| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/poly_laguerre.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       Ed. Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, | 
| 38 | //       Section 13, pp. 509-510, Section 22 pp. 773-802 | 
| 39 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 40 |  | 
| 41 | #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC | 
| 42 | #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1 | 
| 43 |  | 
| 44 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 45 | { | 
| 46 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 47 |  | 
| 48 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 49 | # define _GLIBCXX_MATH_NS ::std | 
| 50 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 51 | namespace tr1 | 
| 52 | { | 
| 53 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 54 | #else | 
| 55 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 56 | #endif | 
| 57 |   // [5.2] Special functions | 
| 58 |  | 
| 59 |   // Implementation-space details. | 
| 60 |   namespace __detail | 
| 61 |   { | 
| 62 |     /** | 
| 63 |      *   @brief This routine returns the associated Laguerre polynomial  | 
| 64 |      *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n. | 
| 65 |      *   Abramowitz & Stegun, 13.5.21 | 
| 66 |      * | 
| 67 |      *   @param __n The order of the Laguerre function. | 
| 68 |      *   @param __alpha The degree of the Laguerre function. | 
| 69 |      *   @param __x The argument of the Laguerre function. | 
| 70 |      *   @return The value of the Laguerre function of order n, | 
| 71 |      *           degree @f$ \alpha @f$, and argument x. | 
| 72 |      * | 
| 73 |      *  This is from the GNU Scientific Library. | 
| 74 |      */ | 
| 75 |     template<typename _Tpa, typename _Tp> | 
| 76 |     _Tp | 
| 77 |     __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x) | 
| 78 |     { | 
| 79 |       const _Tp __a = -_Tp(__n); | 
| 80 |       const _Tp __b = _Tp(__alpha1) + _Tp(1); | 
| 81 |       const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a; | 
| 82 |       const _Tp __cos2th = __x / __eta; | 
| 83 |       const _Tp __sin2th = _Tp(1) - __cos2th; | 
| 84 |       const _Tp __th = std::acos(std::sqrt(__cos2th)); | 
| 85 |       const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2() | 
| 86 |                         * __numeric_constants<_Tp>::__pi_2() | 
| 87 |                         * __eta * __eta * __cos2th * __sin2th; | 
| 88 |  | 
| 89 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 90 |       const _Tp __lg_b = _GLIBCXX_MATH_NS::lgamma(_Tp(__n) + __b); | 
| 91 |       const _Tp __lnfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); | 
| 92 | #else | 
| 93 |       const _Tp __lg_b = __log_gamma(_Tp(__n) + __b); | 
| 94 |       const _Tp __lnfact = __log_gamma(_Tp(__n + 1)); | 
| 95 | #endif | 
| 96 |  | 
| 97 |       _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b) | 
| 98 |                       * std::log(_Tp(0.25L) * __x * __eta); | 
| 99 |       _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h); | 
| 100 |       _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x | 
| 101 |                       + __pre_term1 - __pre_term2; | 
| 102 |       _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi()); | 
| 103 |       _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta | 
| 104 |                               * (_Tp(2) * __th | 
| 105 |                                - std::sin(_Tp(2) * __th)) | 
| 106 |                                + __numeric_constants<_Tp>::__pi_4()); | 
| 107 |       _Tp __ser = __ser_term1 + __ser_term2; | 
| 108 |  | 
| 109 |       return std::exp(__lnpre) * __ser; | 
| 110 |     } | 
| 111 |  | 
| 112 |  | 
| 113 |     /** | 
| 114 |      *  @brief  Evaluate the polynomial based on the confluent hypergeometric | 
| 115 |      *          function in a safe way, with no restriction on the arguments. | 
| 116 |      * | 
| 117 |      *   The associated Laguerre function is defined by | 
| 118 |      *   @f[ | 
| 119 |      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
| 120 |      *                       _1F_1(-n; \alpha + 1; x) | 
| 121 |      *   @f] | 
| 122 |      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
| 123 |      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
| 124 |      * | 
| 125 |      *  This function assumes x != 0. | 
| 126 |      * | 
| 127 |      *  This is from the GNU Scientific Library. | 
| 128 |      */ | 
