __delh; | 
| 209 |           int __i; | 
| 210 |           for (__i = 2; __i <= __max_iter; ++__i) | 
| 211 |             { | 
| 212 |               __a -= 2 * (__i - 1); | 
| 213 |               __c = -__a * __c / __i; | 
| 214 |               const _Tp __qnew = (__q1 - __b * __q2) / __a; | 
| 215 |               __q1 = __q2; | 
| 216 |               __q2 = __qnew; | 
| 217 |               __q += __c * __qnew; | 
| 218 |               __b += _Tp(2); | 
| 219 |               __d = _Tp(1) / (__b + __a * __d); | 
| 220 |               __delh = (__b * __d - _Tp(1)) * __delh; | 
| 221 |               __h += __delh; | 
| 222 |               const _Tp __dels = __q * __delh; | 
| 223 |               __s += __dels; | 
| 224 |               if ( std::abs(__dels / __s) < __eps ) | 
| 225 |                 break; | 
| 226 |             } | 
| 227 |           if (__i > __max_iter) | 
| 228 |             std::__throw_runtime_error(__N("Steed's method failed "  | 
| 229 |                                            "in __bessel_ik." )); | 
| 230 |           __h = __a1 * __h; | 
| 231 |           __Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x)) | 
| 232 |                 * std::exp(-__x) / __s; | 
| 233 |           __Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi; | 
| 234 |         } | 
| 235 |  | 
| 236 |       _Tp __Kpmu = __mu * __xi * __Kmu - __Knu1; | 
| 237 |       _Tp __Inumu = __xi / (__f * __Kmu - __Kpmu); | 
| 238 |       __Inu = __Inumu * __Inul1 / __Inul; | 
| 239 |       __Ipnu = __Inumu * __Ipnu1 / __Inul; | 
| 240 |       for ( __i = 1; __i <= __nl; ++__i ) | 
| 241 |         { | 
| 242 |           const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu; | 
| 243 |           __Kmu = __Knu1; | 
| 244 |           __Knu1 = __Knutemp; | 
| 245 |         } | 
| 246 |       __Knu = __Kmu; | 
| 247 |       __Kpnu = __nu * __xi * __Kmu - __Knu1; | 
| 248 |    | 
| 249 |       return; | 
| 250 |     } | 
| 251 |  | 
| 252 |  | 
| 253 |     /** | 
| 254 |      *   @brief  Return the regular modified Bessel function of order | 
| 255 |      *           \f$ \nu \f$: \f$ I_{\nu}(x) \f$. | 
| 256 |      * | 
| 257 |      *   The regular modified cylindrical Bessel function is: | 
| 258 |      *   @f[ | 
| 259 |      *    I_{\nu}(x) = \sum_{k=0}^{\infty} | 
| 260 |      *              \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)} | 
| 261 |      *   @f] | 
| 262 |      * | 
| 263 |      *   @param  __nu  The order of the regular modified Bessel function. | 
| 264 |      *   @param  __x   The argument of the regular modified Bessel function. | 
| 265 |      *   @return  The output regular modified Bessel function. | 
| 266 |      */ | 
| 267 |     template<typename _Tp> | 
| 268 |     _Tp | 
| 269 |     __cyl_bessel_i(_Tp __nu, _Tp __x) | 
| 270 |     { | 
| 271 |       if (__nu < _Tp(0) || __x < _Tp(0)) | 
| 272 |         std::__throw_domain_error(__N("Bad argument "  | 
| 273 |                                       "in __cyl_bessel_i." )); | 
| 274 |       else if (__isnan(__nu) || __isnan(__x)) | 
| 275 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 276 |       else if (__x * __x < _Tp(10) * (__nu + _Tp(1))) | 
| 277 |         return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200); | 
| 278 |       else | 
| 279 |         { | 
| 280 |           _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; | 
| 281 |           __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
| 282 |           return __I_nu; | 
| 283 |         } | 
| 284 |     } | 
| 285 |  | 
| 286 |  | 
| 287 |     /** | 
| 288 |      *   @brief  Return the irregular modified Bessel function | 
| 289 |      *           \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$. | 
| 290 |      * | 
| 291 |      *   The irregular modified Bessel function is defined by: | 
| 292 |      *   @f[ | 
| 293 |      *      K_{\nu}(x) = \frac{\pi}{2} | 
