1 | /* Complex tangent function for a complex float type. |
2 | Copyright (C) 1997-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <complex.h> |
21 | #include <fenv.h> |
22 | #include <math.h> |
23 | #include <math_private.h> |
24 | #include <math-underflow.h> |
25 | #include <float.h> |
26 | |
27 | CFLOAT |
28 | M_DECL_FUNC (__ctan) (CFLOAT x) |
29 | { |
30 | CFLOAT res; |
31 | |
32 | if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x))) |
33 | { |
34 | if (isinf (__imag__ x)) |
35 | { |
36 | if (isfinite (__real__ x) && M_FABS (__real__ x) > 1) |
37 | { |
38 | FLOAT sinrx, cosrx; |
39 | M_SINCOS (__real__ x, &sinrx, &cosrx); |
40 | __real__ res = M_COPYSIGN (0, sinrx * cosrx); |
41 | } |
42 | else |
43 | __real__ res = M_COPYSIGN (0, __real__ x); |
44 | __imag__ res = M_COPYSIGN (1, __imag__ x); |
45 | } |
46 | else if (__real__ x == 0) |
47 | { |
48 | res = x; |
49 | } |
50 | else |
51 | { |
52 | __real__ res = M_NAN; |
53 | if (__imag__ x == 0) |
54 | __imag__ res = __imag__ x; |
55 | else |
56 | __imag__ res = M_NAN; |
57 | |
58 | if (isinf (__real__ x)) |
59 | feraiseexcept (FE_INVALID); |
60 | } |
61 | } |
62 | else |
63 | { |
64 | FLOAT sinrx, cosrx; |
65 | FLOAT den; |
66 | const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2) / 2); |
67 | |
68 | /* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y)) |
69 | = (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */ |
70 | |
71 | if (__glibc_likely (M_FABS (__real__ x) > M_MIN)) |
72 | { |
73 | M_SINCOS (__real__ x, &sinrx, &cosrx); |
74 | } |
75 | else |
76 | { |
77 | sinrx = __real__ x; |
78 | cosrx = 1; |
79 | } |
80 | |
81 | if (M_FABS (__imag__ x) > t) |
82 | { |
83 | /* Avoid intermediate overflow when the real part of the |
84 | result may be subnormal. Ignoring negligible terms, the |
85 | imaginary part is +/- 1, the real part is |
86 | sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */ |
87 | FLOAT exp_2t = M_EXP (2 * t); |
88 | |
89 | __imag__ res = M_COPYSIGN (1, __imag__ x); |
90 | __real__ res = 4 * sinrx * cosrx; |
91 | __imag__ x = M_FABS (__imag__ x); |
92 | __imag__ x -= t; |
93 | __real__ res /= exp_2t; |
94 | if (__imag__ x > t) |
95 | { |
96 | /* Underflow (original imaginary part of x has absolute |
97 | value > 2t). */ |
98 | __real__ res /= exp_2t; |
99 | } |
100 | else |
101 | __real__ res /= M_EXP (2 * __imag__ x); |
102 | } |
103 | else |
104 | { |
105 | FLOAT sinhix, coshix; |
106 | if (M_FABS (__imag__ x) > M_MIN) |
107 | { |
108 | sinhix = M_SINH (__imag__ x); |
109 | coshix = M_COSH (__imag__ x); |
110 | } |
111 | else |
112 | { |
113 | sinhix = __imag__ x; |
114 | coshix = 1; |
115 | } |
116 | |
117 | if (M_FABS (sinhix) > M_FABS (cosrx) * M_EPSILON) |
118 | den = cosrx * cosrx + sinhix * sinhix; |
119 | else |
120 | den = cosrx * cosrx; |
121 | __real__ res = sinrx * cosrx / den; |
122 | __imag__ res = sinhix * coshix / den; |
123 | } |
124 | math_check_force_underflow_complex (res); |
125 | } |
126 | |
127 | return res; |
128 | } |
129 | |
130 | declare_mgen_alias (__ctan, ctan) |
131 | |