| 129 |     template<typename _Tpa, typename _Tp> | 
| 130 |     _Tp | 
| 131 |     __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x) | 
| 132 |     { | 
| 133 |       const _Tp __b = _Tp(__alpha1) + _Tp(1); | 
| 134 |       const _Tp __mx = -__x; | 
| 135 |       const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1) | 
| 136 |                          : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1))); | 
| 137 |       //  Get |x|^n/n! | 
| 138 |       _Tp __tc = _Tp(1); | 
| 139 |       const _Tp __ax = std::abs(__x); | 
| 140 |       for (unsigned int __k = 1; __k <= __n; ++__k) | 
| 141 |         __tc *= (__ax / __k); | 
| 142 |  | 
| 143 |       _Tp __term = __tc * __tc_sgn; | 
| 144 |       _Tp __sum = __term; | 
| 145 |       for (int __k = int(__n) - 1; __k >= 0; --__k) | 
| 146 |         { | 
| 147 |           __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k)) | 
| 148 |                   * _Tp(__k + 1) / __mx; | 
| 149 |           __sum += __term; | 
| 150 |         } | 
| 151 |  | 
| 152 |       return __sum; | 
| 153 |     } | 
| 154 |  | 
| 155 |  | 
| 156 |     /** | 
| 157 |      *   @brief This routine returns the associated Laguerre polynomial  | 
| 158 |      *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$ | 
| 159 |      *          by recursion. | 
| 160 |      * | 
| 161 |      *   The associated Laguerre function is defined by | 
| 162 |      *   @f[ | 
| 163 |      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
| 164 |      *                       _1F_1(-n; \alpha + 1; x) | 
| 165 |      *   @f] | 
| 166 |      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
| 167 |      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
| 168 |      * | 
| 169 |      *   The associated Laguerre polynomial is defined for integral | 
| 170 |      *   @f$ \alpha = m @f$ by: | 
| 171 |      *   @f[ | 
| 172 |      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
| 173 |      *   @f] | 
| 174 |      *   where the Laguerre polynomial is defined by: | 
| 175 |      *   @f[ | 
| 176 |      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
| 177 |      *   @f] | 
| 178 |      * | 
| 179 |      *   @param __n The order of the Laguerre function. | 
| 180 |      *   @param __alpha The degree of the Laguerre function. | 
| 181 |      *   @param __x The argument of the Laguerre function. | 
| 182 |      *   @return The value of the Laguerre function of order n, | 
| 183 |      *           degree @f$ \alpha @f$, and argument x. | 
| 184 |      */ | 
| 185 |     template<typename _Tpa, typename _Tp> | 
| 186 |     _Tp | 
| 187 |     __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x) | 
| 188 |     { | 
| 189 |       //   Compute l_0. | 
| 190 |       _Tp __l_0 = _Tp(1); | 
| 191 |       if  (__n == 0) | 
| 192 |         return __l_0; | 
| 193 |  | 
| 194 |       //  Compute l_1^alpha. | 
| 195 |       _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1); | 
| 196 |       if  (__n == 1) | 
| 197 |         return __l_1; | 
| 198 |  | 
| 199 |       //  Compute l_n^alpha by recursion on n. | 
| 200 |       _Tp __l_n2 = __l_0; | 
| 201 |       _Tp __l_n1 = __l_1; | 
| 202 |       _Tp __l_n = _Tp(0); | 
| 203 |       for  (unsigned int __nn = 2; __nn <= __n; ++__nn) | 
| 204 |         { | 
| 205 |             __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x) | 
| 206 |                   * __l_n1 / _Tp(__nn) | 
| 207 |                   - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn); | 
| 208 |             __l_n2 = __l_n1; | 
| 209 |             __l_n1 = __l_n; | 
| 210 |         } | 
| 211 |  | 
| 212 |       return __l_n; | 
| 213 |     } | 
| 214 |  | 
| 215 |  | 
| 216 |     /** | 
| 217 |      *   @brief This routine returns the associated Laguerre polynomial | 
| 218 |      *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$. | 
| 219 |      * | 
| 220 |      *   The associated Laguerre function is defined by | 
| 221 |      *   @f[ | 
| 222 |      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!} | 
| 223 |      *                       _1F_1(-n; \alpha + 1; x) | 
| 224 |      *   @f] | 
| 225 |      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and | 
| 226 |      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function. | 
| 227 |      * | 
| 228 |      *   The associated Laguerre polynomial is defined for integral | 
| 229 |      *   @f$ \alpha = m @f$ by: | 
| 230 |      *   @f[ | 
| 231 |      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
| 232 |      *   @f] | 