| 294 |      *                   \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi} | 
| 295 |      *   @f] | 
| 296 |      *   where for integral \f$ \nu = n \f$ a limit is taken: | 
| 297 |      *   \f$ lim_{\nu \to n} \f$. | 
| 298 |      * | 
| 299 |      *   @param  __nu  The order of the irregular modified Bessel function. | 
| 300 |      *   @param  __x   The argument of the irregular modified Bessel function. | 
| 301 |      *   @return  The output irregular modified Bessel function. | 
| 302 |      */ | 
| 303 |     template<typename _Tp> | 
| 304 |     _Tp | 
| 305 |     __cyl_bessel_k(_Tp __nu, _Tp __x) | 
| 306 |     { | 
| 307 |       if (__nu < _Tp(0) || __x < _Tp(0)) | 
| 308 |         std::__throw_domain_error(__N("Bad argument "  | 
| 309 |                                       "in __cyl_bessel_k." )); | 
| 310 |       else if (__isnan(__nu) || __isnan(__x)) | 
| 311 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 312 |       else | 
| 313 |         { | 
| 314 |           _Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu; | 
| 315 |           __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
| 316 |           return __K_nu; | 
| 317 |         } | 
| 318 |     } | 
| 319 |  | 
| 320 |  | 
| 321 |     /** | 
| 322 |      *   @brief  Compute the spherical modified Bessel functions | 
| 323 |      *           @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first | 
| 324 |      *           derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$ | 
| 325 |      *           respectively. | 
| 326 |      * | 
| 327 |      *   @param  __n  The order of the modified spherical Bessel function. | 
| 328 |      *   @param  __x  The argument of the modified spherical Bessel function. | 
| 329 |      *   @param  __i_n  The output regular modified spherical Bessel function. | 
| 330 |      *   @param  __k_n  The output irregular modified spherical | 
| 331 |      *                  Bessel function. | 
| 332 |      *   @param  __ip_n  The output derivative of the regular modified | 
| 333 |      *                   spherical Bessel function. | 
| 334 |      *   @param  __kp_n  The output derivative of the irregular modified | 
| 335 |      *                   spherical Bessel function. | 
| 336 |      */ | 
| 337 |     template <typename _Tp> | 
| 338 |     void | 
| 339 |     __sph_bessel_ik(unsigned int __n, _Tp __x, | 
| 340 |                     _Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n) | 
| 341 |     { | 
| 342 |       const _Tp __nu = _Tp(__n) + _Tp(0.5L); | 
| 343 |  | 
| 344 |       _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; | 
| 345 |       __bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
| 346 |  | 
| 347 |       const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2() | 
| 348 |                          / std::sqrt(__x); | 
| 349 |  | 
| 350 |       __i_n = __factor * __I_nu; | 
| 351 |       __k_n = __factor * __K_nu; | 
| 352 |       __ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x); | 
| 353 |       __kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x); | 
| 354 |  | 
| 355 |       return; | 
| 356 |     } | 
| 357 |  | 
| 358 |  | 
| 359 |     /** | 
| 360 |      *   @brief  Compute the Airy functions | 
| 361 |      *           @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first | 
| 362 |      *           derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$ | 
| 363 |      *           respectively. | 
| 364 |      * | 
| 365 |      *   @param  __x  The argument of the Airy functions. | 
| 366 |      *   @param  __Ai  The output Airy function of the first kind. | 
| 367 |      *   @param  __Bi  The output Airy function of the second kind. | 
| 368 |      *   @param  __Aip  The output derivative of the Airy function | 
| 369 |      *                  of the first kind. | 
| 370 |      *   @param  __Bip  The output derivative of the Airy function | 
| 371 |      *                  of the second kind. | 
