| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/poly_hermite.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       Ed. Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, Section 22 pp. 773-802 | 
| 38 |  | 
| 39 | #ifndef _GLIBCXX_TR1_POLY_HERMITE_TCC | 
| 40 | #define _GLIBCXX_TR1_POLY_HERMITE_TCC 1 | 
| 41 |  | 
| 42 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 43 | { | 
| 44 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 45 |  | 
| 46 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 47 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 48 | namespace tr1 | 
| 49 | { | 
| 50 | #else | 
| 51 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 52 | #endif | 
| 53 |   // [5.2] Special functions | 
| 54 |  | 
| 55 |   // Implementation-space details. | 
| 56 |   namespace __detail | 
| 57 |   { | 
| 58 |     /** | 
| 59 |      *   @brief This routine returns the Hermite polynomial | 
| 60 |      *          of order n: \f$ H_n(x) \f$ by recursion on n. | 
| 61 |      *  | 
| 62 |      *   The Hermite polynomial is defined by: | 
| 63 |      *   @f[ | 
| 64 |      *     H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} | 
| 65 |      *   @f] | 
| 66 |      * | 
| 67 |      *   @param __n The order of the Hermite polynomial. | 
| 68 |      *   @param __x The argument of the Hermite polynomial. | 
| 69 |      *   @return The value of the Hermite polynomial of order n | 
| 70 |      *           and argument x. | 
| 71 |      */ | 
| 72 |     template<typename _Tp> | 
| 73 |     _Tp | 
| 74 |     __poly_hermite_recursion(unsigned int __n, _Tp __x) | 
| 75 |     { | 
| 76 |       //  Compute H_0. | 
| 77 |       _Tp __H_0 = 1; | 
| 78 |       if (__n == 0) | 
| 79 |         return __H_0; | 
| 80 |  | 
| 81 |       //  Compute H_1. | 
| 82 |       _Tp __H_1 = 2 * __x; | 
| 83 |       if (__n == 1) | 
| 84 |         return __H_1; | 
| 85 |  | 
| 86 |       //  Compute H_n. | 
| 87 |       _Tp __H_n, __H_nm1, __H_nm2; | 
| 88 |       unsigned int __i; | 
| 89 |       for  (__H_nm2 = __H_0, __H_nm1 = __H_1, __i = 2; __i <= __n; ++__i) | 
| 90 |         { | 
| 91 |           __H_n = 2 * (__x * __H_nm1 - (__i - 1) * __H_nm2); | 
| 92 |           __H_nm2 = __H_nm1; | 
| 93 |           __H_nm1 = __H_n; | 
| 94 |         } | 
| 95 |  | 
| 96 |       return __H_n; | 
| 97 |     } | 
| 98 |  | 
| 99 |  | 
| 100 |     /** | 
| 101 |      *   @brief This routine returns the Hermite polynomial | 
| 102 |      *          of order n: \f$ H_n(x) \f$. | 
| 103 |      *  | 
| 104 |      *   The Hermite polynomial is defined by: | 
| 105 |      *   @f[ | 
| 106 |      *     H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} | 
| 107 |      *   @f] | 
| 108 |      * | 
| 109 |      *   @param __n The order of the Hermite polynomial. | 
| 110 |      *   @param __x The argument of the Hermite polynomial. | 
| 111 |      *   @return The value of the Hermite polynomial of order n | 
| 112 |      *           and argument x. | 
| 113 |      */ | 
| 114 |     template<typename _Tp> | 
| 115 |     inline _Tp | 
| 116 |     __poly_hermite(unsigned int __n, _Tp __x) | 
| 117 |     { | 
| 118 |       if (__isnan(__x)) | 
| 119 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 120 |       else | 
| 121 |         return __poly_hermite_recursion(__n, __x); | 
| 122 |     } | 
| 123 |   } // namespace __detail | 
| 124 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 125 | } // namespace tr1 | 
| 126 | #endif | 
| 127 |  | 
| 128 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 129 | } | 
| 130 |  | 
| 131 | #endif // _GLIBCXX_TR1_POLY_HERMITE_TCC | 
| 132 |  |