| 1 | // Special functions -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2006-2018 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 | // | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 | // | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file tr1/riemann_zeta.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{tr1/cmath} | 
| 28 |  */ | 
| 29 |  | 
| 30 | // | 
| 31 | // ISO C++ 14882 TR1: 5.2  Special functions | 
| 32 | // | 
| 33 |  | 
| 34 | // Written by Edward Smith-Rowland based on: | 
| 35 | //   (1) Handbook of Mathematical Functions, | 
| 36 | //       Ed. by Milton Abramowitz and Irene A. Stegun, | 
| 37 | //       Dover Publications, New-York, Section 5, pp. 807-808. | 
| 38 | //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl | 
| 39 | //   (3) Gamma, Exploring Euler's Constant, Julian Havil, | 
| 40 | //       Princeton, 2003. | 
| 41 |  | 
| 42 | #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC | 
| 43 | #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1 | 
| 44 |  | 
| 45 | #include "special_function_util.h" | 
| 46 |  | 
| 47 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 48 | { | 
| 49 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 50 |  | 
| 51 | #if _GLIBCXX_USE_STD_SPEC_FUNCS | 
| 52 | # define _GLIBCXX_MATH_NS ::std | 
| 53 | #elif defined(_GLIBCXX_TR1_CMATH) | 
| 54 | namespace tr1 | 
| 55 | { | 
| 56 | # define _GLIBCXX_MATH_NS ::std::tr1 | 
| 57 | #else | 
| 58 | # error do not include this header directly, use <cmath> or <tr1/cmath> | 
| 59 | #endif | 
| 60 |   // [5.2] Special functions | 
| 61 |  | 
| 62 |   // Implementation-space details. | 
| 63 |   namespace __detail | 
| 64 |   { | 
| 65 |     /** | 
| 66 |      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$ | 
| 67 |      *           by summation for s > 1. | 
| 68 |      *  | 
| 69 |      *   The Riemann zeta function is defined by: | 
| 70 |      *    \f[ | 
| 71 |      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 | 
| 72 |      *    \f] | 
| 73 |      *   For s < 1 use the reflection formula: | 
| 74 |      *    \f[ | 
| 75 |      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) | 
| 76 |      *    \f] | 
| 77 |      */ | 
| 78 |     template<typename _Tp> | 
| 79 |     _Tp | 
| 80 |     __riemann_zeta_sum(_Tp __s) | 
| 81 |     { | 
| 82 |       //  A user shouldn't get to this. | 
| 83 |       if (__s < _Tp(1)) | 
| 84 |         std::__throw_domain_error(__N("Bad argument in zeta sum." )); | 
| 85 |  | 
| 86 |       const unsigned int max_iter = 10000; | 
| 87 |       _Tp __zeta = _Tp(0); | 
| 88 |       for (unsigned int __k = 1; __k < max_iter; ++__k) | 
| 89 |         { | 
| 90 |           _Tp __term = std::pow(static_cast<_Tp>(__k), -__s); | 
| 91 |           if (__term < std::numeric_limits<_Tp>::epsilon()) | 
| 92 |             { | 
| 93 |               break; | 
| 94 |             } | 
| 95 |           __zeta += __term; | 
| 96 |         } | 
| 97 |  | 
| 98 |       return __zeta; | 
| 99 |     } | 
| 100 |  | 
| 101 |  | 
| 102 |     /** | 
| 103 |      *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$ | 
| 104 |      *           by an alternate series for s > 0. | 
| 105 |      *  | 
| 106 |      *   The Riemann zeta function is defined by: | 
| 107 |      *    \f[ | 
| 108 |      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 | 
| 109 |      *    \f] | 
| 110 |      *   For s < 1 use the reflection formula: | 
| 111 |      *    \f[ | 
| 112 |      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) | 
| 113 |      *    \f] | 
| 114 |      */ | 
| 115 |     template<typename _Tp> | 
| 116 |     _Tp | 
| 117 |     __riemann_zeta_alt(_Tp __s) | 
| 118 |     { | 
| 119 |       _Tp __sgn = _Tp(1); | 
| 120 |       _Tp __zeta = _Tp(0); | 
| 121 |       for (unsigned int __i = 1; __i < 10000000; ++__i) | 
| 122 |         { | 
| 123 |           _Tp __term = __sgn / std::pow(__i, __s); | 
| 124 |           if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) | 
| 125 |             break; | 
| 126 |           __zeta += __term; | 
| 127 |           __sgn *= _Tp(-1); | 
| 128 |         } | 
| 129 |       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); | 
| 130 |  | 
| 131 |       return __zeta; | 
| 132 |     } | 
| 133 |  | 
| 134 |  | 
| 135 |     /** | 
| 136 |      *   @brief  Evaluate the Riemann zeta function by series for all s != 1. | 
