| 1 | /* Extended regular expression matching and search library. |
| 2 | Copyright (C) 2002-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | static void re_string_construct_common (const char *str, Idx len, |
| 21 | re_string_t *pstr, |
| 22 | RE_TRANSLATE_TYPE trans, bool icase, |
| 23 | const re_dfa_t *dfa); |
| 24 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, |
| 25 | const re_node_set *nodes, |
| 26 | re_hashval_t hash); |
| 27 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, |
| 28 | const re_node_set *nodes, |
| 29 | unsigned int context, |
| 30 | re_hashval_t hash); |
| 31 | static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr, |
| 32 | Idx new_buf_len); |
| 33 | #ifdef RE_ENABLE_I18N |
| 34 | static void build_wcs_buffer (re_string_t *pstr); |
| 35 | static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr); |
| 36 | #endif /* RE_ENABLE_I18N */ |
| 37 | static void build_upper_buffer (re_string_t *pstr); |
| 38 | static void re_string_translate_buffer (re_string_t *pstr); |
| 39 | static unsigned int re_string_context_at (const re_string_t *input, Idx idx, |
| 40 | int eflags) __attribute__ ((pure)); |
| 41 | |
| 42 | /* Functions for string operation. */ |
| 43 | |
| 44 | /* This function allocate the buffers. It is necessary to call |
| 45 | re_string_reconstruct before using the object. */ |
| 46 | |
| 47 | static reg_errcode_t |
| 48 | __attribute_warn_unused_result__ |
| 49 | re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len, |
| 50 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) |
| 51 | { |
| 52 | reg_errcode_t ret; |
| 53 | Idx init_buf_len; |
| 54 | |
| 55 | /* Ensure at least one character fits into the buffers. */ |
| 56 | if (init_len < dfa->mb_cur_max) |
| 57 | init_len = dfa->mb_cur_max; |
| 58 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; |
| 59 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
| 60 | |
| 61 | ret = re_string_realloc_buffers (pstr, init_buf_len); |
| 62 | if (__glibc_unlikely (ret != REG_NOERROR)) |
| 63 | return ret; |
| 64 | |
| 65 | pstr->word_char = dfa->word_char; |
| 66 | pstr->word_ops_used = dfa->word_ops_used; |
| 67 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
| 68 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; |
| 69 | pstr->valid_raw_len = pstr->valid_len; |
| 70 | return REG_NOERROR; |
| 71 | } |
| 72 | |
| 73 | /* This function allocate the buffers, and initialize them. */ |
| 74 | |
| 75 | static reg_errcode_t |
| 76 | __attribute_warn_unused_result__ |
| 77 | re_string_construct (re_string_t *pstr, const char *str, Idx len, |
| 78 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) |
| 79 | { |
| 80 | reg_errcode_t ret; |
| 81 | memset (pstr, '\0', sizeof (re_string_t)); |
| 82 | re_string_construct_common (str, len, pstr, trans, icase, dfa); |
| 83 | |
| 84 | if (len > 0) |
| 85 | { |
| 86 | ret = re_string_realloc_buffers (pstr, len + 1); |
| 87 | if (__glibc_unlikely (ret != REG_NOERROR)) |
| 88 | return ret; |
| 89 | } |
| 90 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; |
| 91 | |
| 92 | if (icase) |
| 93 | { |
| 94 | #ifdef RE_ENABLE_I18N |
| 95 | if (dfa->mb_cur_max > 1) |
| 96 | { |
| 97 | while (1) |
| 98 | { |
| 99 | ret = build_wcs_upper_buffer (pstr); |
| 100 | if (__glibc_unlikely (ret != REG_NOERROR)) |
| 101 | return ret; |
| 102 | if (pstr->valid_raw_len >= len) |
| 103 | break; |
| 104 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) |
| 105 | break; |
| 106 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); |
| 107 | if (__glibc_unlikely (ret != REG_NOERROR)) |
| 108 | return ret; |
| 109 | } |
| 110 | } |
| 111 | else |
| 112 | #endif /* RE_ENABLE_I18N */ |
| 113 | build_upper_buffer (pstr); |
| 114 | } |
| 115 | else |
| 116 | { |
| 117 | #ifdef RE_ENABLE_I18N |
| 118 | if (dfa->mb_cur_max > 1) |
| 119 | build_wcs_buffer (pstr); |
| 120 | else |
| 121 | #endif /* RE_ENABLE_I18N */ |
| 122 | { |
| 123 | if (trans != NULL) |
| 124 | re_string_translate_buffer (pstr); |
| 125 | else |
| 126 | { |
| 127 | pstr->valid_len = pstr->bufs_len; |
| 128 | pstr->valid_raw_len = pstr->bufs_len; |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | return REG_NOERROR; |
| 134 | } |
| 135 | |
| 136 | /* Helper functions for re_string_allocate, and re_string_construct. */ |
| 137 | |
| 138 | static reg_errcode_t |
| 139 | __attribute_warn_unused_result__ |
| 140 | re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len) |
| 141 | { |
| 142 | #ifdef RE_ENABLE_I18N |
| 143 | if (pstr->mb_cur_max > 1) |
| 144 | { |
| 145 | wint_t *new_wcs; |
| 146 | |
| 147 | /* Avoid overflow in realloc. */ |
| 148 | const size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx)); |
| 149 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) |
| 150 | < new_buf_len)) |
| 151 | return REG_ESPACE; |
| 152 | |
| 153 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); |
| 154 | if (__glibc_unlikely (new_wcs == NULL)) |
| 155 | return REG_ESPACE; |
| 156 | pstr->wcs = new_wcs; |
| 157 | if (pstr->offsets != NULL) |
| 158 | { |
| 159 | Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len); |
| 160 | if (__glibc_unlikely (new_offsets == NULL)) |
| 161 | return REG_ESPACE; |
| 162 | pstr->offsets = new_offsets; |
| 163 | } |
| 164 | } |
| 165 | #endif /* RE_ENABLE_I18N */ |
| 166 | if (pstr->mbs_allocated) |
| 167 | { |
| 168 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, |
| 169 | new_buf_len); |
| 170 | if (__glibc_unlikely (new_mbs == NULL)) |
| 171 | return REG_ESPACE; |
| 172 | pstr->mbs = new_mbs; |
| 173 | } |
| 174 | pstr->bufs_len = new_buf_len; |
| 175 | return REG_NOERROR; |
| 176 | } |
| 177 | |
| 178 | |
| 179 | static void |
| 180 | re_string_construct_common (const char *str, Idx len, re_string_t *pstr, |
| 181 | RE_TRANSLATE_TYPE trans, bool icase, |
| 182 | const re_dfa_t *dfa) |
| 183 | { |
| 184 | pstr->raw_mbs = (const unsigned char *) str; |
| 185 | pstr->len = len; |
| 186 | pstr->raw_len = len; |
| 187 | pstr->trans = trans; |
| 188 | pstr->icase = icase; |
| 189 | pstr->mbs_allocated = (trans != NULL || icase); |
| 190 | pstr->mb_cur_max = dfa->mb_cur_max; |
| 191 | pstr->is_utf8 = dfa->is_utf8; |
| 192 | pstr->map_notascii = dfa->map_notascii; |
| 193 | pstr->stop = pstr->len; |
| 194 | pstr->raw_stop = pstr->stop; |
| 195 | } |
| 196 | |
| 197 | #ifdef RE_ENABLE_I18N |
| 198 | |
| 199 | /* Build wide character buffer PSTR->WCS. |
| 200 | If the byte sequence of the string are: |
| 201 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> |
| 202 | Then wide character buffer will be: |
| 203 | <wc1> , WEOF , <wc2> , WEOF , <wc3> |
| 204 | We use WEOF for padding, they indicate that the position isn't |
| 205 | a first byte of a multibyte character. |
| 206 | |
| 207 | Note that this function assumes PSTR->VALID_LEN elements are already |
| 208 | built and starts from PSTR->VALID_LEN. */ |
| 209 | |
| 210 | static void |
| 211 | build_wcs_buffer (re_string_t *pstr) |
| 212 | { |
| 213 | #ifdef _LIBC |
| 214 | unsigned char buf[MB_LEN_MAX]; |
| 215 | DEBUG_ASSERT (MB_LEN_MAX >= pstr->mb_cur_max); |
| 216 | #else |
| 217 | unsigned char buf[64]; |
| 218 | #endif |
| 219 | mbstate_t prev_st; |
| 220 | Idx byte_idx, end_idx, remain_len; |
| 221 | size_t mbclen; |
| 222 | |
| 223 | /* Build the buffers from pstr->valid_len to either pstr->len or |
