| 1 | // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions are |
| 4 | // met: |
| 5 | // |
| 6 | // * Redistributions of source code must retain the above copyright |
| 7 | // notice, this list of conditions and the following disclaimer. |
| 8 | // * Redistributions in binary form must reproduce the above |
| 9 | // copyright notice, this list of conditions and the following |
| 10 | // disclaimer in the documentation and/or other materials provided |
| 11 | // with the distribution. |
| 12 | // * Neither the name of Google Inc. nor the names of its |
| 13 | // contributors may be used to endorse or promote products derived |
| 14 | // from this software without specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | |
| 28 | #ifndef DOUBLE_CONVERSION_UTILS_H_ |
| 29 | #define DOUBLE_CONVERSION_UTILS_H_ |
| 30 | |
| 31 | #include <stdlib.h> |
| 32 | #include <string.h> |
| 33 | |
| 34 | #include <assert.h> |
| 35 | #ifndef ASSERT |
| 36 | #define ASSERT(condition) \ |
| 37 | assert(condition); |
| 38 | #endif |
| 39 | #ifndef UNIMPLEMENTED |
| 40 | #define UNIMPLEMENTED() (abort()) |
| 41 | #endif |
| 42 | #ifndef UNREACHABLE |
| 43 | #define UNREACHABLE() (abort()) |
| 44 | #endif |
| 45 | |
| 46 | // Double operations detection based on target architecture. |
| 47 | // Linux uses a 80bit wide floating point stack on x86. This induces double |
| 48 | // rounding, which in turn leads to wrong results. |
| 49 | // An easy way to test if the floating-point operations are correct is to |
| 50 | // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then |
| 51 | // the result is equal to 89255e-22. |
| 52 | // The best way to test this, is to create a division-function and to compare |
| 53 | // the output of the division with the expected result. (Inlining must be |
| 54 | // disabled.) |
| 55 | // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) |
| 56 | #if defined(_M_X64) || defined(__x86_64__) || \ |
| 57 | defined(__ARMEL__) || defined(__avr32__) || \ |
| 58 | defined(__hppa__) || defined(__ia64__) || \ |
| 59 | defined(__mips__) || \ |
| 60 | defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ |
| 61 | defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ |
| 62 | defined(__SH4__) || defined(__alpha__) || \ |
| 63 | defined(_MIPS_ARCH_MIPS32R2) || \ |
| 64 | defined(__AARCH64EL__) |
| 65 | #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| 66 | #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) |
| 67 | #if defined(_WIN32) |
| 68 | // Windows uses a 64bit wide floating point stack. |
| 69 | #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| 70 | #else |
| 71 | #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
| 72 | #endif // _WIN32 |
| 73 | #elif defined(__m68k__) |
| 74 | // The MC68881 also uses an 80bit wide floating point stack. |
| 75 | #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
| 76 | #else |
| 77 | #error Target architecture was not detected as supported by Double-Conversion. |
| 78 | #endif |
| 79 | |
| 80 | #if defined(__GNUC__) |
| 81 | #define DOUBLE_CONVERSION_UNUSED __attribute__((unused)) |
| 82 | #else |
| 83 | #define DOUBLE_CONVERSION_UNUSED |
| 84 | #endif |
| 85 | |
| 86 | #if defined(_WIN32) && !defined(__MINGW32__) |
| 87 | |
| 88 | typedef signed char int8_t; |
| 89 | typedef unsigned char uint8_t; |
| 90 | typedef short int16_t; // NOLINT |
| 91 | typedef unsigned short uint16_t; // NOLINT |
| 92 | typedef int int32_t; |
| 93 | typedef unsigned int uint32_t; |
| 94 | typedef __int64 int64_t; |
| 95 | typedef unsigned __int64 uint64_t; |
| 96 | // intptr_t and friends are defined in crtdefs.h through stdio.h. |
| 97 | |
| 98 | #else |
| 99 | |
| 100 | #include <stdint.h> |
| 101 | |
| 102 | #endif |
| 103 | |
| 104 | typedef uint16_t uc16; |
| 105 | |
| 106 | // The following macro works on both 32 and 64-bit platforms. |
| 107 | // Usage: instead of writing 0x1234567890123456 |
| 108 | // write UINT64_2PART_C(0x12345678,90123456); |
| 109 | #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
| 110 | |
| 111 | |
| 112 | // The expression ARRAY_SIZE(a) is a compile-time constant of type |
| 113 | // size_t which represents the number of elements of the given |
| 114 | // array. You should only use ARRAY_SIZE on statically allocated |
