| 1 | /* Copyright (C) 1995-2020 Free Software Foundation, Inc. | 
|---|
| 2 | This file is part of the GNU C Library. | 
|---|
| 3 | Contributed by Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>, 1997. | 
|---|
| 4 |  | 
|---|
| 5 | The GNU C Library is free software; you can redistribute it and/or | 
|---|
| 6 | modify it under the terms of the GNU Lesser General Public | 
|---|
| 7 | License as published by the Free Software Foundation; either | 
|---|
| 8 | version 2.1 of the License, or (at your option) any later version. | 
|---|
| 9 |  | 
|---|
| 10 | The GNU C Library is distributed in the hope that it will be useful, | 
|---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|---|
| 13 | Lesser General Public License for more details. | 
|---|
| 14 |  | 
|---|
| 15 | You should have received a copy of the GNU Lesser General Public | 
|---|
| 16 | License along with the GNU C Library; if not, see | 
|---|
| 17 | <https://www.gnu.org/licenses/>.  */ | 
|---|
| 18 |  | 
|---|
| 19 | /* Tree search for red/black trees. | 
|---|
| 20 | The algorithm for adding nodes is taken from one of the many "Algorithms" | 
|---|
| 21 | books by Robert Sedgewick, although the implementation differs. | 
|---|
| 22 | The algorithm for deleting nodes can probably be found in a book named | 
|---|
| 23 | "Introduction to Algorithms" by Cormen/Leiserson/Rivest.  At least that's | 
|---|
| 24 | the book that my professor took most algorithms from during the "Data | 
|---|
| 25 | Structures" course... | 
|---|
| 26 |  | 
|---|
| 27 | Totally public domain.  */ | 
|---|
| 28 |  | 
|---|
| 29 | /* Red/black trees are binary trees in which the edges are colored either red | 
|---|
| 30 | or black.  They have the following properties: | 
|---|
| 31 | 1. The number of black edges on every path from the root to a leaf is | 
|---|
| 32 | constant. | 
|---|
| 33 | 2. No two red edges are adjacent. | 
|---|
| 34 | Therefore there is an upper bound on the length of every path, it's | 
|---|
| 35 | O(log n) where n is the number of nodes in the tree.  No path can be longer | 
|---|
| 36 | than 1+2*P where P is the length of the shortest path in the tree. | 
|---|
| 37 | Useful for the implementation: | 
|---|
| 38 | 3. If one of the children of a node is NULL, then the other one is red | 
|---|
| 39 | (if it exists). | 
|---|
| 40 |  | 
|---|
| 41 | In the implementation, not the edges are colored, but the nodes.  The color | 
|---|
| 42 | interpreted as the color of the edge leading to this node.  The color is | 
|---|
| 43 | meaningless for the root node, but we color the root node black for | 
|---|
| 44 | convenience.  All added nodes are red initially. | 
|---|
| 45 |  | 
|---|
| 46 | Adding to a red/black tree is rather easy.  The right place is searched | 
|---|
| 47 | with a usual binary tree search.  Additionally, whenever a node N is | 
|---|
| 48 | reached that has two red successors, the successors are colored black and | 
|---|
| 49 | the node itself colored red.  This moves red edges up the tree where they | 
|---|
| 50 | pose less of a problem once we get to really insert the new node.  Changing | 
|---|
| 51 | N's color to red may violate rule 2, however, so rotations may become | 
|---|
| 52 | necessary to restore the invariants.  Adding a new red leaf may violate | 
|---|
| 53 | the same rule, so afterwards an additional check is run and the tree | 
|---|
| 54 | possibly rotated. | 
|---|
| 55 |  | 
|---|
| 56 | Deleting is hairy.  There are mainly two nodes involved: the node to be | 
|---|
| 57 | deleted (n1), and another node that is to be unchained from the tree (n2). | 
|---|
| 58 | If n1 has a successor (the node with a smallest key that is larger than | 
|---|
| 59 | n1), then the successor becomes n2 and its contents are copied into n1, | 
|---|
| 60 | otherwise n1 becomes n2. | 
|---|
| 61 | Unchaining a node may violate rule 1: if n2 is black, one subtree is | 
|---|
| 62 | missing one black edge afterwards.  The algorithm must try to move this | 
|---|
| 63 | error upwards towards the root, so that the subtree that does not have | 
|---|
| 64 | enough black edges becomes the whole tree.  Once that happens, the error | 
