| 1 | /* Helper macros for functions returning a narrower type. |
| 2 | Copyright (C) 2018-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #ifndef _MATH_NARROW_H |
| 20 | #define _MATH_NARROW_H 1 |
| 21 | |
| 22 | #include <bits/floatn.h> |
| 23 | #include <bits/long-double.h> |
| 24 | #include <errno.h> |
| 25 | #include <fenv.h> |
| 26 | #include <ieee754.h> |
| 27 | #include <math-barriers.h> |
| 28 | #include <math_private.h> |
| 29 | #include <fenv_private.h> |
| 30 | |
| 31 | /* Carry out a computation using round-to-odd. The computation is |
| 32 | EXPR; the union type in which to store the result is UNION and the |
| 33 | subfield of the "ieee" field of that union with the low part of the |
| 34 | mantissa is MANTISSA; SUFFIX is the suffix for the libc_fe* macros |
| 35 | to ensure that the correct rounding mode is used, for platforms |
| 36 | with multiple rounding modes where those macros set only the |
| 37 | relevant mode. This macro does not work correctly if the sign of |
| 38 | an exact zero result depends on the rounding mode, so that case |
| 39 | must be checked for separately. */ |
| 40 | #define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA) \ |
| 41 | ({ \ |
| 42 | fenv_t env; \ |
| 43 | UNION u; \ |
| 44 | \ |
| 45 | libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \ |
| 46 | u.d = (EXPR); \ |
| 47 | math_force_eval (u.d); \ |
| 48 | u.ieee.MANTISSA \ |
| 49 | |= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \ |
| 50 | \ |
| 51 | u.d; \ |
| 52 | }) |
| 53 | |
| 54 | /* Check for error conditions from a narrowing add function returning |
| 55 | RET with arguments X and Y and set errno as needed. Overflow and |
| 56 | underflow can occur for finite arguments and a domain error for |
| 57 | infinite ones. */ |
| 58 | #define CHECK_NARROW_ADD(RET, X, Y) \ |
| 59 | do \ |
| 60 | { \ |
| 61 | if (!isfinite (RET)) \ |
| 62 | { \ |
| 63 | if (isnan (RET)) \ |
| 64 | { \ |
| 65 | if (!isnan (X) && !isnan (Y)) \ |
| 66 | __set_errno (EDOM); \ |
| 67 | } \ |
| 68 | else if (isfinite (X) && isfinite (Y)) \ |
| 69 | __set_errno (ERANGE); \ |
| 70 | } \ |
| 71 | else if ((RET) == 0 && (X) != -(Y)) \ |
| 72 | __set_errno (ERANGE); \ |
| 73 | } \ |
| 74 | while (0) |
| 75 | |
| 76 | /* Implement narrowing add using round-to-odd. The arguments are X |
| 77 | and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
| 78 | as for ROUND_TO_ODD. */ |
| 79 | #define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 80 | do \ |
| 81 | { \ |
| 82 | TYPE ret; \ |
| 83 | \ |
| 84 | /* Ensure a zero result is computed in the original rounding \ |
| 85 | mode. */ \ |
| 86 | if ((X) == -(Y)) \ |
| 87 | ret = (TYPE) ((X) + (Y)); \ |
| 88 | else \ |
| 89 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \ |
| 90 | UNION, SUFFIX, MANTISSA); \ |
| 91 | \ |
| 92 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
| 93 | return ret; \ |
| 94 | } \ |
| 95 | while (0) |
| 96 | |
| 97 | /* Implement a narrowing add function that is not actually narrowing |
| 98 | or where no attempt is made to be correctly rounding (the latter |
| 99 | only applies to IBM long double). The arguments are X and Y and |
| 100 | the return type is TYPE. */ |