| 115 | // arrays. |
| 116 | #ifndef ARRAY_SIZE |
| 117 | #define ARRAY_SIZE(a) \ |
| 118 | ((sizeof(a) / sizeof(*(a))) / \ |
| 119 | static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
| 120 | #endif |
| 121 | |
| 122 | // A macro to disallow the evil copy constructor and operator= functions |
| 123 | // This should be used in the private: declarations for a class |
| 124 | #ifndef DISALLOW_COPY_AND_ASSIGN |
| 125 | #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
| 126 | TypeName(const TypeName&); \ |
| 127 | void operator=(const TypeName&) |
| 128 | #endif |
| 129 | |
| 130 | // A macro to disallow all the implicit constructors, namely the |
| 131 | // default constructor, copy constructor and operator= functions. |
| 132 | // |
| 133 | // This should be used in the private: declarations for a class |
| 134 | // that wants to prevent anyone from instantiating it. This is |
| 135 | // especially useful for classes containing only static methods. |
| 136 | #ifndef DISALLOW_IMPLICIT_CONSTRUCTORS |
| 137 | #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
| 138 | TypeName(); \ |
| 139 | DISALLOW_COPY_AND_ASSIGN(TypeName) |
| 140 | #endif |
| 141 | |
| 142 | namespace double_conversion { |
| 143 | |
| 144 | static const int kCharSize = sizeof(char); |
| 145 | |
| 146 | // Returns the maximum of the two parameters. |
| 147 | template <typename T> |
| 148 | static T Max(T a, T b) { |
| 149 | return a < b ? b : a; |
| 150 | } |
| 151 | |
| 152 | |
| 153 | // Returns the minimum of the two parameters. |
| 154 | template <typename T> |
| 155 | static T Min(T a, T b) { |
| 156 | return a < b ? a : b; |
| 157 | } |
| 158 | |
| 159 | |
| 160 | inline int StrLength(const char* string) { |
| 161 | size_t length = strlen(string); |
| 162 | ASSERT(length == static_cast<size_t>(static_cast<int>(length))); |
| 163 | return static_cast<int>(length); |
| 164 | } |
| 165 | |
| 166 | // This is a simplified version of V8's Vector class. |
| 167 | template <typename T> |
| 168 | class Vector { |
| 169 | public: |
| 170 | Vector() : start_(NULL), length_(0) {} |
| 171 | Vector(T* data, int length) : start_(data), length_(length) { |
| 172 | ASSERT(length == 0 || (length > 0 && data != NULL)); |
| 173 | } |
| 174 | |
| 175 | // Returns a vector using the same backing storage as this one, |
| 176 | // spanning from and including 'from', to but not including 'to'. |
| 177 | Vector<T> SubVector(int from, int to) { |
| 178 | ASSERT(to <= length_); |
| 179 | ASSERT(from < to); |
| 180 | ASSERT(0 <= from); |
| 181 | return Vector<T>(start() + from, to - from); |
| 182 | } |
| 183 | |
| 184 | // Returns the length of the vector. |
| 185 | int length() const { return length_; } |
| 186 | |
| 187 | // Returns whether or not the vector is empty. |
| 188 | bool is_empty() const { return length_ == 0; } |
| 189 | |
| 190 | // Returns the pointer to the start of the data in the vector. |
| 191 | T* start() const { return start_; } |
| 192 | |
| 193 | // Access individual vector elements - checks bounds in debug mode. |
| 194 | T& operator[](int index) const { |
| 195 | ASSERT(0 <= index && index < length_); |
| 196 | return start_[index]; |
| 197 | } |
| 198 | |
| 199 | T& first() { return start_[0]; } |
| 200 | |
| 201 | T& last() { return start_[length_ - 1]; } |
| 202 | |
| 203 | private: |
| 204 | T* start_; |
| 205 | int length_; |
| 206 | }; |
| 207 | |
| 208 | |
| 209 | // Helper class for building result strings in a character buffer. The |
| 210 | // purpose of the class is to use safe operations that checks the |
| 211 | // buffer bounds on all operations in debug mode. |
| 212 | class StringBuilder { |
| 213 | public: |
| 214 | StringBuilder(char* buffer, int size) |
| 215 | : buffer_(buffer, size), position_(0) { } |
| 216 | |
| 217 | ~StringBuilder() { if (!is_finalized()) Finalize(); } |
| 218 | |
| 219 | int size() const { return buffer_.length(); } |
| 220 | |
| 221 | // Get the current position in the builder. |
| 222 | int position() const { |
| 223 | ASSERT(!is_finalized()); |
| 224 | return position_; |
| 225 | } |
| 226 | |
| 227 | // Reset the position. |
| 228 | void Reset() { position_ = 0; } |
| 229 | |
| 230 | // Add a single character to the builder. It is not allowed to add |