|---|
| 65 | has disappeared.  It may not be necessary to go all the way up, since it | 
|---|
| 66 | is possible that rotations and recoloring can fix the error before that. | 
|---|
| 67 |  | 
|---|
| 68 | Although the deletion algorithm must walk upwards through the tree, we | 
|---|
| 69 | do not store parent pointers in the nodes.  Instead, delete allocates a | 
|---|
| 70 | small array of parent pointers and fills it while descending the tree. | 
|---|
| 71 | Since we know that the length of a path is O(log n), where n is the number | 
|---|
| 72 | of nodes, this is likely to use less memory.  */ | 
|---|
| 73 |  | 
|---|
| 74 | /* Tree rotations look like this: | 
|---|
| 75 | A                C | 
|---|
| 76 | / \              / \ | 
|---|
| 77 | B   C            A   G | 
|---|
| 78 | / \ / \  -->     / \ | 
|---|
| 79 | D E F G         B   F | 
|---|
| 80 | / \ | 
|---|
| 81 | D   E | 
|---|
| 82 |  | 
|---|
| 83 | In this case, A has been rotated left.  This preserves the ordering of the | 
|---|
| 84 | binary tree.  */ | 
|---|
| 85 |  | 
|---|
| 86 | #include <assert.h> | 
|---|
| 87 | #include <stdalign.h> | 
|---|
| 88 | #include <stddef.h> | 
|---|
| 89 | #include <stdlib.h> | 
|---|
| 90 | #include <string.h> | 
|---|
| 91 | #include <search.h> | 
|---|
| 92 |  | 
|---|
| 93 | /* Assume malloc returns naturally aligned (alignof (max_align_t)) | 
|---|
| 94 | pointers so we can use the low bits to store some extra info.  This | 
|---|
| 95 | works for the left/right node pointers since they are not user | 
|---|
| 96 | visible and always allocated by malloc.  The user provides the key | 
|---|
| 97 | pointer and so that can point anywhere and doesn't have to be | 
|---|
| 98 | aligned.  */ | 
|---|
| 99 | #define USE_MALLOC_LOW_BIT 1 | 
|---|
| 100 |  | 
|---|
| 101 | #ifndef USE_MALLOC_LOW_BIT | 
|---|
| 102 | typedef struct node_t | 
|---|
| 103 | { | 
|---|
| 104 | /* Callers expect this to be the first element in the structure - do not | 
|---|
| 105 | move!  */ | 
|---|
| 106 | const void *key; | 
|---|
| 107 | struct node_t *left_node; | 
|---|
| 108 | struct node_t *right_node; | 
|---|
| 109 | unsigned int is_red:1; | 
|---|
| 110 | } *node; | 
|---|
| 111 |  | 
|---|
| 112 | #define RED(N) (N)->is_red | 
|---|
| 113 | #define SETRED(N) (N)->is_red = 1 | 
|---|
| 114 | #define SETBLACK(N) (N)->is_red = 0 | 
|---|
| 115 | #define SETNODEPTR(NP,P) (*NP) = (P) | 
|---|
| 116 | #define LEFT(N) (N)->left_node | 
|---|
| 117 | #define LEFTPTR(N) (&(N)->left_node) | 
|---|
| 118 | #define SETLEFT(N,L) (N)->left_node = (L) | 
|---|
| 119 | #define RIGHT(N) (N)->right_node | 
|---|
| 120 | #define RIGHTPTR(N) (&(N)->right_node) | 
|---|
| 121 | #define SETRIGHT(N,R) (N)->right_node = (R) | 
|---|
| 122 | #define DEREFNODEPTR(NP) (*(NP)) | 
|---|
| 123 |  | 
|---|
| 124 | #else /* USE_MALLOC_LOW_BIT */ | 
|---|
| 125 |  | 
|---|
| 126 | typedef struct node_t | 
|---|
| 127 | { | 
|---|
| 128 | /* Callers expect this to be the first element in the structure - do not | 
|---|
| 129 | move!  */ | 
|---|
| 130 | const void *key; | 
|---|
| 131 | uintptr_t left_node; /* Includes whether the node is red in low-bit. */ | 
|---|
| 132 | uintptr_t right_node; | 
|---|
| 133 | } *node; | 
|---|
| 134 |  | 
|---|
| 135 | #define RED(N) (node)((N)->left_node & ((uintptr_t) 0x1)) | 
|---|
| 136 | #define SETRED(N) (N)->left_node |= ((uintptr_t) 0x1) | 
|---|
| 137 | #define SETBLACK(N) (N)->left_node &= ~((uintptr_t) 0x1) | 
|---|
| 138 | #define SETNODEPTR(NP,P) (*NP) = (node)((((uintptr_t)(*NP)) \ | 
|---|
| 139 | & (uintptr_t) 0x1) | (uintptr_t)(P)) | 
|---|
| 140 | #define LEFT(N) (node)((N)->left_node & ~((uintptr_t) 0x1)) | 
|---|
| 141 | #define LEFTPTR(N) (node *)(&(N)->left_node) | 
|---|
| 142 | #define SETLEFT(N,L) (N)->left_node = (((N)->left_node & (uintptr_t) 0x1) \ | 
|---|
| 143 | | (uintptr_t)(L)) | 
|---|
| 144 | #define RIGHT(N) (node)((N)->right_node) | 
|---|
| 145 | #define RIGHTPTR(N) (node *)(&(N)->right_node) | 
|---|
| 146 | #define SETRIGHT(N,R) (N)->right_node = (uintptr_t)(R) | 
|---|
| 147 | #define DEREFNODEPTR(NP) (node)((uintptr_t)(*(NP)) & ~((uintptr_t) 0x1)) | 