| 137 |      *           Convergence is great until largish negative numbers. | 
| 138 |      *           Then the convergence of the > 0 sum gets better. | 
| 139 |      * | 
| 140 |      *   The series is: | 
| 141 |      *    \f[ | 
| 142 |      *      \zeta(s) = \frac{1}{1-2^{1-s}} | 
| 143 |      *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} | 
| 144 |      *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s} | 
| 145 |      *    \f] | 
| 146 |      *   Havil 2003, p. 206. | 
| 147 |      * | 
| 148 |      *   The Riemann zeta function is defined by: | 
| 149 |      *    \f[ | 
| 150 |      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 | 
| 151 |      *    \f] | 
| 152 |      *   For s < 1 use the reflection formula: | 
| 153 |      *    \f[ | 
| 154 |      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) | 
| 155 |      *    \f] | 
| 156 |      */ | 
| 157 |     template<typename _Tp> | 
| 158 |     _Tp | 
| 159 |     __riemann_zeta_glob(_Tp __s) | 
| 160 |     { | 
| 161 |       _Tp __zeta = _Tp(0); | 
| 162 |  | 
| 163 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 164 |       //  Max e exponent before overflow. | 
| 165 |       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 | 
| 166 |                                * std::log(_Tp(10)) - _Tp(1); | 
| 167 |  | 
| 168 |       //  This series works until the binomial coefficient blows up | 
| 169 |       //  so use reflection. | 
| 170 |       if (__s < _Tp(0)) | 
| 171 |         { | 
| 172 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 173 |           if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0)) | 
| 174 |             return _Tp(0); | 
| 175 |           else | 
| 176 | #endif | 
| 177 |             { | 
| 178 |               _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s); | 
| 179 |               __zeta *= std::pow(_Tp(2) | 
| 180 |                      * __numeric_constants<_Tp>::__pi(), __s) | 
| 181 |                      * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) | 
| 182 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 183 |                      * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) | 
| 184 | #else | 
| 185 |                      * std::exp(__log_gamma(_Tp(1) - __s)) | 
| 186 | #endif | 
| 187 |                      / __numeric_constants<_Tp>::__pi(); | 
| 188 |               return __zeta; | 
| 189 |             } | 
| 190 |         } | 
| 191 |  | 
| 192 |       _Tp __num = _Tp(0.5L); | 
| 193 |       const unsigned int __maxit = 10000; | 
| 194 |       for (unsigned int __i = 0; __i < __maxit; ++__i) | 
| 195 |         { | 
| 196 |           bool __punt = false; | 
| 197 |           _Tp __sgn = _Tp(1); | 
| 198 |           _Tp __term = _Tp(0); | 
| 199 |           for (unsigned int __j = 0; __j <= __i; ++__j) | 
| 200 |             { | 
| 201 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 202 |               _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) | 
| 203 |                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) | 
| 204 |                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); | 
| 205 | #else | 
| 206 |               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i)) | 
| 207 |                               - __log_gamma(_Tp(1 + __j)) | 
| 208 |                               - __log_gamma(_Tp(1 + __i - __j)); | 
| 209 | #endif | 
| 210 |               if (__bincoeff > __max_bincoeff) | 
| 211 |                 { | 
| 212 |                   //  This only gets hit for x << 0. | 
| 213 |                   __punt = true; | 
| 214 |                   break; | 
| 215 |                 } | 
| 216 |               __bincoeff = std::exp(__bincoeff); | 
| 217 |               __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s); | 
| 218 |               __sgn *= _Tp(-1); | 
| 219 |             } | 
| 220 |           if (__punt) | 
| 221 |             break; | 
| 222 |           __term *= __num; | 
| 223 |           __zeta += __term; | 
| 224 |           if (std::abs(__term/__zeta) < __eps) | 
| 225 |             break; | 
| 226 |           __num *= _Tp(0.5L); | 
| 227 |         } | 
| 228 |  | 
| 229 |       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s); | 
| 230 |  | 
| 231 |       return __zeta; | 
| 232 |     } | 
| 233 |  | 
| 234 |  | 
| 235 |     /** | 
| 236 |      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$ | 