| 101 | #define NARROW_ADD_TRIVIAL(X, Y, TYPE) \ |
| 102 | do \ |
| 103 | { \ |
| 104 | TYPE ret; \ |
| 105 | \ |
| 106 | ret = (TYPE) ((X) + (Y)); \ |
| 107 | CHECK_NARROW_ADD (ret, (X), (Y)); \ |
| 108 | return ret; \ |
| 109 | } \ |
| 110 | while (0) |
| 111 | |
| 112 | /* Check for error conditions from a narrowing subtract function |
| 113 | returning RET with arguments X and Y and set errno as needed. |
| 114 | Overflow and underflow can occur for finite arguments and a domain |
| 115 | error for infinite ones. */ |
| 116 | #define CHECK_NARROW_SUB(RET, X, Y) \ |
| 117 | do \ |
| 118 | { \ |
| 119 | if (!isfinite (RET)) \ |
| 120 | { \ |
| 121 | if (isnan (RET)) \ |
| 122 | { \ |
| 123 | if (!isnan (X) && !isnan (Y)) \ |
| 124 | __set_errno (EDOM); \ |
| 125 | } \ |
| 126 | else if (isfinite (X) && isfinite (Y)) \ |
| 127 | __set_errno (ERANGE); \ |
| 128 | } \ |
| 129 | else if ((RET) == 0 && (X) != (Y)) \ |
| 130 | __set_errno (ERANGE); \ |
| 131 | } \ |
| 132 | while (0) |
| 133 | |
| 134 | /* Implement narrowing subtract using round-to-odd. The arguments are |
| 135 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
| 136 | as for ROUND_TO_ODD. */ |
| 137 | #define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 138 | do \ |
| 139 | { \ |
| 140 | TYPE ret; \ |
| 141 | \ |
| 142 | /* Ensure a zero result is computed in the original rounding \ |
| 143 | mode. */ \ |
| 144 | if ((X) == (Y)) \ |
| 145 | ret = (TYPE) ((X) - (Y)); \ |
| 146 | else \ |
| 147 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \ |
| 148 | UNION, SUFFIX, MANTISSA); \ |
| 149 | \ |
| 150 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
| 151 | return ret; \ |
| 152 | } \ |
| 153 | while (0) |
| 154 | |
| 155 | /* Implement a narrowing subtract function that is not actually |
| 156 | narrowing or where no attempt is made to be correctly rounding (the |
| 157 | latter only applies to IBM long double). The arguments are X and Y |
| 158 | and the return type is TYPE. */ |
| 159 | #define NARROW_SUB_TRIVIAL(X, Y, TYPE) \ |
| 160 | do \ |
| 161 | { \ |
| 162 | TYPE ret; \ |
| 163 | \ |
| 164 | ret = (TYPE) ((X) - (Y)); \ |
| 165 | CHECK_NARROW_SUB (ret, (X), (Y)); \ |
| 166 | return ret; \ |
| 167 | } \ |
| 168 | while (0) |
| 169 | |
| 170 | /* Check for error conditions from a narrowing multiply function |
| 171 | returning RET with arguments X and Y and set errno as needed. |
| 172 | Overflow and underflow can occur for finite arguments and a domain |
| 173 | error for Inf * 0. */ |
| 174 | #define CHECK_NARROW_MUL(RET, X, Y) \ |
| 175 | do \ |
| 176 | { \ |
| 177 | if (!isfinite (RET)) \ |
| 178 | { \ |
| 179 | if (isnan (RET)) \ |
| 180 | { \ |
| 181 | if (!isnan (X) && !isnan (Y)) \ |
| 182 | __set_errno (EDOM); \ |
| 183 | } \ |
| 184 | else if (isfinite (X) && isfinite (Y)) \ |
| 185 | __set_errno (ERANGE); \ |
| 186 | } \ |
| 187 | else if ((RET) == 0 && (X) != 0 && (Y) != 0) \ |
| 188 | __set_errno (ERANGE); \ |
| 189 | } \ |
| 190 | while (0) |
| 191 | |
| 192 | /* Implement narrowing multiply using round-to-odd. The arguments are |
| 193 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
| 194 | as for ROUND_TO_ODD. */ |