|---|
| 148 |  | 
|---|
| 149 | #endif /* USE_MALLOC_LOW_BIT */ | 
|---|
| 150 | typedef const struct node_t *const_node; | 
|---|
| 151 |  | 
|---|
| 152 | #undef DEBUGGING | 
|---|
| 153 |  | 
|---|
| 154 | #ifdef DEBUGGING | 
|---|
| 155 |  | 
|---|
| 156 | /* Routines to check tree invariants.  */ | 
|---|
| 157 |  | 
|---|
| 158 | #define CHECK_TREE(a) check_tree(a) | 
|---|
| 159 |  | 
|---|
| 160 | static void | 
|---|
| 161 | check_tree_recurse (node p, int d_sofar, int d_total) | 
|---|
| 162 | { | 
|---|
| 163 | if (p == NULL) | 
|---|
| 164 | { | 
|---|
| 165 | assert (d_sofar == d_total); | 
|---|
| 166 | return; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | check_tree_recurse (LEFT(p), d_sofar + (LEFT(p) && !RED(LEFT(p))), | 
|---|
| 170 | d_total); | 
|---|
| 171 | check_tree_recurse (RIGHT(p), d_sofar + (RIGHT(p) && !RED(RIGHT(p))), | 
|---|
| 172 | d_total); | 
|---|
| 173 | if (LEFT(p)) | 
|---|
| 174 | assert (!(RED(LEFT(p)) && RED(p))); | 
|---|
| 175 | if (RIGHT(p)) | 
|---|
| 176 | assert (!(RED(RIGHT(p)) && RED(p))); | 
|---|
| 177 | } | 
|---|
| 178 |  | 
|---|
| 179 | static void | 
|---|
| 180 | check_tree (node root) | 
|---|
| 181 | { | 
|---|
| 182 | int cnt = 0; | 
|---|
| 183 | node p; | 
|---|
| 184 | if (root == NULL) | 
|---|
| 185 | return; | 
|---|
| 186 | SETBLACK(root); | 
|---|
| 187 | for(p = LEFT(root); p; p = LEFT(p)) | 
|---|
| 188 | cnt += !RED(p); | 
|---|
| 189 | check_tree_recurse (root, 0, cnt); | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | #else | 
|---|
| 193 |  | 
|---|
| 194 | #define CHECK_TREE(a) | 
|---|
| 195 |  | 
|---|
| 196 | #endif | 
|---|
| 197 |  | 
|---|
| 198 | /* Possibly "split" a node with two red successors, and/or fix up two red | 
|---|
| 199 | edges in a row.  ROOTP is a pointer to the lowest node we visited, PARENTP | 
|---|
| 200 | and GPARENTP pointers to its parent/grandparent.  P_R and GP_R contain the | 
|---|
| 201 | comparison values that determined which way was taken in the tree to reach | 
|---|
| 202 | ROOTP.  MODE is 1 if we need not do the split, but must check for two red | 
|---|
| 203 | edges between GPARENTP and ROOTP.  */ | 
|---|
| 204 | static void | 
|---|
| 205 | maybe_split_for_insert (node *rootp, node *parentp, node *gparentp, | 
|---|
| 206 | int p_r, int gp_r, int mode) | 
|---|
| 207 | { | 
|---|
| 208 | node root = DEREFNODEPTR(rootp); | 
|---|
| 209 | node *rp, *lp; | 
|---|
| 210 | node rpn, lpn; | 
|---|
| 211 | rp = RIGHTPTR(root); | 
|---|
| 212 | rpn = RIGHT(root); | 
|---|
| 213 | lp = LEFTPTR(root); | 
|---|
| 214 | lpn = LEFT(root); | 
|---|
| 215 |  | 
|---|
| 216 | /* See if we have to split this node (both successors red).  */ | 
|---|
| 217 | if (mode == 1 | 
|---|
| 218 | || ((rpn) != NULL && (lpn) != NULL && RED(rpn) && RED(lpn))) | 
|---|
| 219 | { | 
|---|
| 220 | /* This node becomes red, its successors black.  */ | 
|---|
| 221 | SETRED(root); | 
|---|
| 222 | if (rpn) | 
|---|
| 223 | SETBLACK(rpn); | 
|---|
| 224 | if (lpn) | 
|---|
| 225 | SETBLACK(lpn); | 
|---|
| 226 |  | 
|---|
| 227 | /* If the parent of this node is also red, we have to do | 
|---|
| 228 | rotations.  */ | 
|---|
| 229 | if (parentp != NULL && RED(DEREFNODEPTR(parentp))) | 
|---|
| 230 | { | 
|---|
| 231 | node gp = DEREFNODEPTR(gparentp); | 
|---|
| 232 | node p = DEREFNODEPTR(parentp); | 
|---|
| 233 | /* There are two main cases: | 
|---|
| 234 | 1. The edge types (left or right) of the two red edges differ. | 
|---|
| 235 | 2. Both red edges are of the same type. | 
|---|
| 236 | There exist two symmetries of each case, so there is a total of | 
|---|
| 237 | 4 cases.  */ | 
|---|
| 238 | if ((p_r > 0) != (gp_r > 0)) | 
|---|
| 239 | { | 
|---|
| 240 | /* Put the child at the top of the tree, with its parent | 
|---|
| 241 | and grandparent as successors.  */ | 
|---|
| 242 | SETRED(p); | 
|---|
| 243 | SETRED(gp); | 
|---|
| 244 | SETBLACK(root); | 
|---|
| 245 | if (p_r < 0) | 
|---|
| 246 | { | 
|---|
| 247 | /* Child is left of parent.  */ | 
|---|
| 248 | SETLEFT(p,rpn); | 
|---|
| 249 | SETNODEPTR(rp,p); | 
|---|
| 250 | SETRIGHT(gp,lpn); | 
|---|
| 251 | SETNODEPTR(lp,gp); | 