| 224 | pstr->bufs_len. */ |
| 225 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| 226 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) |
| 227 | { |
| 228 | wchar_t wc; |
| 229 | const char *p; |
| 230 | |
| 231 | remain_len = end_idx - byte_idx; |
| 232 | prev_st = pstr->cur_state; |
| 233 | /* Apply the translation if we need. */ |
| 234 | if (__glibc_unlikely (pstr->trans != NULL)) |
| 235 | { |
| 236 | int i, ch; |
| 237 | |
| 238 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
| 239 | { |
| 240 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; |
| 241 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; |
| 242 | } |
| 243 | p = (const char *) buf; |
| 244 | } |
| 245 | else |
| 246 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; |
| 247 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
| 248 | if (__glibc_unlikely (mbclen == (size_t) -1 || mbclen == 0 |
| 249 | || (mbclen == (size_t) -2 |
| 250 | && pstr->bufs_len >= pstr->len))) |
| 251 | { |
| 252 | /* We treat these cases as a singlebyte character. */ |
| 253 | mbclen = 1; |
| 254 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
| 255 | if (__glibc_unlikely (pstr->trans != NULL)) |
| 256 | wc = pstr->trans[wc]; |
| 257 | pstr->cur_state = prev_st; |
| 258 | } |
| 259 | else if (__glibc_unlikely (mbclen == (size_t) -2)) |
| 260 | { |
| 261 | /* The buffer doesn't have enough space, finish to build. */ |
| 262 | pstr->cur_state = prev_st; |
| 263 | break; |
| 264 | } |
| 265 | |
| 266 | /* Write wide character and padding. */ |
| 267 | pstr->wcs[byte_idx++] = wc; |
| 268 | /* Write paddings. */ |
| 269 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
| 270 | pstr->wcs[byte_idx++] = WEOF; |
| 271 | } |
| 272 | pstr->valid_len = byte_idx; |
| 273 | pstr->valid_raw_len = byte_idx; |
| 274 | } |
| 275 | |
| 276 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, |
| 277 | but for REG_ICASE. */ |
| 278 | |
| 279 | static reg_errcode_t |
| 280 | __attribute_warn_unused_result__ |
| 281 | build_wcs_upper_buffer (re_string_t *pstr) |
| 282 | { |
| 283 | mbstate_t prev_st; |
| 284 | Idx src_idx, byte_idx, end_idx, remain_len; |
| 285 | size_t mbclen; |
| 286 | #ifdef _LIBC |
| 287 | char buf[MB_LEN_MAX]; |
| 288 | DEBUG_ASSERT (pstr->mb_cur_max <= MB_LEN_MAX); |
| 289 | #else |
| 290 | char buf[64]; |
| 291 | #endif |
| 292 | |
| 293 | byte_idx = pstr->valid_len; |
| 294 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| 295 | |
| 296 | /* The following optimization assumes that ASCII characters can be |
| 297 | mapped to wide characters with a simple cast. */ |
| 298 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) |
| 299 | { |
| 300 | while (byte_idx < end_idx) |
| 301 | { |
| 302 | wchar_t wc; |
| 303 | |
| 304 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) |
| 305 | && mbsinit (&pstr->cur_state)) |
| 306 | { |
| 307 | /* In case of a singlebyte character. */ |
| 308 | pstr->mbs[byte_idx] |
| 309 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); |
| 310 | /* The next step uses the assumption that wchar_t is encoded |
| 311 | ASCII-safe: all ASCII values can be converted like this. */ |
| 312 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; |
| 313 | ++byte_idx; |
| 314 | continue; |
| 315 | } |
| 316 | |
| 317 | remain_len = end_idx - byte_idx; |
| 318 | prev_st = pstr->cur_state; |
| 319 | mbclen = __mbrtowc (&wc, |
| 320 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx |
| 321 | + byte_idx), remain_len, &pstr->cur_state); |
| 322 | if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2)) |
| 323 | { |
| 324 | wchar_t wcu = __towupper (wc); |
| 325 | if (wcu != wc) |
| 326 | { |
| 327 | size_t mbcdlen; |
| 328 | |
| 329 | mbcdlen = __wcrtomb (buf, wcu, &prev_st); |
| 330 | if (__glibc_likely (mbclen == mbcdlen)) |
| 331 | memcpy (pstr->mbs + byte_idx, buf, mbclen); |
| 332 | else |
| 333 | { |
| 334 | src_idx = byte_idx; |
| 335 | goto offsets_needed; |
| 336 | } |
| 337 | } |
| 338 | else |
| 339 | memcpy (pstr->mbs + byte_idx, |
| 340 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); |
| 341 | pstr->wcs[byte_idx++] = wcu; |
| 342 | /* Write paddings. */ |
| 343 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
| 344 | pstr->wcs[byte_idx++] = WEOF; |
| 345 | } |
| 346 | else if (mbclen == (size_t) -1 || mbclen == 0 |
| 347 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) |
| 348 | { |
| 349 | /* It is an invalid character, an incomplete character |
| 350 | at the end of the string, or '\0'. Just use the byte. */ |
| 351 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; |
| 352 | pstr->mbs[byte_idx] = ch; |
| 353 | /* And also cast it to wide char. */ |
| 354 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
| 355 | if (__glibc_unlikely (mbclen == (size_t) -1)) |
| 356 | pstr->cur_state = prev_st; |
| 357 | } |
| 358 | else |
| 359 | { |
| 360 | /* The buffer doesn't have enough space, finish to build. */ |
| 361 | pstr->cur_state = prev_st; |
| 362 | break; |
| 363 | } |
| 364 | } |
| 365 | pstr->valid_len = byte_idx; |
| 366 | pstr->valid_raw_len = byte_idx; |
| 367 | return REG_NOERROR; |
| 368 | } |
| 369 | else |
| 370 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) |
| 371 | { |
| 372 | wchar_t wc; |
| 373 | const char *p; |
| 374 | offsets_needed: |
| 375 | remain_len = end_idx - byte_idx; |
| 376 | prev_st = pstr->cur_state; |
| 377 | if (__glibc_unlikely (pstr->trans != NULL)) |
| 378 | { |
| 379 | int i, ch; |
| 380 | |
| 381 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) |
| 382 | { |
| 383 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; |
| 384 | buf[i] = pstr->trans[ch]; |
| 385 | } |
| 386 | p = (const char *) buf; |
| 387 | } |
| 388 | else |
| 389 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; |
| 390 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); |
| 391 | if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2)) |
| 392 | { |
| 393 | wchar_t wcu = __towupper (wc); |
| 394 | if (wcu != wc) |
| 395 | { |
| 396 | size_t mbcdlen; |
| 397 | |
| 398 | mbcdlen = __wcrtomb ((char *) buf, wcu, &prev_st); |
| 399 | if (__glibc_likely (mbclen == mbcdlen)) |
| 400 | memcpy (pstr->mbs + byte_idx, buf, mbclen); |
| 401 | else if (mbcdlen != (size_t) -1) |
| 402 | { |
| 403 | size_t i; |
| 404 | |
| 405 | if (byte_idx + mbcdlen > pstr->bufs_len) |
| 406 | { |
| 407 | pstr->cur_state = prev_st; |
| 408 | break; |
| 409 | } |
| 410 | |
| 411 | if (pstr->offsets == NULL) |
| 412 | { |
| 413 | pstr->offsets = re_malloc (Idx, pstr->bufs_len); |
| 414 | |
| 415 | if (pstr->offsets == NULL) |
| 416 | return REG_ESPACE; |
| 417 | } |
| 418 | if (!pstr->offsets_needed) |
| 419 | { |
| 420 | for (i = 0; i < (size_t) byte_idx; ++i) |
| 421 | pstr->offsets[i] = i; |
| 422 | pstr->offsets_needed = 1; |
| 423 | } |
| 424 | |
| 425 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); |
| 426 | pstr->wcs[byte_idx] = wcu; |
| 427 | pstr->offsets[byte_idx] = src_idx; |
| 428 | for (i = 1; i < mbcdlen; ++i) |
| 429 | { |
| 430 | pstr->offsets[byte_idx + i] |
| 431 | = src_idx + (i < mbclen ? i : mbclen - 1); |
| 432 | pstr->wcs[byte_idx + i] = WEOF; |
| 433 | } |
| 434 | pstr->len += mbcdlen - mbclen; |
| 435 | if (pstr->raw_stop > src_idx) |
| 436 | pstr->stop += mbcdlen - mbclen; |
