1 | /* Complex cosine hyperbolic function for float types. |
2 | Copyright (C) 1997-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <complex.h> |
21 | #include <fenv.h> |
22 | #include <math.h> |
23 | #include <math_private.h> |
24 | #include <math-underflow.h> |
25 | #include <float.h> |
26 | |
27 | CFLOAT |
28 | M_DECL_FUNC (__ccosh) (CFLOAT x) |
29 | { |
30 | CFLOAT retval; |
31 | int rcls = fpclassify (__real__ x); |
32 | int icls = fpclassify (__imag__ x); |
33 | |
34 | if (__glibc_likely (rcls >= FP_ZERO)) |
35 | { |
36 | /* Real part is finite. */ |
37 | if (__glibc_likely (icls >= FP_ZERO)) |
38 | { |
39 | /* Imaginary part is finite. */ |
40 | const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); |
41 | FLOAT sinix, cosix; |
42 | |
43 | if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) |
44 | { |
45 | M_SINCOS (__imag__ x, &sinix, &cosix); |
46 | } |
47 | else |
48 | { |
49 | sinix = __imag__ x; |
50 | cosix = 1; |
51 | } |
52 | |
53 | if (M_FABS (__real__ x) > t) |
54 | { |
55 | FLOAT exp_t = M_EXP (t); |
56 | FLOAT rx = M_FABS (__real__ x); |
57 | if (signbit (__real__ x)) |
58 | sinix = -sinix; |
59 | rx -= t; |
60 | sinix *= exp_t / 2; |
61 | cosix *= exp_t / 2; |
62 | if (rx > t) |
63 | { |
64 | rx -= t; |
65 | sinix *= exp_t; |
66 | cosix *= exp_t; |
67 | } |
68 | if (rx > t) |
69 | { |
70 | /* Overflow (original real part of x > 3t). */ |
71 | __real__ retval = M_MAX * cosix; |
72 | __imag__ retval = M_MAX * sinix; |
73 | } |
74 | else |
75 | { |
76 | FLOAT exp_val = M_EXP (rx); |
77 | __real__ retval = exp_val * cosix; |
78 | __imag__ retval = exp_val * sinix; |
79 | } |
80 | } |
81 | else |
82 | { |
83 | __real__ retval = M_COSH (__real__ x) * cosix; |
84 | __imag__ retval = M_SINH (__real__ x) * sinix; |
85 | } |
86 | |
87 | math_check_force_underflow_complex (retval); |
88 | } |
89 | else |
90 | { |
91 | __imag__ retval = __real__ x == 0 ? 0 : M_NAN; |
92 | __real__ retval = __imag__ x - __imag__ x; |
93 | } |
94 | } |
95 | else if (rcls == FP_INFINITE) |
96 | { |
97 | /* Real part is infinite. */ |
98 | if (__glibc_likely (icls > FP_ZERO)) |
99 | { |
100 | /* Imaginary part is finite. */ |
101 | FLOAT sinix, cosix; |
102 | |
103 | if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) |
104 | { |
105 | M_SINCOS (__imag__ x, &sinix, &cosix); |
106 | } |
107 | else |
108 | { |
109 | sinix = __imag__ x; |
110 | cosix = 1; |
111 | } |
112 | |
113 | __real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix); |
114 | __imag__ retval = (M_COPYSIGN (M_HUGE_VAL, sinix) |
115 | * M_COPYSIGN (1, __real__ x)); |
116 | } |
117 | else if (icls == FP_ZERO) |
118 | { |
119 | /* Imaginary part is 0.0. */ |
120 | __real__ retval = M_HUGE_VAL; |
121 | __imag__ retval = __imag__ x * M_COPYSIGN (1, __real__ x); |
122 | } |
123 | else |
124 | { |
125 | __real__ retval = M_HUGE_VAL; |
126 | __imag__ retval = __imag__ x - __imag__ x; |
127 | } |
128 | } |
129 | else |
130 | { |
131 | __real__ retval = M_NAN; |
132 | __imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN; |
133 | } |
134 | |
135 | return retval; |
136 | } |
137 | |
138 | declare_mgen_alias (__ccosh, ccosh); |
139 | |