|---|
| 252 | } | 
|---|
| 253 | else | 
|---|
| 254 | { | 
|---|
| 255 | /* Child is right of parent.  */ | 
|---|
| 256 | SETRIGHT(p,lpn); | 
|---|
| 257 | SETNODEPTR(lp,p); | 
|---|
| 258 | SETLEFT(gp,rpn); | 
|---|
| 259 | SETNODEPTR(rp,gp); | 
|---|
| 260 | } | 
|---|
| 261 | SETNODEPTR(gparentp,root); | 
|---|
| 262 | } | 
|---|
| 263 | else | 
|---|
| 264 | { | 
|---|
| 265 | SETNODEPTR(gparentp,p); | 
|---|
| 266 | /* Parent becomes the top of the tree, grandparent and | 
|---|
| 267 | child are its successors.  */ | 
|---|
| 268 | SETBLACK(p); | 
|---|
| 269 | SETRED(gp); | 
|---|
| 270 | if (p_r < 0) | 
|---|
| 271 | { | 
|---|
| 272 | /* Left edges.  */ | 
|---|
| 273 | SETLEFT(gp,RIGHT(p)); | 
|---|
| 274 | SETRIGHT(p,gp); | 
|---|
| 275 | } | 
|---|
| 276 | else | 
|---|
| 277 | { | 
|---|
| 278 | /* Right edges.  */ | 
|---|
| 279 | SETRIGHT(gp,LEFT(p)); | 
|---|
| 280 | SETLEFT(p,gp); | 
|---|
| 281 | } | 
|---|
| 282 | } | 
|---|
| 283 | } | 
|---|
| 284 | } | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | /* Find or insert datum into search tree. | 
|---|
| 288 | KEY is the key to be located, ROOTP is the address of tree root, | 
|---|
| 289 | COMPAR the ordering function.  */ | 
|---|
| 290 | void * | 
|---|
| 291 | __tsearch (const void *key, void **vrootp, __compar_fn_t compar) | 
|---|
| 292 | { | 
|---|
| 293 | node q, root; | 
|---|
| 294 | node *parentp = NULL, *gparentp = NULL; | 
|---|
| 295 | node *rootp = (node *) vrootp; | 
|---|
| 296 | node *nextp; | 
|---|
| 297 | int r = 0, p_r = 0, gp_r = 0; /* No they might not, Mr Compiler.  */ | 
|---|
| 298 |  | 
|---|
| 299 | #ifdef USE_MALLOC_LOW_BIT | 
|---|
| 300 | static_assert (alignof (max_align_t) > 1, "malloc must return aligned ptrs"); | 
|---|
| 301 | #endif | 
|---|
| 302 |  | 
|---|
| 303 | if (rootp == NULL) | 
|---|
| 304 | return NULL; | 
|---|
| 305 |  | 
|---|
| 306 | /* This saves some additional tests below.  */ | 
|---|
| 307 | root = DEREFNODEPTR(rootp); | 
|---|
| 308 | if (root != NULL) | 
|---|
| 309 | SETBLACK(root); | 
|---|
| 310 |  | 
|---|
| 311 | CHECK_TREE (root); | 
|---|
| 312 |  | 
|---|
| 313 | nextp = rootp; | 
|---|
| 314 | while (DEREFNODEPTR(nextp) != NULL) | 
|---|
| 315 | { | 
|---|
| 316 | root = DEREFNODEPTR(rootp); | 
|---|
| 317 | r = (*compar) (key, root->key); | 
|---|
| 318 | if (r == 0) | 
|---|
| 319 | return root; | 
|---|
| 320 |  | 
|---|
| 321 | maybe_split_for_insert (rootp, parentp, gparentp, p_r, gp_r, 0); | 
|---|
| 322 | /* If that did any rotations, parentp and gparentp are now garbage. | 
|---|
| 323 | That doesn't matter, because the values they contain are never | 
|---|
| 324 | used again in that case.  */ | 
|---|
| 325 |  | 
|---|
| 326 | nextp = r < 0 ? LEFTPTR(root) : RIGHTPTR(root); | 
|---|
| 327 | if (DEREFNODEPTR(nextp) == NULL) | 
|---|
| 328 | break; | 
|---|
| 329 |  | 
|---|
| 330 | gparentp = parentp; | 
|---|
| 331 | parentp = rootp; | 
|---|
| 332 | rootp = nextp; | 
|---|
| 333 |  | 
|---|
| 334 | gp_r = p_r; | 
|---|
| 335 | p_r = r; | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | q = (struct node_t *) malloc (sizeof (struct node_t)); | 
|---|
| 339 | if (q != NULL) | 
|---|
| 340 | { | 
|---|
| 341 | /* Make sure the malloc implementation returns naturally aligned | 
|---|
| 342 | memory blocks when expected.  Or at least even pointers, so we | 
|---|
| 343 | can use the low bit as red/black flag.  Even though we have a | 
|---|
| 344 | static_assert to make sure alignof (max_align_t) > 1 there could | 
|---|
| 345 | be an interposed malloc implementation that might cause havoc by | 
|---|
| 346 | not obeying the malloc contract.  */ | 
|---|
| 347 | #ifdef USE_MALLOC_LOW_BIT | 
|---|
| 348 | assert (((uintptr_t) q & (uintptr_t) 0x1) == 0); | 
|---|
| 349 | #endif | 
|---|
| 350 | SETNODEPTR(nextp,q);		/* link new node to old */ | 
|---|
| 351 | q->key = key;			/* initialize new node */ | 
|---|
| 352 | SETRED(q); | 
|---|
| 353 | SETLEFT(q,NULL); | 
|---|
| 354 | SETRIGHT(q,NULL); | 
|---|
| 355 |  | 
|---|
| 356 | if (nextp != rootp) | 
|---|
| 357 | /* There may be two red edges in a row now, which we must avoid by | 