| 233 |      *   where the Laguerre polynomial is defined by: | 
| 234 |      *   @f[ | 
| 235 |      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
| 236 |      *   @f] | 
| 237 |      * | 
| 238 |      *   @param __n The order of the Laguerre function. | 
| 239 |      *   @param __alpha The degree of the Laguerre function. | 
| 240 |      *   @param __x The argument of the Laguerre function. | 
| 241 |      *   @return The value of the Laguerre function of order n, | 
| 242 |      *           degree @f$ \alpha @f$, and argument x. | 
| 243 |      */ | 
| 244 |     template<typename _Tpa, typename _Tp> | 
| 245 |     _Tp | 
| 246 |     __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x) | 
| 247 |     { | 
| 248 |       if (__x < _Tp(0)) | 
| 249 |         std::__throw_domain_error(__N("Negative argument "  | 
| 250 |                                       "in __poly_laguerre." )); | 
| 251 |       //  Return NaN on NaN input. | 
| 252 |       else if (__isnan(__x)) | 
| 253 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 254 |       else if (__n == 0) | 
| 255 |         return _Tp(1); | 
| 256 |       else if (__n == 1) | 
| 257 |         return _Tp(1) + _Tp(__alpha1) - __x; | 
| 258 |       else if (__x == _Tp(0)) | 
| 259 |         { | 
| 260 |           _Tp __prod = _Tp(__alpha1) + _Tp(1); | 
| 261 |           for (unsigned int __k = 2; __k <= __n; ++__k) | 
| 262 |             __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k); | 
| 263 |           return __prod; | 
| 264 |         } | 
| 265 |       else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1) | 
| 266 |             && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n)) | 
| 267 |         return __poly_laguerre_large_n(__n, __alpha1, __x); | 
| 268 |       else if (_Tp(__alpha1) >= _Tp(0) | 
| 269 |            || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1))) | 
| 270 |         return __poly_laguerre_recursion(__n, __alpha1, __x); | 
| 271 |       else | 
| 272 |         return __poly_laguerre_hyperg(__n, __alpha1, __x); | 
| 273 |     } | 
| 274 |  | 
| 275 |  | 
| 276 |     /** | 
| 277 |      *   @brief This routine returns the associated Laguerre polynomial | 
| 278 |      *          of order n, degree m: @f$ L_n^m(x) @f$. | 
| 279 |      * | 
| 280 |      *   The associated Laguerre polynomial is defined for integral | 
| 281 |      *   @f$ \alpha = m @f$ by: | 
| 282 |      *   @f[ | 
| 283 |      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x) | 
| 284 |      *   @f] | 
| 285 |      *   where the Laguerre polynomial is defined by: | 
| 286 |      *   @f[ | 
| 287 |      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
| 288 |      *   @f] | 
| 289 |      * | 
| 290 |      *   @param __n The order of the Laguerre polynomial. | 
| 291 |      *   @param __m The degree of the Laguerre polynomial. | 
| 292 |      *   @param __x The argument of the Laguerre polynomial. | 
| 293 |      *   @return The value of the associated Laguerre polynomial of order n, | 
| 294 |      *           degree m, and argument x. | 
| 295 |      */ | 
| 296 |     template<typename _Tp> | 
| 297 |     inline _Tp | 
| 298 |     __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) | 
| 299 |     { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); } | 
| 300 |  | 
| 301 |  | 
| 302 |     /** | 
| 303 |      *   @brief This routine returns the Laguerre polynomial | 
| 304 |      *          of order n: @f$ L_n(x) @f$. | 
| 305 |      * | 
| 306 |      *   The Laguerre polynomial is defined by: | 
| 307 |      *   @f[ | 
| 308 |      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x}) | 
| 309 |      *   @f] | 
| 310 |      * | 
| 311 |      *   @param __n The order of the Laguerre polynomial. | 
| 312 |      *   @param __x The argument of the Laguerre polynomial. | 
| 313 |      *   @return The value of the Laguerre polynomial of order n | 
| 314 |      *           and argument x. | 
| 315 |      */ | 
| 316 |     template<typename _Tp> | 
| 317 |     inline _Tp | 
| 318 |     __laguerre(unsigned int __n, _Tp __x) | 
| 319 |     { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); } | 
| 320 |   } // namespace __detail | 
| 321 | #undef _GLIBCXX_MATH_NS | 
| 322 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 323 | } // namespace tr1 | 
| 324 | #endif | 
| 325 |  | 
| 326 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 327 | } | 
| 328 |  | 
| 329 | #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC | 
| 330 |  |