| 372 |      */ | 
| 373 |     template <typename _Tp> | 
| 374 |     void | 
| 375 |     __airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip) | 
| 376 |     { | 
| 377 |       const _Tp __absx = std::abs(__x); | 
| 378 |       const _Tp __rootx = std::sqrt(__absx); | 
| 379 |       const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3); | 
| 380 |       const _Tp _S_NaN = std::numeric_limits<_Tp>::quiet_NaN(); | 
| 381 |       const _Tp _S_inf = std::numeric_limits<_Tp>::infinity(); | 
| 382 |  | 
| 383 |       if (__isnan(__x)) | 
| 384 |         __Bip = __Aip = __Bi = __Ai = std::numeric_limits<_Tp>::quiet_NaN(); | 
| 385 |       else if (__z == _S_inf) | 
| 386 |         { | 
| 387 | 	  __Aip = __Ai = _Tp(0); | 
| 388 | 	  __Bip = __Bi = _S_inf; | 
| 389 | 	} | 
| 390 |       else if (__z == -_S_inf) | 
| 391 | 	__Bip = __Aip = __Bi = __Ai = _Tp(0); | 
| 392 |       else if (__x > _Tp(0)) | 
| 393 |         { | 
| 394 |           _Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu; | 
| 395 |  | 
| 396 |           __bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
| 397 |           __Ai = __rootx * __K_nu | 
| 398 |                / (__numeric_constants<_Tp>::__sqrt3() | 
| 399 |                 * __numeric_constants<_Tp>::__pi()); | 
| 400 |           __Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi() | 
| 401 |                  + _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3()); | 
| 402 |  | 
| 403 |           __bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu); | 
| 404 |           __Aip = -__x * __K_nu | 
| 405 |                 / (__numeric_constants<_Tp>::__sqrt3() | 
| 406 |                  * __numeric_constants<_Tp>::__pi()); | 
| 407 |           __Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi() | 
| 408 |                       + _Tp(2) * __I_nu | 
| 409 |                       / __numeric_constants<_Tp>::__sqrt3()); | 
| 410 |         } | 
| 411 |       else if (__x < _Tp(0)) | 
| 412 |         { | 
| 413 |           _Tp __J_nu, __Jp_nu, __N_nu, __Np_nu; | 
| 414 |  | 
| 415 |           __bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
| 416 |           __Ai = __rootx * (__J_nu | 
| 417 |                     - __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); | 
| 418 |           __Bi = -__rootx * (__N_nu | 
| 419 |                     + __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2); | 
| 420 |  | 
| 421 |           __bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu); | 
| 422 |           __Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3() | 
| 423 |                           + __J_nu) / _Tp(2); | 
| 424 |           __Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3() | 
| 425 |                           - __N_nu) / _Tp(2); | 
| 426 |         } | 
| 427 |       else | 
| 428 |         { | 
| 429 |           //  Reference: | 
| 430 |           //    Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions. | 
| 431 |           //  The number is Ai(0) = 3^{-2/3}/\Gamma(2/3). | 
| 432 |           __Ai = _Tp(0.35502805388781723926L); | 
| 433 |           __Bi = __Ai * __numeric_constants<_Tp>::__sqrt3(); | 
| 434 |  | 
| 435 |           //  Reference: | 
| 436 |           //    Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions. | 
| 437 |           //  The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3). | 
| 438 |           __Aip = -_Tp(0.25881940379280679840L); | 
| 439 |           __Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3(); | 
| 440 |         } | 
| 441 |  | 
| 442 |       return; | 
| 443 |     } | 
| 444 |   } // namespace __detail | 
| 445 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 446 | } // namespace tr1 | 
| 447 | #endif | 
| 448 |  | 
| 449 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 450 | } | 
| 451 |  | 
| 452 | #endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC | 
| 453 |  |