|---|
| 358 | rotating the tree.  */ | 
|---|
| 359 | maybe_split_for_insert (nextp, rootp, parentp, r, p_r, 1); | 
|---|
| 360 | } | 
|---|
| 361 |  | 
|---|
| 362 | return q; | 
|---|
| 363 | } | 
|---|
| 364 | libc_hidden_def (__tsearch) | 
|---|
| 365 | weak_alias (__tsearch, tsearch) | 
|---|
| 366 |  | 
|---|
| 367 |  | 
|---|
| 368 | /* Find datum in search tree. | 
|---|
| 369 | KEY is the key to be located, ROOTP is the address of tree root, | 
|---|
| 370 | COMPAR the ordering function.  */ | 
|---|
| 371 | void * | 
|---|
| 372 | __tfind (const void *key, void *const *vrootp, __compar_fn_t compar) | 
|---|
| 373 | { | 
|---|
| 374 | node root; | 
|---|
| 375 | node *rootp = (node *) vrootp; | 
|---|
| 376 |  | 
|---|
| 377 | if (rootp == NULL) | 
|---|
| 378 | return NULL; | 
|---|
| 379 |  | 
|---|
| 380 | root = DEREFNODEPTR(rootp); | 
|---|
| 381 | CHECK_TREE (root); | 
|---|
| 382 |  | 
|---|
| 383 | while (DEREFNODEPTR(rootp) != NULL) | 
|---|
| 384 | { | 
|---|
| 385 | root = DEREFNODEPTR(rootp); | 
|---|
| 386 | int r; | 
|---|
| 387 |  | 
|---|
| 388 | r = (*compar) (key, root->key); | 
|---|
| 389 | if (r == 0) | 
|---|
| 390 | return root; | 
|---|
| 391 |  | 
|---|
| 392 | rootp = r < 0 ? LEFTPTR(root) : RIGHTPTR(root); | 
|---|
| 393 | } | 
|---|
| 394 | return NULL; | 
|---|
| 395 | } | 
|---|
| 396 | libc_hidden_def (__tfind) | 
|---|
| 397 | weak_alias (__tfind, tfind) | 
|---|
| 398 |  | 
|---|
| 399 |  | 
|---|
| 400 | /* Delete node with given key. | 
|---|
| 401 | KEY is the key to be deleted, ROOTP is the address of the root of tree, | 
|---|
| 402 | COMPAR the comparison function.  */ | 
|---|
| 403 | void * | 
|---|
| 404 | __tdelete (const void *key, void **vrootp, __compar_fn_t compar) | 
|---|
| 405 | { | 
|---|
| 406 | node p, q, r, retval; | 
|---|
| 407 | int cmp; | 
|---|
| 408 | node *rootp = (node *) vrootp; | 
|---|
| 409 | node root, unchained; | 
|---|
| 410 | /* Stack of nodes so we remember the parents without recursion.  It's | 
|---|
| 411 | _very_ unlikely that there are paths longer than 40 nodes.  The tree | 
|---|
| 412 | would need to have around 250.000 nodes.  */ | 
|---|
| 413 | int stacksize = 40; | 
|---|
| 414 | int sp = 0; | 
|---|
| 415 | node **nodestack = alloca (sizeof (node *) * stacksize); | 
|---|
| 416 |  | 
|---|
| 417 | if (rootp == NULL) | 
|---|
| 418 | return NULL; | 
|---|
| 419 | p = DEREFNODEPTR(rootp); | 
|---|
| 420 | if (p == NULL) | 
|---|
| 421 | return NULL; | 
|---|
| 422 |  | 
|---|
| 423 | CHECK_TREE (p); | 
|---|
| 424 |  | 
|---|
| 425 | root = DEREFNODEPTR(rootp); | 
|---|
| 426 | while ((cmp = (*compar) (key, root->key)) != 0) | 
|---|
| 427 | { | 
|---|
| 428 | if (sp == stacksize) | 
|---|
| 429 | { | 
|---|
| 430 | node **newstack; | 
|---|
| 431 | stacksize += 20; | 
|---|
| 432 | newstack = alloca (sizeof (node *) * stacksize); | 
|---|
| 433 | nodestack = memcpy (newstack, nodestack, sp * sizeof (node *)); | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|
| 436 | nodestack[sp++] = rootp; | 
|---|
| 437 | p = DEREFNODEPTR(rootp); | 
|---|
| 438 | if (cmp < 0) | 
|---|
| 439 | { | 
|---|
| 440 | rootp = LEFTPTR(p); | 
|---|
| 441 | root = LEFT(p); | 
|---|
| 442 | } | 
|---|
| 443 | else | 
|---|
| 444 | { | 
|---|
| 445 | rootp = RIGHTPTR(p); | 
|---|
| 446 | root = RIGHT(p); | 
|---|
| 447 | } | 
|---|
| 448 | if (root == NULL) | 
|---|
| 449 | return NULL; | 
|---|
| 450 | } | 
|---|
| 451 |  | 
|---|
| 452 | /* This is bogus if the node to be deleted is the root... this routine | 
|---|
| 453 | really should return an integer with 0 for success, -1 for failure | 
|---|
| 454 | and errno = ESRCH or something.  */ | 
|---|
| 455 | retval = p; | 
|---|
| 456 |  | 
|---|
| 457 | /* We don't unchain the node we want to delete. Instead, we overwrite | 
|---|
| 458 | it with its successor and unchain the successor.  If there is no | 
|---|
| 459 | successor, we really unchain the node to be deleted.  */ | 
|---|
| 460 |  | 
|---|
| 461 | root = DEREFNODEPTR(rootp); | 
|---|
| 462 |  | 
|---|
| 463 | r = RIGHT(root); | 
|---|
| 464 | q = LEFT(root); | 
|---|
| 465 |  | 
|---|
| 466 | if (q == NULL || r == NULL) | 