| 195 | #define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 196 | do \ |
| 197 | { \ |
| 198 | TYPE ret; \ |
| 199 | \ |
| 200 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \ |
| 201 | UNION, SUFFIX, MANTISSA); \ |
| 202 | \ |
| 203 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
| 204 | return ret; \ |
| 205 | } \ |
| 206 | while (0) |
| 207 | |
| 208 | /* Implement a narrowing multiply function that is not actually |
| 209 | narrowing or where no attempt is made to be correctly rounding (the |
| 210 | latter only applies to IBM long double). The arguments are X and Y |
| 211 | and the return type is TYPE. */ |
| 212 | #define NARROW_MUL_TRIVIAL(X, Y, TYPE) \ |
| 213 | do \ |
| 214 | { \ |
| 215 | TYPE ret; \ |
| 216 | \ |
| 217 | ret = (TYPE) ((X) * (Y)); \ |
| 218 | CHECK_NARROW_MUL (ret, (X), (Y)); \ |
| 219 | return ret; \ |
| 220 | } \ |
| 221 | while (0) |
| 222 | |
| 223 | /* Check for error conditions from a narrowing divide function |
| 224 | returning RET with arguments X and Y and set errno as needed. |
| 225 | Overflow, underflow and divide-by-zero can occur for finite |
| 226 | arguments and a domain error for Inf / Inf and 0 / 0. */ |
| 227 | #define CHECK_NARROW_DIV(RET, X, Y) \ |
| 228 | do \ |
| 229 | { \ |
| 230 | if (!isfinite (RET)) \ |
| 231 | { \ |
| 232 | if (isnan (RET)) \ |
| 233 | { \ |
| 234 | if (!isnan (X) && !isnan (Y)) \ |
| 235 | __set_errno (EDOM); \ |
| 236 | } \ |
| 237 | else if (isfinite (X)) \ |
| 238 | __set_errno (ERANGE); \ |
| 239 | } \ |
| 240 | else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \ |
| 241 | __set_errno (ERANGE); \ |
| 242 | } \ |
| 243 | while (0) |
| 244 | |
| 245 | /* Implement narrowing divide using round-to-odd. The arguments are |
| 246 | X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are |
| 247 | as for ROUND_TO_ODD. */ |
| 248 | #define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \ |
| 249 | do \ |
| 250 | { \ |
| 251 | TYPE ret; \ |
| 252 | \ |
| 253 | ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \ |
| 254 | UNION, SUFFIX, MANTISSA); \ |
| 255 | \ |
| 256 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
| 257 | return ret; \ |
| 258 | } \ |
| 259 | while (0) |
| 260 | |
| 261 | /* Implement a narrowing divide function that is not actually |
| 262 | narrowing or where no attempt is made to be correctly rounding (the |
| 263 | latter only applies to IBM long double). The arguments are X and Y |
| 264 | and the return type is TYPE. */ |
| 265 | #define NARROW_DIV_TRIVIAL(X, Y, TYPE) \ |
| 266 | do \ |
| 267 | { \ |
| 268 | TYPE ret; \ |
| 269 | \ |
| 270 | ret = (TYPE) ((X) / (Y)); \ |
| 271 | CHECK_NARROW_DIV (ret, (X), (Y)); \ |
| 272 | return ret; \ |
| 273 | } \ |
| 274 | while (0) |
| 275 | |
| 276 | /* The following macros declare aliases for a narrowing function. The |
| 277 | sole argument is the base name of a family of functions, such as |
| 278 | "add". If any platform changes long double format after the |
| 279 | introduction of narrowing functions, in a way requiring symbol |
| 280 | versioning compatibility, additional variants of these macros will |
| 281 | be needed. */ |
| 282 | |
| 283 | #define libm_alias_float_double_main(func) \ |