| 231 | // 0-characters; use the Finalize() method to terminate the string |
| 232 | // instead. |
| 233 | void AddCharacter(char c) { |
| 234 | ASSERT(c != '\0'); |
| 235 | ASSERT(!is_finalized() && position_ < buffer_.length()); |
| 236 | buffer_[position_++] = c; |
| 237 | } |
| 238 | |
| 239 | // Add an entire string to the builder. Uses strlen() internally to |
| 240 | // compute the length of the input string. |
| 241 | void AddString(const char* s) { |
| 242 | AddSubstring(s, StrLength(s)); |
| 243 | } |
| 244 | |
| 245 | // Add the first 'n' characters of the given string 's' to the |
| 246 | // builder. The input string must have enough characters. |
| 247 | void AddSubstring(const char* s, int n) { |
| 248 | ASSERT(!is_finalized() && position_ + n < buffer_.length()); |
| 249 | ASSERT(static_cast<size_t>(n) <= strlen(s)); |
| 250 | memmove(&buffer_[position_], s, n * kCharSize); |
| 251 | position_ += n; |
| 252 | } |
| 253 | |
| 254 | |
| 255 | // Add character padding to the builder. If count is non-positive, |
| 256 | // nothing is added to the builder. |
| 257 | void AddPadding(char c, int count) { |
| 258 | for (int i = 0; i < count; i++) { |
| 259 | AddCharacter(c); |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | // Finalize the string by 0-terminating it and returning the buffer. |
| 264 | char* Finalize() { |
| 265 | ASSERT(!is_finalized() && position_ < buffer_.length()); |
| 266 | buffer_[position_] = '\0'; |
| 267 | // Make sure nobody managed to add a 0-character to the |
| 268 | // buffer while building the string. |
| 269 | ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); |
| 270 | position_ = -1; |
| 271 | ASSERT(is_finalized()); |
| 272 | return buffer_.start(); |
| 273 | } |
| 274 | |
| 275 | private: |
| 276 | Vector<char> buffer_; |
| 277 | int position_; |
| 278 | |
| 279 | bool is_finalized() const { return position_ < 0; } |
| 280 | |
| 281 | DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
| 282 | }; |
| 283 | |
| 284 | // The type-based aliasing rule allows the compiler to assume that pointers of |
| 285 | // different types (for some definition of different) never alias each other. |
| 286 | // Thus the following code does not work: |
| 287 | // |
| 288 | // float f = foo(); |
| 289 | // int fbits = *(int*)(&f); |
| 290 | // |
| 291 | // The compiler 'knows' that the int pointer can't refer to f since the types |
| 292 | // don't match, so the compiler may cache f in a register, leaving random data |
| 293 | // in fbits. Using C++ style casts makes no difference, however a pointer to |
| 294 | // char data is assumed to alias any other pointer. This is the 'memcpy |
| 295 | // exception'. |
| 296 | // |
| 297 | // Bit_cast uses the memcpy exception to move the bits from a variable of one |
| 298 | // type of a variable of another type. Of course the end result is likely to |
| 299 | // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) |
| 300 | // will completely optimize BitCast away. |
| 301 | // |
| 302 | // There is an additional use for BitCast. |
| 303 | // Recent gccs will warn when they see casts that may result in breakage due to |
| 304 | // the type-based aliasing rule. If you have checked that there is no breakage |
| 305 | // you can use BitCast to cast one pointer type to another. This confuses gcc |
| 306 | // enough that it can no longer see that you have cast one pointer type to |
| 307 | // another thus avoiding the warning. |
| 308 | template <class Dest, class Source> |
| 309 | inline Dest BitCast(const Source& source) { |
| 310 | // Compile time assertion: sizeof(Dest) == sizeof(Source) |
| 311 | // A compile error here means your Dest and Source have different sizes. |
| 312 | DOUBLE_CONVERSION_UNUSED |
| 313 | typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; |
| 314 | |
| 315 | Dest dest; |
| 316 | memmove(&dest, &source, sizeof(dest)); |
| 317 | return dest; |
| 318 | } |
| 319 | |
| 320 | template <class Dest, class Source> |
| 321 | inline Dest BitCast(Source* source) { |
| 322 | return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); |
| 323 | } |
| 324 | |
| 325 | } // namespace double_conversion |
| 326 | |
| 327 | #endif // DOUBLE_CONVERSION_UTILS_H_ |
| 328 | |