| 1 | /* Return arc hyperbolic sine for a complex float type, with the | 
|---|
| 2 | imaginary part of the result possibly adjusted for use in | 
|---|
| 3 | computing other functions. | 
|---|
| 4 | Copyright (C) 1997-2020 Free Software Foundation, Inc. | 
|---|
| 5 | This file is part of the GNU C Library. | 
|---|
| 6 |  | 
|---|
| 7 | The GNU C Library is free software; you can redistribute it and/or | 
|---|
| 8 | modify it under the terms of the GNU Lesser General Public | 
|---|
| 9 | License as published by the Free Software Foundation; either | 
|---|
| 10 | version 2.1 of the License, or (at your option) any later version. | 
|---|
| 11 |  | 
|---|
| 12 | The GNU C Library is distributed in the hope that it will be useful, | 
|---|
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|---|
| 15 | Lesser General Public License for more details. | 
|---|
| 16 |  | 
|---|
| 17 | You should have received a copy of the GNU Lesser General Public | 
|---|
| 18 | License along with the GNU C Library; if not, see | 
|---|
| 19 | <https://www.gnu.org/licenses/>.  */ | 
|---|
| 20 |  | 
|---|
| 21 | #include <complex.h> | 
|---|
| 22 | #include <math.h> | 
|---|
| 23 | #include <math_private.h> | 
|---|
| 24 | #include <math-underflow.h> | 
|---|
| 25 | #include <float.h> | 
|---|
| 26 |  | 
|---|
| 27 | /* Return the complex inverse hyperbolic sine of finite nonzero Z, | 
|---|
| 28 | with the imaginary part of the result subtracted from pi/2 if ADJ | 
|---|
| 29 | is nonzero.  */ | 
|---|
| 30 |  | 
|---|
| 31 | CFLOAT | 
|---|
| 32 | M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj) | 
|---|
| 33 | { | 
|---|
| 34 | CFLOAT res; | 
|---|
| 35 | FLOAT rx, ix; | 
|---|
| 36 | CFLOAT y; | 
|---|
| 37 |  | 
|---|
| 38 | /* Avoid cancellation by reducing to the first quadrant.  */ | 
|---|
| 39 | rx = M_FABS (__real__ x); | 
|---|
| 40 | ix = M_FABS (__imag__ x); | 
|---|
| 41 |  | 
|---|
| 42 | if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON) | 
|---|
| 43 | { | 
|---|
| 44 | /* For large x in the first quadrant, x + csqrt (1 + x * x) | 
|---|
| 45 | is sufficiently close to 2 * x to make no significant | 
|---|
| 46 | difference to the result; avoid possible overflow from | 
|---|
| 47 | the squaring and addition.  */ | 
|---|
| 48 | __real__ y = rx; | 
|---|
| 49 | __imag__ y = ix; | 
|---|
| 50 |  | 
|---|
| 51 | if (adj) | 
|---|
| 52 | { | 
|---|
| 53 | FLOAT t = __real__ y; | 
|---|
| 54 | __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); | 
|---|
| 55 | __imag__ y = t; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | res = M_SUF (__clog) (y); | 
|---|
| 59 | __real__ res += (FLOAT) M_MLIT (M_LN2); | 
|---|
| 60 | } | 
|---|
| 61 | else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8) | 
|---|
| 62 | { | 
|---|
| 63 | FLOAT s = M_HYPOT (1, rx); | 
|---|
| 64 |  | 
|---|
| 65 | __real__ res = M_LOG (rx + s); | 
|---|
| 66 | if (adj) | 
|---|
| 67 | __imag__ res = M_ATAN2 (s, __imag__ x); | 
|---|
| 68 | else | 
|---|
| 69 | __imag__ res = M_ATAN2 (ix, s); | 
|---|
| 70 | } | 
|---|
| 71 | else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5)) | 
|---|
| 72 | { | 
|---|
| 73 | FLOAT s = M_SQRT ((ix + 1) * (ix - 1)); | 
|---|
| 74 |  | 
|---|
| 75 | __real__ res = M_LOG (ix + s); | 
|---|
| 76 | if (adj) | 
|---|
| 77 | __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); | 
|---|
| 78 | else | 
|---|
| 79 | __imag__ res = M_ATAN2 (s, rx); | 
|---|
| 80 | } | 
|---|
| 81 | else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5)) | 
|---|
| 82 | { | 
|---|
| 83 | if (rx < M_EPSILON * M_EPSILON) | 
|---|
| 84 | { | 
|---|
| 85 | FLOAT ix2m1 = (ix + 1) * (ix - 1); | 
|---|
| 86 | FLOAT s = M_SQRT (ix2m1); | 
|---|
| 87 |  | 
|---|
| 88 | __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2; | 
|---|
| 89 | if (adj) | 
|---|
| 90 | __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); | 
|---|
| 91 | else | 
|---|
| 92 | __imag__ res = M_ATAN2 (s, rx); | 
|---|
| 93 | } | 
|---|
| 94 | else | 
|---|
| 95 | { | 
|---|
| 96 | FLOAT ix2m1 = (ix + 1) * (ix - 1); | 
|---|
| 97 | FLOAT rx2 = rx * rx; | 
|---|
| 98 | FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); | 