| 237 |      *           using the product over prime factors. | 
| 238 |      *    \f[ | 
| 239 |      *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}} | 
| 240 |      *    \f] | 
| 241 |      *    where @f$ {p_i} @f$ are the prime numbers. | 
| 242 |      *  | 
| 243 |      *   The Riemann zeta function is defined by: | 
| 244 |      *    \f[ | 
| 245 |      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1 | 
| 246 |      *    \f] | 
| 247 |      *   For s < 1 use the reflection formula: | 
| 248 |      *    \f[ | 
| 249 |      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) | 
| 250 |      *    \f] | 
| 251 |      */ | 
| 252 |     template<typename _Tp> | 
| 253 |     _Tp | 
| 254 |     __riemann_zeta_product(_Tp __s) | 
| 255 |     { | 
| 256 |       static const _Tp __prime[] = { | 
| 257 |         _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19), | 
| 258 |         _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47), | 
| 259 |         _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79), | 
| 260 |         _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109) | 
| 261 |       }; | 
| 262 |       static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp); | 
| 263 |  | 
| 264 |       _Tp __zeta = _Tp(1); | 
| 265 |       for (unsigned int __i = 0; __i < __num_primes; ++__i) | 
| 266 |         { | 
| 267 |           const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s); | 
| 268 |           __zeta *= __fact; | 
| 269 |           if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon()) | 
| 270 |             break; | 
| 271 |         } | 
| 272 |  | 
| 273 |       __zeta = _Tp(1) / __zeta; | 
| 274 |  | 
| 275 |       return __zeta; | 
| 276 |     } | 
| 277 |  | 
| 278 |  | 
| 279 |     /** | 
| 280 |      *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$. | 
| 281 |      *  | 
| 282 |      *   The Riemann zeta function is defined by: | 
| 283 |      *    \f[ | 
| 284 |      *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1 | 
| 285 |      *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2}) | 
| 286 |      *                 \Gamma (1 - s) \zeta (1 - s) for s < 1 | 
| 287 |      *    \f] | 
| 288 |      *   For s < 1 use the reflection formula: | 
| 289 |      *    \f[ | 
| 290 |      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) | 
| 291 |      *    \f] | 
| 292 |      */ | 
| 293 |     template<typename _Tp> | 
| 294 |     _Tp | 
| 295 |     __riemann_zeta(_Tp __s) | 
| 296 |     { | 
| 297 |       if (__isnan(__s)) | 
| 298 |         return std::numeric_limits<_Tp>::quiet_NaN(); | 
| 299 |       else if (__s == _Tp(1)) | 
| 300 |         return std::numeric_limits<_Tp>::infinity(); | 
| 301 |       else if (__s < -_Tp(19)) | 
| 302 |         { | 
| 303 |           _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s); | 
| 304 |           __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s) | 
| 305 |                  * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) | 
| 306 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 307 |                  * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s)) | 
| 308 | #else | 
| 309 |                  * std::exp(__log_gamma(_Tp(1) - __s)) | 
| 310 | #endif | 
| 311 |                  / __numeric_constants<_Tp>::__pi(); | 
| 312 |           return __zeta; | 
| 313 |         } | 
| 314 |       else if (__s < _Tp(20)) | 
| 315 |         { | 
| 316 |           //  Global double sum or McLaurin? | 
| 317 |           bool __glob = true; | 
| 318 |           if (__glob) | 
| 319 |             return __riemann_zeta_glob(__s); | 
| 320 |           else | 
| 321 |             { | 
| 322 |               if (__s > _Tp(1)) | 
| 323 |                 return __riemann_zeta_sum(__s); | 
| 324 |               else | 
| 325 |                 { | 
| 326 |                   _Tp __zeta = std::pow(_Tp(2) | 
| 327 |                                 * __numeric_constants<_Tp>::__pi(), __s) | 
| 328 |                          * std::sin(__numeric_constants<_Tp>::__pi_2() * __s) | 
| 329 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 330 |                              * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s) | 
| 331 | #else | 
| 332 |                              * std::exp(__log_gamma(_Tp(1) - __s)) | 
| 333 | #endif | 
| 334 |                              * __riemann_zeta_sum(_Tp(1) - __s); | 