| 437 | end_idx = (pstr->bufs_len > pstr->len) |
| 438 | ? pstr->len : pstr->bufs_len; |
| 439 | byte_idx += mbcdlen; |
| 440 | src_idx += mbclen; |
| 441 | continue; |
| 442 | } |
| 443 | else |
| 444 | memcpy (pstr->mbs + byte_idx, p, mbclen); |
| 445 | } |
| 446 | else |
| 447 | memcpy (pstr->mbs + byte_idx, p, mbclen); |
| 448 | |
| 449 | if (__glibc_unlikely (pstr->offsets_needed != 0)) |
| 450 | { |
| 451 | size_t i; |
| 452 | for (i = 0; i < mbclen; ++i) |
| 453 | pstr->offsets[byte_idx + i] = src_idx + i; |
| 454 | } |
| 455 | src_idx += mbclen; |
| 456 | |
| 457 | pstr->wcs[byte_idx++] = wcu; |
| 458 | /* Write paddings. */ |
| 459 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) |
| 460 | pstr->wcs[byte_idx++] = WEOF; |
| 461 | } |
| 462 | else if (mbclen == (size_t) -1 || mbclen == 0 |
| 463 | || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) |
| 464 | { |
| 465 | /* It is an invalid character or '\0'. Just use the byte. */ |
| 466 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; |
| 467 | |
| 468 | if (__glibc_unlikely (pstr->trans != NULL)) |
| 469 | ch = pstr->trans [ch]; |
| 470 | pstr->mbs[byte_idx] = ch; |
| 471 | |
| 472 | if (__glibc_unlikely (pstr->offsets_needed != 0)) |
| 473 | pstr->offsets[byte_idx] = src_idx; |
| 474 | ++src_idx; |
| 475 | |
| 476 | /* And also cast it to wide char. */ |
| 477 | pstr->wcs[byte_idx++] = (wchar_t) ch; |
| 478 | if (__glibc_unlikely (mbclen == (size_t) -1)) |
| 479 | pstr->cur_state = prev_st; |
| 480 | } |
| 481 | else |
| 482 | { |
| 483 | /* The buffer doesn't have enough space, finish to build. */ |
| 484 | pstr->cur_state = prev_st; |
| 485 | break; |
| 486 | } |
| 487 | } |
| 488 | pstr->valid_len = byte_idx; |
| 489 | pstr->valid_raw_len = src_idx; |
| 490 | return REG_NOERROR; |
| 491 | } |
| 492 | |
| 493 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. |
| 494 | Return the index. */ |
| 495 | |
| 496 | static Idx |
| 497 | re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc) |
| 498 | { |
| 499 | mbstate_t prev_st; |
| 500 | Idx rawbuf_idx; |
| 501 | size_t mbclen; |
| 502 | wint_t wc = WEOF; |
| 503 | |
| 504 | /* Skip the characters which are not necessary to check. */ |
| 505 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; |
| 506 | rawbuf_idx < new_raw_idx;) |
| 507 | { |
| 508 | wchar_t wc2; |
| 509 | Idx remain_len = pstr->raw_len - rawbuf_idx; |
| 510 | prev_st = pstr->cur_state; |
| 511 | mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, |
| 512 | remain_len, &pstr->cur_state); |
| 513 | if (__glibc_unlikely (mbclen == (size_t) -2 || mbclen == (size_t) -1 |
| 514 | || mbclen == 0)) |
| 515 | { |
| 516 | /* We treat these cases as a single byte character. */ |
| 517 | if (mbclen == 0 || remain_len == 0) |
| 518 | wc = L'\0'; |
| 519 | else |
| 520 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); |
| 521 | mbclen = 1; |
| 522 | pstr->cur_state = prev_st; |
| 523 | } |
| 524 | else |
| 525 | wc = wc2; |
| 526 | /* Then proceed the next character. */ |
| 527 | rawbuf_idx += mbclen; |
| 528 | } |
| 529 | *last_wc = wc; |
| 530 | return rawbuf_idx; |
| 531 | } |
| 532 | #endif /* RE_ENABLE_I18N */ |
| 533 | |
| 534 | /* Build the buffer PSTR->MBS, and apply the translation if we need. |
| 535 | This function is used in case of REG_ICASE. */ |
| 536 | |
| 537 | static void |
| 538 | build_upper_buffer (re_string_t *pstr) |
| 539 | { |
| 540 | Idx char_idx, end_idx; |
| 541 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| 542 | |
| 543 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) |
| 544 | { |
| 545 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; |
| 546 | if (__glibc_unlikely (pstr->trans != NULL)) |
| 547 | ch = pstr->trans[ch]; |
| 548 | pstr->mbs[char_idx] = toupper (ch); |
| 549 | } |
| 550 | pstr->valid_len = char_idx; |
| 551 | pstr->valid_raw_len = char_idx; |
| 552 | } |
| 553 | |
| 554 | /* Apply TRANS to the buffer in PSTR. */ |
| 555 | |
| 556 | static void |
| 557 | re_string_translate_buffer (re_string_t *pstr) |
| 558 | { |
| 559 | Idx buf_idx, end_idx; |
| 560 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; |
| 561 | |
| 562 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) |
| 563 | { |
| 564 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; |
| 565 | pstr->mbs[buf_idx] = pstr->trans[ch]; |
| 566 | } |
| 567 | |
| 568 | pstr->valid_len = buf_idx; |
| 569 | pstr->valid_raw_len = buf_idx; |
| 570 | } |
| 571 | |
| 572 | /* This function re-construct the buffers. |
| 573 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, |
| 574 | convert to upper case in case of REG_ICASE, apply translation. */ |
| 575 | |
| 576 | static reg_errcode_t |
| 577 | __attribute_warn_unused_result__ |
| 578 | re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags) |
| 579 | { |
| 580 | Idx offset; |
| 581 | |
| 582 | if (__glibc_unlikely (pstr->raw_mbs_idx <= idx)) |
| 583 | offset = idx - pstr->raw_mbs_idx; |
| 584 | else |
| 585 | { |
| 586 | /* Reset buffer. */ |
| 587 | #ifdef RE_ENABLE_I18N |
| 588 | if (pstr->mb_cur_max > 1) |
| 589 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
| 590 | #endif /* RE_ENABLE_I18N */ |
| 591 | pstr->len = pstr->raw_len; |
| 592 | pstr->stop = pstr->raw_stop; |
| 593 | pstr->valid_len = 0; |
| 594 | pstr->raw_mbs_idx = 0; |
| 595 | pstr->valid_raw_len = 0; |
| 596 | pstr->offsets_needed = 0; |
| 597 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF |
| 598 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); |
| 599 | if (!pstr->mbs_allocated) |
| 600 | pstr->mbs = (unsigned char *) pstr->raw_mbs; |
| 601 | offset = idx; |
| 602 | } |
| 603 | |
| 604 | if (__glibc_likely (offset != 0)) |
| 605 | { |
| 606 | /* Should the already checked characters be kept? */ |
| 607 | if (__glibc_likely (offset < pstr->valid_raw_len)) |
| 608 | { |
| 609 | /* Yes, move them to the front of the buffer. */ |
| 610 | #ifdef RE_ENABLE_I18N |
| 611 | if (__glibc_unlikely (pstr->offsets_needed)) |
| 612 | { |
| 613 | Idx low = 0, high = pstr->valid_len, mid; |
| 614 | do |
| 615 | { |
| 616 | mid = (high + low) / 2; |
| 617 | if (pstr->offsets[mid] > offset) |
| 618 | high = mid; |
| 619 | else if (pstr->offsets[mid] < offset) |
| 620 | low = mid + 1; |
| 621 | else |
| 622 | break; |
| 623 | } |
| 624 | while (low < high); |
| 625 | if (pstr->offsets[mid] < offset) |
| 626 | ++mid; |
| 627 | pstr->tip_context = re_string_context_at (pstr, mid - 1, |
| 628 | eflags); |
| 629 | /* This can be quite complicated, so handle specially |
| 630 | only the common and easy case where the character with |
| 631 | different length representation of lower and upper |
| 632 | case is present at or after offset. */ |
| 633 | if (pstr->valid_len > offset |
| 634 | && mid == offset && pstr->offsets[mid] == offset) |
| 635 | { |
| 636 | memmove (pstr->wcs, pstr->wcs + offset, |
| 637 | (pstr->valid_len - offset) * sizeof (wint_t)); |
| 638 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); |
| 639 | pstr->valid_len -= offset; |
| 640 | pstr->valid_raw_len -= offset; |
| 641 | for (low = 0; low < pstr->valid_len; low++) |
| 642 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; |
| 643 | } |
| 644 | else |
| 645 | { |
| 646 | /* Otherwise, just find out how long the partial multibyte |