|---|
| 99 | FLOAT d = M_SQRT (ix2m1 * ix2m1 + f); | 
|---|
| 100 | FLOAT dp = d + ix2m1; | 
|---|
| 101 | FLOAT dm = f / dp; | 
|---|
| 102 | FLOAT r1 = M_SQRT ((dm + rx2) / 2); | 
|---|
| 103 | FLOAT r2 = rx * ix / r1; | 
|---|
| 104 |  | 
|---|
| 105 | __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2; | 
|---|
| 106 | if (adj) | 
|---|
| 107 | __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x)); | 
|---|
| 108 | else | 
|---|
| 109 | __imag__ res = M_ATAN2 (ix + r2, rx + r1); | 
|---|
| 110 | } | 
|---|
| 111 | } | 
|---|
| 112 | else if (ix == 1 && rx < M_LIT (0.5)) | 
|---|
| 113 | { | 
|---|
| 114 | if (rx < M_EPSILON / 8) | 
|---|
| 115 | { | 
|---|
| 116 | __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2; | 
|---|
| 117 | if (adj) | 
|---|
| 118 | __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x)); | 
|---|
| 119 | else | 
|---|
| 120 | __imag__ res = M_ATAN2 (1, M_SQRT (rx)); | 
|---|
| 121 | } | 
|---|
| 122 | else | 
|---|
| 123 | { | 
|---|
| 124 | FLOAT d = rx * M_SQRT (4 + rx * rx); | 
|---|
| 125 | FLOAT s1 = M_SQRT ((d + rx * rx) / 2); | 
|---|
| 126 | FLOAT s2 = M_SQRT ((d - rx * rx) / 2); | 
|---|
| 127 |  | 
|---|
| 128 | __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2; | 
|---|
| 129 | if (adj) | 
|---|
| 130 | __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x)); | 
|---|
| 131 | else | 
|---|
| 132 | __imag__ res = M_ATAN2 (1 + s2, rx + s1); | 
|---|
| 133 | } | 
|---|
| 134 | } | 
|---|
| 135 | else if (ix < 1 && rx < M_LIT (0.5)) | 
|---|
| 136 | { | 
|---|
| 137 | if (ix >= M_EPSILON) | 
|---|
| 138 | { | 
|---|
| 139 | if (rx < M_EPSILON * M_EPSILON) | 
|---|
| 140 | { | 
|---|
| 141 | FLOAT onemix2 = (1 + ix) * (1 - ix); | 
|---|
| 142 | FLOAT s = M_SQRT (onemix2); | 
|---|
| 143 |  | 
|---|
| 144 | __real__ res = M_LOG1P (2 * rx / s) / 2; | 
|---|
| 145 | if (adj) | 
|---|
| 146 | __imag__ res = M_ATAN2 (s, __imag__ x); | 
|---|
| 147 | else | 
|---|
| 148 | __imag__ res = M_ATAN2 (ix, s); | 
|---|
| 149 | } | 
|---|
| 150 | else | 
|---|
| 151 | { | 
|---|
| 152 | FLOAT onemix2 = (1 + ix) * (1 - ix); | 
|---|
| 153 | FLOAT rx2 = rx * rx; | 
|---|
| 154 | FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); | 
|---|
| 155 | FLOAT d = M_SQRT (onemix2 * onemix2 + f); | 
|---|
| 156 | FLOAT dp = d + onemix2; | 
|---|
| 157 | FLOAT dm = f / dp; | 
|---|
| 158 | FLOAT r1 = M_SQRT ((dp + rx2) / 2); | 
|---|
| 159 | FLOAT r2 = rx * ix / r1; | 
|---|
| 160 |  | 
|---|
| 161 | __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2; | 
|---|
| 162 | if (adj) | 
|---|
| 163 | __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, | 
|---|
| 164 | __imag__ x)); | 
|---|
| 165 | else | 
|---|
| 166 | __imag__ res = M_ATAN2 (ix + r2, rx + r1); | 
|---|
| 167 | } | 
|---|
| 168 | } | 
|---|
| 169 | else | 
|---|
| 170 | { | 
|---|
| 171 | FLOAT s = M_HYPOT (1, rx); | 
|---|
| 172 |  | 
|---|
| 173 | __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2; | 
|---|
| 174 | if (adj) | 
|---|
| 175 | __imag__ res = M_ATAN2 (s, __imag__ x); | 
|---|
| 176 | else | 
|---|
| 177 | __imag__ res = M_ATAN2 (ix, s); | 
|---|
| 178 | } | 
|---|
| 179 | math_check_force_underflow_nonneg (__real__ res); | 
|---|
| 180 | } | 
|---|
| 181 | else | 
|---|
| 182 | { | 
|---|
| 183 | __real__ y = (rx - ix) * (rx + ix) + 1; | 
|---|
| 184 | __imag__ y = 2 * rx * ix; | 
|---|
| 185 |  | 
|---|
| 186 | y = M_SUF (__csqrt) (y); | 
|---|
| 187 |  | 
|---|
| 188 | __real__ y += rx; | 
|---|
| 189 | __imag__ y += ix; | 
|---|
| 190 |  | 
|---|
| 191 | if (adj) | 
|---|
| 192 | { | 
|---|
| 193 | FLOAT t = __real__ y; | 
|---|
| 194 | __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); | 
|---|
| 195 | __imag__ y = t; | 
|---|
| 196 | } | 
|---|
| 197 |  | 
|---|
| 198 | res = M_SUF (__clog) (y); | 
|---|
| 199 | } | 
|---|
| 200 |  | 
|---|
| 201 | /* Give results the correct sign for the original argument.  */ | 
|---|
| 202 | __real__ res = M_COPYSIGN (__real__ res, __real__ x); | 
|---|
| 203 | __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x)); | 
|---|
| 204 |  | 
|---|
| 205 | return res; | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|