| 284 | weak_alias (__f ## func, f ## func) \ |
| 285 | weak_alias (__f ## func, f32 ## func ## f64) \ |
| 286 | weak_alias (__f ## func, f32 ## func ## f32x) |
| 287 | |
| 288 | #ifdef NO_LONG_DOUBLE |
| 289 | # define libm_alias_float_double(func) \ |
| 290 | libm_alias_float_double_main (func) \ |
| 291 | weak_alias (__f ## func, f ## func ## l) |
| 292 | #else |
| 293 | # define libm_alias_float_double(func) \ |
| 294 | libm_alias_float_double_main (func) |
| 295 | #endif |
| 296 | |
| 297 | #define libm_alias_float32x_float64_main(func) \ |
| 298 | weak_alias (__f32x ## func ## f64, f32x ## func ## f64) |
| 299 | |
| 300 | #ifdef NO_LONG_DOUBLE |
| 301 | # define libm_alias_float32x_float64(func) \ |
| 302 | libm_alias_float32x_float64_main (func) \ |
| 303 | weak_alias (__f32x ## func ## f64, d ## func ## l) |
| 304 | #elif defined __LONG_DOUBLE_MATH_OPTIONAL |
| 305 | # define libm_alias_float32x_float64(func) \ |
| 306 | libm_alias_float32x_float64_main (func) \ |
| 307 | weak_alias (__f32x ## func ## f64, __nldbl_d ## func ## l) |
| 308 | #else |
| 309 | # define libm_alias_float32x_float64(func) \ |
| 310 | libm_alias_float32x_float64_main (func) |
| 311 | #endif |
| 312 | |
| 313 | #if __HAVE_FLOAT128 && !__HAVE_DISTINCT_FLOAT128 |
| 314 | # define libm_alias_float_ldouble_f128(func) \ |
| 315 | weak_alias (__f ## func ## l, f32 ## func ## f128) |
| 316 | # define libm_alias_double_ldouble_f128(func) \ |
| 317 | weak_alias (__d ## func ## l, f32x ## func ## f128) \ |
| 318 | weak_alias (__d ## func ## l, f64 ## func ## f128) |
| 319 | #else |
| 320 | # define libm_alias_float_ldouble_f128(func) |
| 321 | # define libm_alias_double_ldouble_f128(func) |
| 322 | #endif |
| 323 | |
| 324 | #if __HAVE_FLOAT64X_LONG_DOUBLE |
| 325 | # define libm_alias_float_ldouble_f64x(func) \ |
| 326 | weak_alias (__f ## func ## l, f32 ## func ## f64x) |
| 327 | # define libm_alias_double_ldouble_f64x(func) \ |
| 328 | weak_alias (__d ## func ## l, f32x ## func ## f64x) \ |
| 329 | weak_alias (__d ## func ## l, f64 ## func ## f64x) |
| 330 | #else |
| 331 | # define libm_alias_float_ldouble_f64x(func) |
| 332 | # define libm_alias_double_ldouble_f64x(func) |
| 333 | #endif |
| 334 | |
| 335 | #define libm_alias_float_ldouble(func) \ |
| 336 | weak_alias (__f ## func ## l, f ## func ## l) \ |
| 337 | libm_alias_float_ldouble_f128 (func) \ |
| 338 | libm_alias_float_ldouble_f64x (func) |
| 339 | |
| 340 | #define libm_alias_double_ldouble(func) \ |
| 341 | weak_alias (__d ## func ## l, d ## func ## l) \ |
| 342 | libm_alias_double_ldouble_f128 (func) \ |
| 343 | libm_alias_double_ldouble_f64x (func) |
| 344 | |
| 345 | #define libm_alias_float64x_float128(func) \ |
| 346 | weak_alias (__f64x ## func ## f128, f64x ## func ## f128) |
| 347 | |
| 348 | #define libm_alias_float32_float128_main(func) \ |
| 349 | weak_alias (__f32 ## func ## f128, f32 ## func ## f128) |
| 350 | |
| 351 | #define libm_alias_float64_float128_main(func) \ |
| 352 | weak_alias (__f64 ## func ## f128, f64 ## func ## f128) \ |
| 353 | weak_alias (__f64 ## func ## f128, f32x ## func ## f128) |
| 354 | |
| 355 | #include <math-narrow-alias-float128.h> |
| 356 | |
| 357 | #endif /* math-narrow.h. */ |
| 358 | |