| 647 | character at offset is and fill it with WEOF/255. */ |
| 648 | pstr->len = pstr->raw_len - idx + offset; |
| 649 | pstr->stop = pstr->raw_stop - idx + offset; |
| 650 | pstr->offsets_needed = 0; |
| 651 | while (mid > 0 && pstr->offsets[mid - 1] == offset) |
| 652 | --mid; |
| 653 | while (mid < pstr->valid_len) |
| 654 | if (pstr->wcs[mid] != WEOF) |
| 655 | break; |
| 656 | else |
| 657 | ++mid; |
| 658 | if (mid == pstr->valid_len) |
| 659 | pstr->valid_len = 0; |
| 660 | else |
| 661 | { |
| 662 | pstr->valid_len = pstr->offsets[mid] - offset; |
| 663 | if (pstr->valid_len) |
| 664 | { |
| 665 | for (low = 0; low < pstr->valid_len; ++low) |
| 666 | pstr->wcs[low] = WEOF; |
| 667 | memset (pstr->mbs, 255, pstr->valid_len); |
| 668 | } |
| 669 | } |
| 670 | pstr->valid_raw_len = pstr->valid_len; |
| 671 | } |
| 672 | } |
| 673 | else |
| 674 | #endif |
| 675 | { |
| 676 | pstr->tip_context = re_string_context_at (pstr, offset - 1, |
| 677 | eflags); |
| 678 | #ifdef RE_ENABLE_I18N |
| 679 | if (pstr->mb_cur_max > 1) |
| 680 | memmove (pstr->wcs, pstr->wcs + offset, |
| 681 | (pstr->valid_len - offset) * sizeof (wint_t)); |
| 682 | #endif /* RE_ENABLE_I18N */ |
| 683 | if (__glibc_unlikely (pstr->mbs_allocated)) |
| 684 | memmove (pstr->mbs, pstr->mbs + offset, |
| 685 | pstr->valid_len - offset); |
| 686 | pstr->valid_len -= offset; |
| 687 | pstr->valid_raw_len -= offset; |
| 688 | DEBUG_ASSERT (pstr->valid_len > 0); |
| 689 | } |
| 690 | } |
| 691 | else |
| 692 | { |
| 693 | #ifdef RE_ENABLE_I18N |
| 694 | /* No, skip all characters until IDX. */ |
| 695 | Idx prev_valid_len = pstr->valid_len; |
| 696 | |
| 697 | if (__glibc_unlikely (pstr->offsets_needed)) |
| 698 | { |
| 699 | pstr->len = pstr->raw_len - idx + offset; |
| 700 | pstr->stop = pstr->raw_stop - idx + offset; |
| 701 | pstr->offsets_needed = 0; |
| 702 | } |
| 703 | #endif |
| 704 | pstr->valid_len = 0; |
| 705 | #ifdef RE_ENABLE_I18N |
| 706 | if (pstr->mb_cur_max > 1) |
| 707 | { |
| 708 | Idx wcs_idx; |
| 709 | wint_t wc = WEOF; |
| 710 | |
| 711 | if (pstr->is_utf8) |
| 712 | { |
| 713 | const unsigned char *raw, *p, *end; |
| 714 | |
| 715 | /* Special case UTF-8. Multi-byte chars start with any |
| 716 | byte other than 0x80 - 0xbf. */ |
| 717 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; |
| 718 | end = raw + (offset - pstr->mb_cur_max); |
| 719 | if (end < pstr->raw_mbs) |
| 720 | end = pstr->raw_mbs; |
| 721 | p = raw + offset - 1; |
| 722 | #ifdef _LIBC |
| 723 | /* We know the wchar_t encoding is UCS4, so for the simple |
| 724 | case, ASCII characters, skip the conversion step. */ |
| 725 | if (isascii (*p) && __glibc_likely (pstr->trans == NULL)) |
| 726 | { |
| 727 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); |
| 728 | /* pstr->valid_len = 0; */ |
| 729 | wc = (wchar_t) *p; |
| 730 | } |
| 731 | else |
| 732 | #endif |
| 733 | for (; p >= end; --p) |
| 734 | if ((*p & 0xc0) != 0x80) |
| 735 | { |
| 736 | mbstate_t cur_state; |
| 737 | wchar_t wc2; |
| 738 | Idx mlen = raw + pstr->len - p; |
| 739 | unsigned char buf[6]; |
| 740 | size_t mbclen; |
| 741 | |
| 742 | const unsigned char *pp = p; |
| 743 | if (__glibc_unlikely (pstr->trans != NULL)) |
| 744 | { |
| 745 | int i = mlen < 6 ? mlen : 6; |
| 746 | while (--i >= 0) |
| 747 | buf[i] = pstr->trans[p[i]]; |
| 748 | pp = buf; |
| 749 | } |
| 750 | /* XXX Don't use mbrtowc, we know which conversion |
| 751 | to use (UTF-8 -> UCS4). */ |
| 752 | memset (&cur_state, 0, sizeof (cur_state)); |
| 753 | mbclen = __mbrtowc (&wc2, (const char *) pp, mlen, |
| 754 | &cur_state); |
| 755 | if (raw + offset - p <= mbclen |
| 756 | && mbclen < (size_t) -2) |
| 757 | { |
| 758 | memset (&pstr->cur_state, '\0', |
| 759 | sizeof (mbstate_t)); |
| 760 | pstr->valid_len = mbclen - (raw + offset - p); |
| 761 | wc = wc2; |
| 762 | } |
| 763 | break; |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | if (wc == WEOF) |
| 768 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; |
| 769 | if (wc == WEOF) |
| 770 | pstr->tip_context |
| 771 | = re_string_context_at (pstr, prev_valid_len - 1, eflags); |
| 772 | else |
| 773 | pstr->tip_context = ((__glibc_unlikely (pstr->word_ops_used != 0) |
| 774 | && IS_WIDE_WORD_CHAR (wc)) |
| 775 | ? CONTEXT_WORD |
| 776 | : ((IS_WIDE_NEWLINE (wc) |
| 777 | && pstr->newline_anchor) |
| 778 | ? CONTEXT_NEWLINE : 0)); |
| 779 | if (__glibc_unlikely (pstr->valid_len)) |
| 780 | { |
| 781 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) |
| 782 | pstr->wcs[wcs_idx] = WEOF; |
| 783 | if (pstr->mbs_allocated) |
| 784 | memset (pstr->mbs, 255, pstr->valid_len); |
| 785 | } |
| 786 | pstr->valid_raw_len = pstr->valid_len; |
| 787 | } |
| 788 | else |
| 789 | #endif /* RE_ENABLE_I18N */ |
| 790 | { |
| 791 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; |
| 792 | pstr->valid_raw_len = 0; |
| 793 | if (pstr->trans) |
| 794 | c = pstr->trans[c]; |
| 795 | pstr->tip_context = (bitset_contain (pstr->word_char, c) |
| 796 | ? CONTEXT_WORD |
| 797 | : ((IS_NEWLINE (c) && pstr->newline_anchor) |
| 798 | ? CONTEXT_NEWLINE : 0)); |
| 799 | } |
| 800 | } |
| 801 | if (!__glibc_unlikely (pstr->mbs_allocated)) |
| 802 | pstr->mbs += offset; |
| 803 | } |
| 804 | pstr->raw_mbs_idx = idx; |
| 805 | pstr->len -= offset; |
| 806 | pstr->stop -= offset; |
| 807 | |
| 808 | /* Then build the buffers. */ |
| 809 | #ifdef RE_ENABLE_I18N |
| 810 | if (pstr->mb_cur_max > 1) |
| 811 | { |
| 812 | if (pstr->icase) |
| 813 | { |
| 814 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); |
| 815 | if (__glibc_unlikely (ret != REG_NOERROR)) |
| 816 | return ret; |
| 817 | } |
| 818 | else |
| 819 | build_wcs_buffer (pstr); |
| 820 | } |
| 821 | else |
| 822 | #endif /* RE_ENABLE_I18N */ |
| 823 | if (__glibc_unlikely (pstr->mbs_allocated)) |
| 824 | { |
| 825 | if (pstr->icase) |
| 826 | build_upper_buffer (pstr); |
| 827 | else if (pstr->trans != NULL) |
| 828 | re_string_translate_buffer (pstr); |
| 829 | } |
| 830 | else |
| 831 | pstr->valid_len = pstr->len; |
| 832 | |
| 833 | pstr->cur_idx = 0; |
| 834 | return REG_NOERROR; |
| 835 | } |
| 836 | |
| 837 | static unsigned char |
| 838 | __attribute__ ((pure)) |
| 839 | re_string_peek_byte_case (const re_string_t *pstr, Idx idx) |
| 840 | { |
| 841 | int ch; |
| 842 | Idx off; |
| 843 | |
| 844 | /* Handle the common (easiest) cases first. */ |
| 845 | if (__glibc_likely (!pstr->mbs_allocated)) |
| 846 | return re_string_peek_byte (pstr, idx); |
| 847 | |
| 848 | #ifdef RE_ENABLE_I18N |
| 849 | if (pstr->mb_cur_max > 1 |
| 850 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) |
| 851 | return re_string_peek_byte (pstr, idx); |
| 852 | #endif |
| 853 | |
| 854 | off = pstr->cur_idx + idx; |
| 855 | #ifdef RE_ENABLE_I18N |
| 856 | if (pstr->offsets_needed) |
| 857 | off = pstr->offsets[off]; |
| 858 | #endif |
| 859 | |
| 860 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
| 861 | |
| 862 | #ifdef RE_ENABLE_I18N |
| 863 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I |
| 864 | this function returns CAPITAL LETTER I instead of first byte of |
| 865 | DOTLESS SMALL LETTER I. The latter would confuse the parser, |
| 866 | since peek_byte_case doesn't advance cur_idx in any way. */ |
| 867 | if (pstr->offsets_needed && !isascii (ch)) |
| 868 | return re_string_peek_byte (pstr, idx); |
| 869 | #endif |