|---|
| 467 | unchained = root; | 
|---|
| 468 | else | 
|---|
| 469 | { | 
|---|
| 470 | node *parentp = rootp, *up = RIGHTPTR(root); | 
|---|
| 471 | node upn; | 
|---|
| 472 | for (;;) | 
|---|
| 473 | { | 
|---|
| 474 | if (sp == stacksize) | 
|---|
| 475 | { | 
|---|
| 476 | node **newstack; | 
|---|
| 477 | stacksize += 20; | 
|---|
| 478 | newstack = alloca (sizeof (node *) * stacksize); | 
|---|
| 479 | nodestack = memcpy (newstack, nodestack, sp * sizeof (node *)); | 
|---|
| 480 | } | 
|---|
| 481 | nodestack[sp++] = parentp; | 
|---|
| 482 | parentp = up; | 
|---|
| 483 | upn = DEREFNODEPTR(up); | 
|---|
| 484 | if (LEFT(upn) == NULL) | 
|---|
| 485 | break; | 
|---|
| 486 | up = LEFTPTR(upn); | 
|---|
| 487 | } | 
|---|
| 488 | unchained = DEREFNODEPTR(up); | 
|---|
| 489 | } | 
|---|
| 490 |  | 
|---|
| 491 | /* We know that either the left or right successor of UNCHAINED is NULL. | 
|---|
| 492 | R becomes the other one, it is chained into the parent of UNCHAINED.  */ | 
|---|
| 493 | r = LEFT(unchained); | 
|---|
| 494 | if (r == NULL) | 
|---|
| 495 | r = RIGHT(unchained); | 
|---|
| 496 | if (sp == 0) | 
|---|
| 497 | SETNODEPTR(rootp,r); | 
|---|
| 498 | else | 
|---|
| 499 | { | 
|---|
| 500 | q = DEREFNODEPTR(nodestack[sp-1]); | 
|---|
| 501 | if (unchained == RIGHT(q)) | 
|---|
| 502 | SETRIGHT(q,r); | 
|---|
| 503 | else | 
|---|
| 504 | SETLEFT(q,r); | 
|---|
| 505 | } | 
|---|
| 506 |  | 
|---|
| 507 | if (unchained != root) | 
|---|
| 508 | root->key = unchained->key; | 
|---|
| 509 | if (!RED(unchained)) | 
|---|
| 510 | { | 
|---|
| 511 | /* Now we lost a black edge, which means that the number of black | 
|---|
| 512 | edges on every path is no longer constant.  We must balance the | 
|---|
| 513 | tree.  */ | 
|---|
| 514 | /* NODESTACK now contains all parents of R.  R is likely to be NULL | 
|---|
| 515 | in the first iteration.  */ | 
|---|
| 516 | /* NULL nodes are considered black throughout - this is necessary for | 
|---|
| 517 | correctness.  */ | 
|---|
| 518 | while (sp > 0 && (r == NULL || !RED(r))) | 
|---|
| 519 | { | 
|---|
| 520 | node *pp = nodestack[sp - 1]; | 
|---|
| 521 | p = DEREFNODEPTR(pp); | 
|---|
| 522 | /* Two symmetric cases.  */ | 
|---|
| 523 | if (r == LEFT(p)) | 
|---|
| 524 | { | 
|---|
| 525 | /* Q is R's brother, P is R's parent.  The subtree with root | 
|---|
| 526 | R has one black edge less than the subtree with root Q.  */ | 
|---|
| 527 | q = RIGHT(p); | 
|---|
| 528 | if (RED(q)) | 
|---|
| 529 | { | 
|---|
| 530 | /* If Q is red, we know that P is black. We rotate P left | 
|---|
| 531 | so that Q becomes the top node in the tree, with P below | 
|---|
| 532 | it.  P is colored red, Q is colored black. | 
|---|
| 533 | This action does not change the black edge count for any | 
|---|
| 534 | leaf in the tree, but we will be able to recognize one | 
|---|
| 535 | of the following situations, which all require that Q | 
|---|
| 536 | is black.  */ | 
|---|
| 537 | SETBLACK(q); | 
|---|
| 538 | SETRED(p); | 
|---|
| 539 | /* Left rotate p.  */ | 
|---|
| 540 | SETRIGHT(p,LEFT(q)); | 
|---|
| 541 | SETLEFT(q,p); | 
|---|
| 542 | SETNODEPTR(pp,q); | 
|---|
| 543 | /* Make sure pp is right if the case below tries to use | 
|---|
| 544 | it.  */ | 
|---|
| 545 | nodestack[sp++] = pp = LEFTPTR(q); | 
|---|
| 546 | q = RIGHT(p); | 
|---|
| 547 | } | 
|---|
| 548 | /* We know that Q can't be NULL here.  We also know that Q is | 
|---|
| 549 | black.  */ | 
|---|
| 550 | if ((LEFT(q) == NULL || !RED(LEFT(q))) | 
|---|
| 551 | && (RIGHT(q) == NULL || !RED(RIGHT(q)))) | 
|---|
| 552 | { | 
|---|
| 553 | /* Q has two black successors.  We can simply color Q red. | 
|---|
| 554 | The whole subtree with root P is now missing one black | 
|---|
| 555 | edge.  Note that this action can temporarily make the | 
|---|
| 556 | tree invalid (if P is red).  But we will exit the loop | 
|---|
| 557 | in that case and set P black, which both makes the tree | 
|---|
| 558 | valid and also makes the black edge count come out | 
|---|
| 559 | right.  If P is black, we are at least one step closer | 
|---|
| 560 | to the root and we'll try again the next iteration.  */ | 