| 335 |                   return __zeta; | 
| 336 |                 } | 
| 337 |             } | 
| 338 |         } | 
| 339 |       else | 
| 340 |         return __riemann_zeta_product(__s); | 
| 341 |     } | 
| 342 |  | 
| 343 |  | 
| 344 |     /** | 
| 345 |      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ | 
| 346 |      *           for all s != 1 and x > -1. | 
| 347 |      *  | 
| 348 |      *   The Hurwitz zeta function is defined by: | 
| 349 |      *   @f[ | 
| 350 |      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} | 
| 351 |      *   @f] | 
| 352 |      *   The Riemann zeta function is a special case: | 
| 353 |      *   @f[ | 
| 354 |      *     \zeta(s) = \zeta(1,s) | 
| 355 |      *   @f] | 
| 356 |      *  | 
| 357 |      *   This functions uses the double sum that converges for s != 1 | 
| 358 |      *   and x > -1: | 
| 359 |      *   @f[ | 
| 360 |      *     \zeta(x,s) = \frac{1}{s-1} | 
| 361 |      *                \sum_{n=0}^{\infty} \frac{1}{n + 1} | 
| 362 |      *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s} | 
| 363 |      *   @f] | 
| 364 |      */ | 
| 365 |     template<typename _Tp> | 
| 366 |     _Tp | 
| 367 |     __hurwitz_zeta_glob(_Tp __a, _Tp __s) | 
| 368 |     { | 
| 369 |       _Tp __zeta = _Tp(0); | 
| 370 |  | 
| 371 |       const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); | 
| 372 |       //  Max e exponent before overflow. | 
| 373 |       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10 | 
| 374 |                                * std::log(_Tp(10)) - _Tp(1); | 
| 375 |  | 
| 376 |       const unsigned int __maxit = 10000; | 
| 377 |       for (unsigned int __i = 0; __i < __maxit; ++__i) | 
| 378 |         { | 
| 379 |           bool __punt = false; | 
| 380 |           _Tp __sgn = _Tp(1); | 
| 381 |           _Tp __term = _Tp(0); | 
| 382 |           for (unsigned int __j = 0; __j <= __i; ++__j) | 
| 383 |             { | 
| 384 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 385 |               _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i)) | 
| 386 |                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j)) | 
| 387 |                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j)); | 
| 388 | #else | 
| 389 |               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i)) | 
| 390 |                               - __log_gamma(_Tp(1 + __j)) | 
| 391 |                               - __log_gamma(_Tp(1 + __i - __j)); | 
| 392 | #endif | 
| 393 |               if (__bincoeff > __max_bincoeff) | 
| 394 |                 { | 
| 395 |                   //  This only gets hit for x << 0. | 
| 396 |                   __punt = true; | 
| 397 |                   break; | 
| 398 |                 } | 
| 399 |               __bincoeff = std::exp(__bincoeff); | 
| 400 |               __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s); | 
| 401 |               __sgn *= _Tp(-1); | 
| 402 |             } | 
| 403 |           if (__punt) | 
| 404 |             break; | 
| 405 |           __term /= _Tp(__i + 1); | 
| 406 |           if (std::abs(__term / __zeta) < __eps) | 
| 407 |             break; | 
| 408 |           __zeta += __term; | 
| 409 |         } | 
| 410 |  | 
| 411 |       __zeta /= __s - _Tp(1); | 
| 412 |  | 
| 413 |       return __zeta; | 
| 414 |     } | 
| 415 |  | 
| 416 |  | 
| 417 |     /** | 
| 418 |      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$ | 
| 419 |      *           for all s != 1 and x > -1. | 
| 420 |      *  | 
| 421 |      *   The Hurwitz zeta function is defined by: | 
| 422 |      *   @f[ | 
| 423 |      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s} | 
| 424 |      *   @f] | 
| 425 |      *   The Riemann zeta function is a special case: | 
| 426 |      *   @f[ | 
| 427 |      *     \zeta(s) = \zeta(1,s) | 
| 428 |      *   @f] | 
| 429 |      */ | 
| 430 |     template<typename _Tp> | 
| 431 |     inline _Tp | 
| 432 |     __hurwitz_zeta(_Tp __a, _Tp __s) | 
| 433 |     { return __hurwitz_zeta_glob(__a, __s); } | 
| 434 |   } // namespace __detail | 
| 435 | #undef _GLIBCXX_MATH_NS | 
| 436 | #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) | 
| 437 | } // namespace tr1 | 
| 438 | #endif | 
| 439 |  | 
| 440 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 441 | } | 
| 442 |  | 
| 443 | #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC | 
| 444 |  |