| 870 | |
| 871 | return ch; |
| 872 | } |
| 873 | |
| 874 | static unsigned char |
| 875 | re_string_fetch_byte_case (re_string_t *pstr) |
| 876 | { |
| 877 | if (__glibc_likely (!pstr->mbs_allocated)) |
| 878 | return re_string_fetch_byte (pstr); |
| 879 | |
| 880 | #ifdef RE_ENABLE_I18N |
| 881 | if (pstr->offsets_needed) |
| 882 | { |
| 883 | Idx off; |
| 884 | int ch; |
| 885 | |
| 886 | /* For tr_TR.UTF-8 [[:islower:]] there is |
| 887 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip |
| 888 | in that case the whole multi-byte character and return |
| 889 | the original letter. On the other side, with |
| 890 | [[: DOTLESS SMALL LETTER I return [[:I, as doing |
| 891 | anything else would complicate things too much. */ |
| 892 | |
| 893 | if (!re_string_first_byte (pstr, pstr->cur_idx)) |
| 894 | return re_string_fetch_byte (pstr); |
| 895 | |
| 896 | off = pstr->offsets[pstr->cur_idx]; |
| 897 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; |
| 898 | |
| 899 | if (! isascii (ch)) |
| 900 | return re_string_fetch_byte (pstr); |
| 901 | |
| 902 | re_string_skip_bytes (pstr, |
| 903 | re_string_char_size_at (pstr, pstr->cur_idx)); |
| 904 | return ch; |
| 905 | } |
| 906 | #endif |
| 907 | |
| 908 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; |
| 909 | } |
| 910 | |
| 911 | static void |
| 912 | re_string_destruct (re_string_t *pstr) |
| 913 | { |
| 914 | #ifdef RE_ENABLE_I18N |
| 915 | re_free (pstr->wcs); |
| 916 | re_free (pstr->offsets); |
| 917 | #endif /* RE_ENABLE_I18N */ |
| 918 | if (pstr->mbs_allocated) |
| 919 | re_free (pstr->mbs); |
| 920 | } |
| 921 | |
| 922 | /* Return the context at IDX in INPUT. */ |
| 923 | |
| 924 | static unsigned int |
| 925 | re_string_context_at (const re_string_t *input, Idx idx, int eflags) |
| 926 | { |
| 927 | int c; |
| 928 | if (__glibc_unlikely (idx < 0)) |
| 929 | /* In this case, we use the value stored in input->tip_context, |
| 930 | since we can't know the character in input->mbs[-1] here. */ |
| 931 | return input->tip_context; |
| 932 | if (__glibc_unlikely (idx == input->len)) |
| 933 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF |
| 934 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); |
| 935 | #ifdef RE_ENABLE_I18N |
| 936 | if (input->mb_cur_max > 1) |
| 937 | { |
| 938 | wint_t wc; |
| 939 | Idx wc_idx = idx; |
| 940 | while(input->wcs[wc_idx] == WEOF) |
| 941 | { |
| 942 | DEBUG_ASSERT (wc_idx >= 0); |
| 943 | --wc_idx; |
| 944 | if (wc_idx < 0) |
| 945 | return input->tip_context; |
| 946 | } |
| 947 | wc = input->wcs[wc_idx]; |
| 948 | if (__glibc_unlikely (input->word_ops_used != 0) |
| 949 | && IS_WIDE_WORD_CHAR (wc)) |
| 950 | return CONTEXT_WORD; |
| 951 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor |
| 952 | ? CONTEXT_NEWLINE : 0); |
| 953 | } |
| 954 | else |
| 955 | #endif |
| 956 | { |
| 957 | c = re_string_byte_at (input, idx); |
| 958 | if (bitset_contain (input->word_char, c)) |
| 959 | return CONTEXT_WORD; |
| 960 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | /* Functions for set operation. */ |
| 965 | |
| 966 | static reg_errcode_t |
| 967 | __attribute_warn_unused_result__ |
| 968 | re_node_set_alloc (re_node_set *set, Idx size) |
| 969 | { |
| 970 | set->alloc = size; |
| 971 | set->nelem = 0; |
| 972 | set->elems = re_malloc (Idx, size); |
| 973 | if (__glibc_unlikely (set->elems == NULL) |
| 974 | && (MALLOC_0_IS_NONNULL || size != 0)) |
| 975 | return REG_ESPACE; |
| 976 | return REG_NOERROR; |
| 977 | } |
| 978 | |
| 979 | static reg_errcode_t |
| 980 | __attribute_warn_unused_result__ |
| 981 | re_node_set_init_1 (re_node_set *set, Idx elem) |
| 982 | { |
| 983 | set->alloc = 1; |
| 984 | set->nelem = 1; |
| 985 | set->elems = re_malloc (Idx, 1); |
| 986 | if (__glibc_unlikely (set->elems == NULL)) |
| 987 | { |
| 988 | set->alloc = set->nelem = 0; |
| 989 | return REG_ESPACE; |
| 990 | } |
| 991 | set->elems[0] = elem; |
| 992 | return REG_NOERROR; |
| 993 | } |
| 994 | |
| 995 | static reg_errcode_t |
| 996 | __attribute_warn_unused_result__ |
| 997 | re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2) |
| 998 | { |
| 999 | set->alloc = 2; |
| 1000 | set->elems = re_malloc (Idx, 2); |
| 1001 | if (__glibc_unlikely (set->elems == NULL)) |
| 1002 | return REG_ESPACE; |
| 1003 | if (elem1 == elem2) |
| 1004 | { |
| 1005 | set->nelem = 1; |
| 1006 | set->elems[0] = elem1; |
| 1007 | } |
| 1008 | else |
| 1009 | { |
| 1010 | set->nelem = 2; |
| 1011 | if (elem1 < elem2) |
| 1012 | { |
| 1013 | set->elems[0] = elem1; |
| 1014 | set->elems[1] = elem2; |
| 1015 | } |
| 1016 | else |
| 1017 | { |
| 1018 | set->elems[0] = elem2; |
| 1019 | set->elems[1] = elem1; |
| 1020 | } |
| 1021 | } |
| 1022 | return REG_NOERROR; |
| 1023 | } |
| 1024 | |
| 1025 | static reg_errcode_t |
| 1026 | __attribute_warn_unused_result__ |
| 1027 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) |
| 1028 | { |
| 1029 | dest->nelem = src->nelem; |
| 1030 | if (src->nelem > 0) |
| 1031 | { |
| 1032 | dest->alloc = dest->nelem; |
| 1033 | dest->elems = re_malloc (Idx, dest->alloc); |
| 1034 | if (__glibc_unlikely (dest->elems == NULL)) |
| 1035 | { |
| 1036 | dest->alloc = dest->nelem = 0; |
| 1037 | return REG_ESPACE; |
| 1038 | } |
| 1039 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); |
| 1040 | } |
| 1041 | else |
| 1042 | re_node_set_init_empty (dest); |
| 1043 | return REG_NOERROR; |
| 1044 | } |
| 1045 | |
| 1046 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to |
| 1047 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. |
| 1048 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ |
| 1049 | |
| 1050 | static reg_errcode_t |
| 1051 | __attribute_warn_unused_result__ |
| 1052 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, |
| 1053 | const re_node_set *src2) |
| 1054 | { |
| 1055 | Idx i1, i2, is, id, delta, sbase; |
| 1056 | if (src1->nelem == 0 || src2->nelem == 0) |
| 1057 | return REG_NOERROR; |
| 1058 | |
| 1059 | /* We need dest->nelem + 2 * elems_in_intersection; this is a |
| 1060 | conservative estimate. */ |
| 1061 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) |
| 1062 | { |
| 1063 | Idx new_alloc = src1->nelem + src2->nelem + dest->alloc; |
| 1064 | Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc); |
| 1065 | if (__glibc_unlikely (new_elems == NULL)) |
| 1066 | return REG_ESPACE; |
| 1067 | dest->elems = new_elems; |
| 1068 | dest->alloc = new_alloc; |
| 1069 | } |
| 1070 | |
| 1071 | /* Find the items in the intersection of SRC1 and SRC2, and copy |
| 1072 | into the top of DEST those that are not already in DEST itself. */ |
| 1073 | sbase = dest->nelem + src1->nelem + src2->nelem; |
| 1074 | i1 = src1->nelem - 1; |
| 1075 | i2 = src2->nelem - 1; |
| 1076 | id = dest->nelem - 1; |
| 1077 | for (;;) |
| 1078 | { |
| 1079 | if (src1->elems[i1] == src2->elems[i2]) |
| 1080 | { |
| 1081 | /* Try to find the item in DEST. Maybe we could binary search? */ |
| 1082 | while (id >= 0 && dest->elems[id] > src1->elems[i1]) |
| 1083 | --id; |
| 1084 | |
| 1085 | if (id < 0 || dest->elems[id] != src1->elems[i1]) |
| 1086 | dest->elems[--sbase] = src1->elems[i1]; |
| 1087 | |
| 1088 | if (--i1 < 0 || --i2 < 0) |
| 1089 | break; |
| 1090 | } |
| 1091 | |
| 1092 | /* Lower the highest of the two items. */ |