|---|
| 561 | SETRED(q); | 
|---|
| 562 | r = p; | 
|---|
| 563 | } | 
|---|
| 564 | else | 
|---|
| 565 | { | 
|---|
| 566 | /* Q is black, one of Q's successors is red.  We can | 
|---|
| 567 | repair the tree with one operation and will exit the | 
|---|
| 568 | loop afterwards.  */ | 
|---|
| 569 | if (RIGHT(q) == NULL || !RED(RIGHT(q))) | 
|---|
| 570 | { | 
|---|
| 571 | /* The left one is red.  We perform the same action as | 
|---|
| 572 | in maybe_split_for_insert where two red edges are | 
|---|
| 573 | adjacent but point in different directions: | 
|---|
| 574 | Q's left successor (let's call it Q2) becomes the | 
|---|
| 575 | top of the subtree we are looking at, its parent (Q) | 
|---|
| 576 | and grandparent (P) become its successors. The former | 
|---|
| 577 | successors of Q2 are placed below P and Q. | 
|---|
| 578 | P becomes black, and Q2 gets the color that P had. | 
|---|
| 579 | This changes the black edge count only for node R and | 
|---|
| 580 | its successors.  */ | 
|---|
| 581 | node q2 = LEFT(q); | 
|---|
| 582 | if (RED(p)) | 
|---|
| 583 | SETRED(q2); | 
|---|
| 584 | else | 
|---|
| 585 | SETBLACK(q2); | 
|---|
| 586 | SETRIGHT(p,LEFT(q2)); | 
|---|
| 587 | SETLEFT(q,RIGHT(q2)); | 
|---|
| 588 | SETRIGHT(q2,q); | 
|---|
| 589 | SETLEFT(q2,p); | 
|---|
| 590 | SETNODEPTR(pp,q2); | 
|---|
| 591 | SETBLACK(p); | 
|---|
| 592 | } | 
|---|
| 593 | else | 
|---|
| 594 | { | 
|---|
| 595 | /* It's the right one.  Rotate P left. P becomes black, | 
|---|
| 596 | and Q gets the color that P had.  Q's right successor | 
|---|
| 597 | also becomes black.  This changes the black edge | 
|---|
| 598 | count only for node R and its successors.  */ | 
|---|
| 599 | if (RED(p)) | 
|---|
| 600 | SETRED(q); | 
|---|
| 601 | else | 
|---|
| 602 | SETBLACK(q); | 
|---|
| 603 | SETBLACK(p); | 
|---|
| 604 |  | 
|---|
| 605 | SETBLACK(RIGHT(q)); | 
|---|
| 606 |  | 
|---|
| 607 | /* left rotate p */ | 
|---|
| 608 | SETRIGHT(p,LEFT(q)); | 
|---|
| 609 | SETLEFT(q,p); | 
|---|
| 610 | SETNODEPTR(pp,q); | 
|---|
| 611 | } | 
|---|
| 612 |  | 
|---|
| 613 | /* We're done.  */ | 
|---|
| 614 | sp = 1; | 
|---|
| 615 | r = NULL; | 
|---|
| 616 | } | 
|---|
| 617 | } | 
|---|
| 618 | else | 
|---|
| 619 | { | 
|---|
| 620 | /* Comments: see above.  */ | 
|---|
| 621 | q = LEFT(p); | 
|---|
| 622 | if (RED(q)) | 
|---|
| 623 | { | 
|---|
| 624 | SETBLACK(q); | 
|---|
| 625 | SETRED(p); | 
|---|
| 626 | SETLEFT(p,RIGHT(q)); | 
|---|
| 627 | SETRIGHT(q,p); | 
|---|
| 628 | SETNODEPTR(pp,q); | 
|---|
| 629 | nodestack[sp++] = pp = RIGHTPTR(q); | 
|---|
| 630 | q = LEFT(p); | 
|---|
| 631 | } | 
|---|
| 632 | if ((RIGHT(q) == NULL || !RED(RIGHT(q))) | 
|---|
| 633 | && (LEFT(q) == NULL || !RED(LEFT(q)))) | 
|---|
| 634 | { | 
|---|
| 635 | SETRED(q); | 
|---|
| 636 | r = p; | 
|---|
| 637 | } | 
|---|
| 638 | else | 
|---|
| 639 | { | 
|---|
| 640 | if (LEFT(q) == NULL || !RED(LEFT(q))) | 
|---|
| 641 | { | 
|---|
| 642 | node q2 = RIGHT(q); | 
|---|
| 643 | if (RED(p)) | 
|---|
| 644 | SETRED(q2); | 
|---|
| 645 | else | 
|---|
| 646 | SETBLACK(q2); | 
|---|
| 647 | SETLEFT(p,RIGHT(q2)); | 
|---|
| 648 | SETRIGHT(q,LEFT(q2)); | 
|---|
| 649 | SETLEFT(q2,q); | 
|---|
| 650 | SETRIGHT(q2,p); | 
|---|
| 651 | SETNODEPTR(pp,q2); | 
|---|
| 652 | SETBLACK(p); | 
|---|
| 653 | } | 
|---|
| 654 | else | 
|---|
| 655 | { | 
|---|
| 656 | if (RED(p)) | 
|---|
| 657 | SETRED(q); | 
|---|
| 658 | else | 
|---|
| 659 | SETBLACK(q); | 
|---|
| 660 | SETBLACK(p); | 
|---|
| 661 | SETBLACK(LEFT(q)); | 
|---|
| 662 | SETLEFT(p,RIGHT(q)); | 
|---|
| 663 | SETRIGHT(q,p); | 
|---|
| 664 | SETNODEPTR(pp,q); | 
|---|
| 665 | } | 
|---|
| 666 | sp = 1; | 
|---|
| 667 | r = NULL; | 
|---|
| 668 | } | 
|---|
| 669 | } | 
|---|
| 670 | --sp; | 
|---|
| 671 | } | 
|---|
| 672 | if (r != NULL) | 
|---|
| 673 | SETBLACK(r); | 
|---|
| 674 | } | 
|---|
| 675 |  | 
|---|
| 676 | free (unchained); | 
|---|
| 677 | return retval; | 
|---|
| 678 | } | 
|---|
| 679 | libc_hidden_def (__tdelete) | 
|---|
| 680 | weak_alias (__tdelete, tdelete) | 
|---|
| 681 |  | 
|---|
| 682 |  | 
|---|
| 683 | /* Walk the nodes of a tree. | 