| 1093 | else if (src1->elems[i1] < src2->elems[i2]) |
| 1094 | { |
| 1095 | if (--i2 < 0) |
| 1096 | break; |
| 1097 | } |
| 1098 | else |
| 1099 | { |
| 1100 | if (--i1 < 0) |
| 1101 | break; |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | id = dest->nelem - 1; |
| 1106 | is = dest->nelem + src1->nelem + src2->nelem - 1; |
| 1107 | delta = is - sbase + 1; |
| 1108 | |
| 1109 | /* Now copy. When DELTA becomes zero, the remaining |
| 1110 | DEST elements are already in place; this is more or |
| 1111 | less the same loop that is in re_node_set_merge. */ |
| 1112 | dest->nelem += delta; |
| 1113 | if (delta > 0 && id >= 0) |
| 1114 | for (;;) |
| 1115 | { |
| 1116 | if (dest->elems[is] > dest->elems[id]) |
| 1117 | { |
| 1118 | /* Copy from the top. */ |
| 1119 | dest->elems[id + delta--] = dest->elems[is--]; |
| 1120 | if (delta == 0) |
| 1121 | break; |
| 1122 | } |
| 1123 | else |
| 1124 | { |
| 1125 | /* Slide from the bottom. */ |
| 1126 | dest->elems[id + delta] = dest->elems[id]; |
| 1127 | if (--id < 0) |
| 1128 | break; |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | /* Copy remaining SRC elements. */ |
| 1133 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx)); |
| 1134 | |
| 1135 | return REG_NOERROR; |
| 1136 | } |
| 1137 | |
| 1138 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to |
| 1139 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
| 1140 | |
| 1141 | static reg_errcode_t |
| 1142 | __attribute_warn_unused_result__ |
| 1143 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, |
| 1144 | const re_node_set *src2) |
| 1145 | { |
| 1146 | Idx i1, i2, id; |
| 1147 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) |
| 1148 | { |
| 1149 | dest->alloc = src1->nelem + src2->nelem; |
| 1150 | dest->elems = re_malloc (Idx, dest->alloc); |
| 1151 | if (__glibc_unlikely (dest->elems == NULL)) |
| 1152 | return REG_ESPACE; |
| 1153 | } |
| 1154 | else |
| 1155 | { |
| 1156 | if (src1 != NULL && src1->nelem > 0) |
| 1157 | return re_node_set_init_copy (dest, src1); |
| 1158 | else if (src2 != NULL && src2->nelem > 0) |
| 1159 | return re_node_set_init_copy (dest, src2); |
| 1160 | else |
| 1161 | re_node_set_init_empty (dest); |
| 1162 | return REG_NOERROR; |
| 1163 | } |
| 1164 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) |
| 1165 | { |
| 1166 | if (src1->elems[i1] > src2->elems[i2]) |
| 1167 | { |
| 1168 | dest->elems[id++] = src2->elems[i2++]; |
| 1169 | continue; |
| 1170 | } |
| 1171 | if (src1->elems[i1] == src2->elems[i2]) |
| 1172 | ++i2; |
| 1173 | dest->elems[id++] = src1->elems[i1++]; |
| 1174 | } |
| 1175 | if (i1 < src1->nelem) |
| 1176 | { |
| 1177 | memcpy (dest->elems + id, src1->elems + i1, |
| 1178 | (src1->nelem - i1) * sizeof (Idx)); |
| 1179 | id += src1->nelem - i1; |
| 1180 | } |
| 1181 | else if (i2 < src2->nelem) |
| 1182 | { |
| 1183 | memcpy (dest->elems + id, src2->elems + i2, |
| 1184 | (src2->nelem - i2) * sizeof (Idx)); |
| 1185 | id += src2->nelem - i2; |
| 1186 | } |
| 1187 | dest->nelem = id; |
| 1188 | return REG_NOERROR; |
| 1189 | } |
| 1190 | |
| 1191 | /* Calculate the union set of the sets DEST and SRC. And store it to |
| 1192 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ |
| 1193 | |
| 1194 | static reg_errcode_t |
| 1195 | __attribute_warn_unused_result__ |
| 1196 | re_node_set_merge (re_node_set *dest, const re_node_set *src) |
| 1197 | { |
| 1198 | Idx is, id, sbase, delta; |
| 1199 | if (src == NULL || src->nelem == 0) |
| 1200 | return REG_NOERROR; |
| 1201 | if (dest->alloc < 2 * src->nelem + dest->nelem) |
| 1202 | { |
| 1203 | Idx new_alloc = 2 * (src->nelem + dest->alloc); |
| 1204 | Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc); |
| 1205 | if (__glibc_unlikely (new_buffer == NULL)) |
| 1206 | return REG_ESPACE; |
| 1207 | dest->elems = new_buffer; |
| 1208 | dest->alloc = new_alloc; |
| 1209 | } |
| 1210 | |
| 1211 | if (__glibc_unlikely (dest->nelem == 0)) |
| 1212 | { |
| 1213 | dest->nelem = src->nelem; |
| 1214 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); |
| 1215 | return REG_NOERROR; |
| 1216 | } |
| 1217 | |
| 1218 | /* Copy into the top of DEST the items of SRC that are not |
| 1219 | found in DEST. Maybe we could binary search in DEST? */ |
| 1220 | for (sbase = dest->nelem + 2 * src->nelem, |
| 1221 | is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) |
| 1222 | { |
| 1223 | if (dest->elems[id] == src->elems[is]) |
| 1224 | is--, id--; |
| 1225 | else if (dest->elems[id] < src->elems[is]) |
| 1226 | dest->elems[--sbase] = src->elems[is--]; |
| 1227 | else /* if (dest->elems[id] > src->elems[is]) */ |
| 1228 | --id; |
| 1229 | } |
| 1230 | |
| 1231 | if (is >= 0) |
| 1232 | { |
| 1233 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ |
| 1234 | sbase -= is + 1; |
| 1235 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx)); |
| 1236 | } |
| 1237 | |
| 1238 | id = dest->nelem - 1; |
| 1239 | is = dest->nelem + 2 * src->nelem - 1; |
| 1240 | delta = is - sbase + 1; |
| 1241 | if (delta == 0) |
| 1242 | return REG_NOERROR; |
| 1243 | |
| 1244 | /* Now copy. When DELTA becomes zero, the remaining |
| 1245 | DEST elements are already in place. */ |
| 1246 | dest->nelem += delta; |
| 1247 | for (;;) |
| 1248 | { |
| 1249 | if (dest->elems[is] > dest->elems[id]) |
| 1250 | { |
| 1251 | /* Copy from the top. */ |
| 1252 | dest->elems[id + delta--] = dest->elems[is--]; |
| 1253 | if (delta == 0) |
| 1254 | break; |
| 1255 | } |
| 1256 | else |
| 1257 | { |
| 1258 | /* Slide from the bottom. */ |
| 1259 | dest->elems[id + delta] = dest->elems[id]; |
| 1260 | if (--id < 0) |
| 1261 | { |
| 1262 | /* Copy remaining SRC elements. */ |
| 1263 | memcpy (dest->elems, dest->elems + sbase, |
| 1264 | delta * sizeof (Idx)); |
| 1265 | break; |
| 1266 | } |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | return REG_NOERROR; |
| 1271 | } |
| 1272 | |
| 1273 | /* Insert the new element ELEM to the re_node_set* SET. |
| 1274 | SET should not already have ELEM. |
| 1275 | Return true if successful. */ |
| 1276 | |
| 1277 | static bool |
| 1278 | __attribute_warn_unused_result__ |
| 1279 | re_node_set_insert (re_node_set *set, Idx elem) |
| 1280 | { |
| 1281 | Idx idx; |
| 1282 | /* In case the set is empty. */ |
| 1283 | if (set->alloc == 0) |
| 1284 | return __glibc_likely (re_node_set_init_1 (set, elem) == REG_NOERROR); |
| 1285 | |
| 1286 | if (__glibc_unlikely (set->nelem) == 0) |
| 1287 | { |
| 1288 | /* We already guaranteed above that set->alloc != 0. */ |
| 1289 | set->elems[0] = elem; |
| 1290 | ++set->nelem; |
| 1291 | return true; |
| 1292 | } |
| 1293 | |
| 1294 | /* Realloc if we need. */ |
| 1295 | if (set->alloc == set->nelem) |
| 1296 | { |
| 1297 | Idx *new_elems; |
| 1298 | set->alloc = set->alloc * 2; |
| 1299 | new_elems = re_realloc (set->elems, Idx, set->alloc); |
| 1300 | if (__glibc_unlikely (new_elems == NULL)) |
| 1301 | return false; |
| 1302 | set->elems = new_elems; |
| 1303 | } |
| 1304 | |
| 1305 | /* Move the elements which follows the new element. Test the |
| 1306 | first element separately to skip a check in the inner loop. */ |
| 1307 | if (elem < set->elems[0]) |
| 1308 | { |
| 1309 | for (idx = set->nelem; idx > 0; idx--) |
| 1310 | set->elems[idx] = set->elems[idx - 1]; |
| 1311 | } |
| 1312 | else |
| 1313 | { |
| 1314 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) |
| 1315 | set->elems[idx] = set->elems[idx - 1]; |
| 1316 | } |
| 1317 | |
| 1318 | /* Insert the new element. */ |
| 1319 | set->elems[idx] = elem; |
| 1320 | ++set->nelem; |
| 1321 | return true; |
| 1322 | } |
| 1323 | |
| 1324 | /* Insert the new element ELEM to the re_node_set* SET. |
| 1325 | SET should not already have any element greater than or equal to ELEM. |
| 1326 | Return true if successful. */ |
| 1327 | |
| 1328 | static bool |
| 1329 | __attribute_warn_unused_result__ |
| 1330 | re_node_set_insert_last (re_node_set *set, Idx elem) |
| 1331 | { |
| 1332 | /* Realloc if we need. */ |
| 1333 | if (set->alloc == set->nelem) |
| 1334 | { |
| 1335 | Idx *new_elems; |
| 1336 | set->alloc = (set->alloc + 1) * 2; |
| 1337 | new_elems = re_realloc (set->elems, Idx, set->alloc); |
| 1338 | if (__glibc_unlikely (new_elems == NULL)) |
| 1339 | return false; |
| 1340 | set->elems = new_elems; |
| 1341 | } |
| 1342 | |
| 1343 | /* Insert the new element. */ |
| 1344 | set->elems[set->nelem++] = elem; |
| 1345 | return true; |
| 1346 | } |
| 1347 | |
| 1348 | /* Compare two node sets SET1 and SET2. |
| 1349 | Return true if SET1 and SET2 are equivalent. */ |
| 1350 | |
| 1351 | static bool |
| 1352 | __attribute__ ((pure)) |
| 1353 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) |
| 1354 | { |
| 1355 | Idx i; |
| 1356 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) |
| 1357 | return false; |
| 1358 | for (i = set1->nelem ; --i >= 0 ; ) |
| 1359 | if (set1->elems[i] != set2->elems[i]) |
| 1360 | return false; |
| 1361 | return true; |
| 1362 | } |
| 1363 | |
| 1364 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ |
| 1365 | |
| 1366 | static Idx |
| 1367 | __attribute__ ((pure)) |
| 1368 | re_node_set_contains (const re_node_set *set, Idx elem) |
| 1369 | { |
| 1370 | __re_size_t idx, right, mid; |
| 1371 | if (set->nelem <= 0) |
| 1372 | return 0; |
| 1373 | |
| 1374 | /* Binary search the element. */ |
| 1375 | idx = 0; |
| 1376 | right = set->nelem - 1; |
| 1377 | while (idx < right) |
| 1378 | { |
| 1379 | mid = (idx + right) / 2; |
| 1380 | if (set->elems[mid] < elem) |
| 1381 | idx = mid + 1; |
| 1382 | else |
| 1383 | right = mid; |
| 1384 | } |
| 1385 | return set->elems[idx] == elem ? idx + 1 : 0; |
| 1386 | } |
| 1387 | |
| 1388 | static void |
| 1389 | re_node_set_remove_at (re_node_set *set, Idx idx) |
| 1390 | { |
| 1391 | if (idx < 0 || idx >= set->nelem) |
| 1392 | return; |
| 1393 | --set->nelem; |
| 1394 | for (; idx < set->nelem; idx++) |
| 1395 | set->elems[idx] = set->elems[idx + 1]; |
| 1396 | } |
| 1397 | |
| 1398 | |
| 1399 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. |
| 1400 | Or return -1 if an error occurred. */ |
| 1401 | |
| 1402 | static Idx |
| 1403 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) |
| 1404 | { |
| 1405 | if (__glibc_unlikely (dfa->nodes_len >= dfa->nodes_alloc)) |
| 1406 | { |
| 1407 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; |
| 1408 | Idx *new_nexts, *new_indices; |
| 1409 | re_node_set *new_edests, *new_eclosures; |
| 1410 | re_token_t *new_nodes; |
| 1411 | |
| 1412 | /* Avoid overflows in realloc. */ |
| 1413 | const size_t max_object_size = MAX (sizeof (re_token_t), |
| 1414 | MAX (sizeof (re_node_set), |
| 1415 | sizeof (Idx))); |
| 1416 | if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size) |
| 1417 | < new_nodes_alloc)) |
| 1418 | return -1; |
| 1419 | |
| 1420 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); |
| 1421 | if (__glibc_unlikely (new_nodes == NULL)) |
| 1422 | return -1; |
| 1423 | dfa->nodes = new_nodes; |
| 1424 | new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc); |
| 1425 | new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc); |
| 1426 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); |
| 1427 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); |
| 1428 | if (__glibc_unlikely (new_nexts == NULL || new_indices == NULL |
| 1429 | || new_edests == NULL || new_eclosures == NULL)) |
| 1430 | { |
| 1431 | re_free (new_nexts); |
| 1432 | re_free (new_indices); |
| 1433 | re_free (new_edests); |
| 1434 | re_free (new_eclosures); |
| 1435 | return -1; |
| 1436 | } |
| 1437 | dfa->nexts = new_nexts; |
| 1438 | dfa->org_indices = new_indices; |
| 1439 | dfa->edests = new_edests; |
| 1440 | dfa->eclosures = new_eclosures; |
| 1441 | dfa->nodes_alloc = new_nodes_alloc; |
| 1442 | } |
| 1443 | dfa->nodes[dfa->nodes_len] = token; |
| 1444 | dfa->nodes[dfa->nodes_len].constraint = 0; |
| 1445 | #ifdef RE_ENABLE_I18N |
| 1446 | dfa->nodes[dfa->nodes_len].accept_mb = |
| 1447 | ((token.type == OP_PERIOD && dfa->mb_cur_max > 1) |
| 1448 | || token.type == COMPLEX_BRACKET); |
| 1449 | #endif |
| 1450 | dfa->nexts[dfa->nodes_len] = -1; |
| 1451 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); |
| 1452 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); |
| 1453 | return dfa->nodes_len++; |
| 1454 | } |
| 1455 | |
| 1456 | static re_hashval_t |
| 1457 | calc_state_hash (const re_node_set *nodes, unsigned int context) |
| 1458 | { |
| 1459 | re_hashval_t hash = nodes->nelem + context; |
| 1460 | Idx i; |
| 1461 | for (i = 0 ; i < nodes->nelem ; i++) |
| 1462 | hash += nodes->elems[i]; |
| 1463 | return hash; |
| 1464 | } |
| 1465 | |
| 1466 | /* Search for the state whose node_set is equivalent to NODES. |
| 1467 | Return the pointer to the state, if we found it in the DFA. |
| 1468 | Otherwise create the new one and return it. In case of an error |
| 1469 | return NULL and set the error code in ERR. |
| 1470 | Note: - We assume NULL as the invalid state, then it is possible that |
| 1471 | return value is NULL and ERR is REG_NOERROR. |
| 1472 | - We never return non-NULL value in case of any errors, it is for |
| 1473 | optimization. */ |
| 1474 | |
| 1475 | static re_dfastate_t * |
| 1476 | __attribute_warn_unused_result__ |
| 1477 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, |
| 1478 | const re_node_set *nodes) |
| 1479 | { |
| 1480 | re_hashval_t hash; |
| 1481 | re_dfastate_t *new_state; |
| 1482 | struct re_state_table_entry *spot; |
| 1483 | Idx i; |
| 1484 | #if defined GCC_LINT || defined lint |
| 1485 | /* Suppress bogus uninitialized-variable warnings. */ |
| 1486 | *err = REG_NOERROR; |
| 1487 | #endif |
| 1488 | if (__glibc_unlikely (nodes->nelem == 0)) |
| 1489 | { |
| 1490 | *err = REG_NOERROR; |
| 1491 | return NULL; |
| 1492 | } |
| 1493 | hash = calc_state_hash (nodes, 0); |
| 1494 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
| 1495 | |
| 1496 | for (i = 0 ; i < spot->num ; i++) |
| 1497 | { |
| 1498 | re_dfastate_t *state = spot->array[i]; |
| 1499 | if (hash != state->hash) |
| 1500 | continue; |
| 1501 | if (re_node_set_compare (&state->nodes, nodes)) |
| 1502 | return state; |
| 1503 | } |
| 1504 | |
| 1505 | /* There are no appropriate state in the dfa, create the new one. */ |
| 1506 | new_state = create_ci_newstate (dfa, nodes, hash); |
| 1507 | if (__glibc_unlikely (new_state == NULL)) |
| 1508 | *err = REG_ESPACE; |
| 1509 | |
| 1510 | return new_state; |
| 1511 | } |
| 1512 | |
| 1513 | /* Search for the state whose node_set is equivalent to NODES and |
| 1514 | whose context is equivalent to CONTEXT. |
| 1515 | Return the pointer to the state, if we found it in the DFA. |