|---|
| 684 | ROOT is the root of the tree to be walked, ACTION the function to be | 
|---|
| 685 | called at each node.  LEVEL is the level of ROOT in the whole tree.  */ | 
|---|
| 686 | static void | 
|---|
| 687 | trecurse (const void *vroot, __action_fn_t action, int level) | 
|---|
| 688 | { | 
|---|
| 689 | const_node root = (const_node) vroot; | 
|---|
| 690 |  | 
|---|
| 691 | if (LEFT(root) == NULL && RIGHT(root) == NULL) | 
|---|
| 692 | (*action) (root, leaf, level); | 
|---|
| 693 | else | 
|---|
| 694 | { | 
|---|
| 695 | (*action) (root, preorder, level); | 
|---|
| 696 | if (LEFT(root) != NULL) | 
|---|
| 697 | trecurse (LEFT(root), action, level + 1); | 
|---|
| 698 | (*action) (root, postorder, level); | 
|---|
| 699 | if (RIGHT(root) != NULL) | 
|---|
| 700 | trecurse (RIGHT(root), action, level + 1); | 
|---|
| 701 | (*action) (root, endorder, level); | 
|---|
| 702 | } | 
|---|
| 703 | } | 
|---|
| 704 |  | 
|---|
| 705 |  | 
|---|
| 706 | /* Walk the nodes of a tree. | 
|---|
| 707 | ROOT is the root of the tree to be walked, ACTION the function to be | 
|---|
| 708 | called at each node.  */ | 
|---|
| 709 | void | 
|---|
| 710 | __twalk (const void *vroot, __action_fn_t action) | 
|---|
| 711 | { | 
|---|
| 712 | const_node root = (const_node) vroot; | 
|---|
| 713 |  | 
|---|
| 714 | CHECK_TREE ((node) root); | 
|---|
| 715 |  | 
|---|
| 716 | if (root != NULL && action != NULL) | 
|---|
| 717 | trecurse (root, action, 0); | 
|---|
| 718 | } | 
|---|
| 719 | libc_hidden_def (__twalk) | 
|---|
| 720 | weak_alias (__twalk, twalk) | 
|---|
| 721 |  | 
|---|
| 722 | /* twalk_r is the same as twalk, but with a closure parameter instead | 
|---|
| 723 | of the level.  */ | 
|---|
| 724 | static void | 
|---|
| 725 | trecurse_r (const void *vroot, void (*action) (const void *, VISIT, void *), | 
|---|
| 726 | void *closure) | 
|---|
| 727 | { | 
|---|
| 728 | const_node root = (const_node) vroot; | 
|---|
| 729 |  | 
|---|
| 730 | if (LEFT(root) == NULL && RIGHT(root) == NULL) | 
|---|
| 731 | (*action) (root, leaf, closure); | 
|---|
| 732 | else | 
|---|
| 733 | { | 
|---|
| 734 | (*action) (root, preorder, closure); | 
|---|
| 735 | if (LEFT(root) != NULL) | 
|---|
| 736 | trecurse_r (LEFT(root), action, closure); | 
|---|
| 737 | (*action) (root, postorder, closure); | 
|---|
| 738 | if (RIGHT(root) != NULL) | 
|---|
| 739 | trecurse_r (RIGHT(root), action, closure); | 
|---|
| 740 | (*action) (root, endorder, closure); | 
|---|
| 741 | } | 
|---|
| 742 | } | 
|---|
| 743 |  | 
|---|
| 744 | void | 
|---|
| 745 | __twalk_r (const void *vroot, void (*action) (const void *, VISIT, void *), | 
|---|
| 746 | void *closure) | 
|---|
| 747 | { | 
|---|
| 748 | const_node root = (const_node) vroot; | 
|---|
| 749 |  | 
|---|
| 750 | CHECK_TREE ((node) root); | 
|---|
| 751 |  | 
|---|
| 752 | if (root != NULL && action != NULL) | 
|---|
| 753 | trecurse_r (root, action, closure); | 
|---|
| 754 | } | 
|---|
| 755 | libc_hidden_def (__twalk_r) | 
|---|
| 756 | weak_alias (__twalk_r, twalk_r) | 
|---|
| 757 |  | 
|---|
| 758 | /* The standardized functions miss an important functionality: the | 
|---|
| 759 | tree cannot be removed easily.  We provide a function to do this.  */ | 
|---|
| 760 | static void | 
|---|
| 761 | tdestroy_recurse (node root, __free_fn_t freefct) | 
|---|
| 762 | { | 
|---|
| 763 | if (LEFT(root) != NULL) | 
|---|
| 764 | tdestroy_recurse (LEFT(root), freefct); | 
|---|
| 765 | if (RIGHT(root) != NULL) | 
|---|
| 766 | tdestroy_recurse (RIGHT(root), freefct); | 
|---|
| 767 | (*freefct) ((void *) root->key); | 
|---|
| 768 | /* Free the node itself.  */ | 
|---|
| 769 | free (root); | 
|---|
| 770 | } | 
|---|
| 771 |  | 
|---|
| 772 | void | 
|---|
| 773 | __tdestroy (void *vroot, __free_fn_t freefct) | 
|---|
| 774 | { | 
|---|
| 775 | node root = (node) vroot; | 
|---|
| 776 |  | 
|---|
| 777 | CHECK_TREE (root); | 
|---|
| 778 |  | 
|---|
| 779 | if (root != NULL) | 
|---|
| 780 | tdestroy_recurse (root, freefct); | 
|---|
| 781 | } | 
|---|
| 782 | libc_hidden_def (__tdestroy) | 
|---|
| 783 | weak_alias (__tdestroy, tdestroy) | 
|---|
| 784 |  | 
|---|