| 1516 | Otherwise create the new one and return it. In case of an error |
| 1517 | return NULL and set the error code in ERR. |
| 1518 | Note: - We assume NULL as the invalid state, then it is possible that |
| 1519 | return value is NULL and ERR is REG_NOERROR. |
| 1520 | - We never return non-NULL value in case of any errors, it is for |
| 1521 | optimization. */ |
| 1522 | |
| 1523 | static re_dfastate_t * |
| 1524 | __attribute_warn_unused_result__ |
| 1525 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, |
| 1526 | const re_node_set *nodes, unsigned int context) |
| 1527 | { |
| 1528 | re_hashval_t hash; |
| 1529 | re_dfastate_t *new_state; |
| 1530 | struct re_state_table_entry *spot; |
| 1531 | Idx i; |
| 1532 | #if defined GCC_LINT || defined lint |
| 1533 | /* Suppress bogus uninitialized-variable warnings. */ |
| 1534 | *err = REG_NOERROR; |
| 1535 | #endif |
| 1536 | if (nodes->nelem == 0) |
| 1537 | { |
| 1538 | *err = REG_NOERROR; |
| 1539 | return NULL; |
| 1540 | } |
| 1541 | hash = calc_state_hash (nodes, context); |
| 1542 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
| 1543 | |
| 1544 | for (i = 0 ; i < spot->num ; i++) |
| 1545 | { |
| 1546 | re_dfastate_t *state = spot->array[i]; |
| 1547 | if (state->hash == hash |
| 1548 | && state->context == context |
| 1549 | && re_node_set_compare (state->entrance_nodes, nodes)) |
| 1550 | return state; |
| 1551 | } |
| 1552 | /* There are no appropriate state in 'dfa', create the new one. */ |
| 1553 | new_state = create_cd_newstate (dfa, nodes, context, hash); |
| 1554 | if (__glibc_unlikely (new_state == NULL)) |
| 1555 | *err = REG_ESPACE; |
| 1556 | |
| 1557 | return new_state; |
| 1558 | } |
| 1559 | |
| 1560 | /* Finish initialization of the new state NEWSTATE, and using its hash value |
| 1561 | HASH put in the appropriate bucket of DFA's state table. Return value |
| 1562 | indicates the error code if failed. */ |
| 1563 | |
| 1564 | static reg_errcode_t |
| 1565 | __attribute_warn_unused_result__ |
| 1566 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, |
| 1567 | re_hashval_t hash) |
| 1568 | { |
| 1569 | struct re_state_table_entry *spot; |
| 1570 | reg_errcode_t err; |
| 1571 | Idx i; |
| 1572 | |
| 1573 | newstate->hash = hash; |
| 1574 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); |
| 1575 | if (__glibc_unlikely (err != REG_NOERROR)) |
| 1576 | return REG_ESPACE; |
| 1577 | for (i = 0; i < newstate->nodes.nelem; i++) |
| 1578 | { |
| 1579 | Idx elem = newstate->nodes.elems[i]; |
| 1580 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) |
| 1581 | if (! re_node_set_insert_last (&newstate->non_eps_nodes, elem)) |
| 1582 | return REG_ESPACE; |
| 1583 | } |
| 1584 | |
| 1585 | spot = dfa->state_table + (hash & dfa->state_hash_mask); |
| 1586 | if (__glibc_unlikely (spot->alloc <= spot->num)) |
| 1587 | { |
| 1588 | Idx new_alloc = 2 * spot->num + 2; |
| 1589 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, |
| 1590 | new_alloc); |
| 1591 | if (__glibc_unlikely (new_array == NULL)) |
| 1592 | return REG_ESPACE; |
| 1593 | spot->array = new_array; |
| 1594 | spot->alloc = new_alloc; |
| 1595 | } |
| 1596 | spot->array[spot->num++] = newstate; |
| 1597 | return REG_NOERROR; |
| 1598 | } |
| 1599 | |
| 1600 | static void |
| 1601 | free_state (re_dfastate_t *state) |
| 1602 | { |
| 1603 | re_node_set_free (&state->non_eps_nodes); |
| 1604 | re_node_set_free (&state->inveclosure); |
| 1605 | if (state->entrance_nodes != &state->nodes) |
| 1606 | { |
| 1607 | re_node_set_free (state->entrance_nodes); |
| 1608 | re_free (state->entrance_nodes); |
| 1609 | } |
| 1610 | re_node_set_free (&state->nodes); |
| 1611 | re_free (state->word_trtable); |
| 1612 | re_free (state->trtable); |
| 1613 | re_free (state); |
| 1614 | } |
| 1615 | |
| 1616 | /* Create the new state which is independent of contexts. |
| 1617 | Return the new state if succeeded, otherwise return NULL. */ |
| 1618 | |
| 1619 | static re_dfastate_t * |
| 1620 | __attribute_warn_unused_result__ |
| 1621 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
| 1622 | re_hashval_t hash) |
| 1623 | { |
| 1624 | Idx i; |
| 1625 | reg_errcode_t err; |
| 1626 | re_dfastate_t *newstate; |
| 1627 | |
| 1628 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
| 1629 | if (__glibc_unlikely (newstate == NULL)) |
| 1630 | return NULL; |
| 1631 | err = re_node_set_init_copy (&newstate->nodes, nodes); |
| 1632 | if (__glibc_unlikely (err != REG_NOERROR)) |
| 1633 | { |
| 1634 | re_free (newstate); |
| 1635 | return NULL; |
| 1636 | } |
| 1637 | |
| 1638 | newstate->entrance_nodes = &newstate->nodes; |
| 1639 | for (i = 0 ; i < nodes->nelem ; i++) |
| 1640 | { |
| 1641 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
| 1642 | re_token_type_t type = node->type; |
| 1643 | if (type == CHARACTER && !node->constraint) |
| 1644 | continue; |
| 1645 | #ifdef RE_ENABLE_I18N |
| 1646 | newstate->accept_mb |= node->accept_mb; |
| 1647 | #endif /* RE_ENABLE_I18N */ |
| 1648 | |
| 1649 | /* If the state has the halt node, the state is a halt state. */ |
| 1650 | if (type == END_OF_RE) |
| 1651 | newstate->halt = 1; |
| 1652 | else if (type == OP_BACK_REF) |
| 1653 | newstate->has_backref = 1; |
| 1654 | else if (type == ANCHOR || node->constraint) |
| 1655 | newstate->has_constraint = 1; |
| 1656 | } |
| 1657 | err = register_state (dfa, newstate, hash); |
| 1658 | if (__glibc_unlikely (err != REG_NOERROR)) |
| 1659 | { |
| 1660 | free_state (newstate); |
| 1661 | newstate = NULL; |
| 1662 | } |
| 1663 | return newstate; |
| 1664 | } |
| 1665 | |
| 1666 | /* Create the new state which is depend on the context CONTEXT. |
| 1667 | Return the new state if succeeded, otherwise return NULL. */ |
| 1668 | |
| 1669 | static re_dfastate_t * |
| 1670 | __attribute_warn_unused_result__ |
| 1671 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, |
| 1672 | unsigned int context, re_hashval_t hash) |
| 1673 | { |
| 1674 | Idx i, nctx_nodes = 0; |
| 1675 | reg_errcode_t err; |
| 1676 | re_dfastate_t *newstate; |
| 1677 | |
| 1678 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); |
| 1679 | if (__glibc_unlikely (newstate == NULL)) |
| 1680 | return NULL; |
| 1681 | err = re_node_set_init_copy (&newstate->nodes, nodes); |
| 1682 | if (__glibc_unlikely (err != REG_NOERROR)) |
| 1683 | { |
| 1684 | re_free (newstate); |
| 1685 | return NULL; |
| 1686 | } |
| 1687 | |
| 1688 | newstate->context = context; |
| 1689 | newstate->entrance_nodes = &newstate->nodes; |
| 1690 | |
| 1691 | for (i = 0 ; i < nodes->nelem ; i++) |
| 1692 | { |
| 1693 | re_token_t *node = dfa->nodes + nodes->elems[i]; |
| 1694 | re_token_type_t type = node->type; |
| 1695 | unsigned int constraint = node->constraint; |
| 1696 | |
| 1697 | if (type == CHARACTER && !constraint) |
| 1698 | continue; |
| 1699 | #ifdef RE_ENABLE_I18N |
| 1700 | newstate->accept_mb |= node->accept_mb; |
| 1701 | #endif /* RE_ENABLE_I18N */ |
| 1702 | |
| 1703 | /* If the state has the halt node, the state is a halt state. */ |
| 1704 | if (type == END_OF_RE) |
| 1705 | newstate->halt = 1; |
| 1706 | else if (type == OP_BACK_REF) |
| 1707 | newstate->has_backref = 1; |
| 1708 | |
| 1709 | if (constraint) |
| 1710 | { |
| 1711 | if (newstate->entrance_nodes == &newstate->nodes) |
| 1712 | { |
| 1713 | re_node_set *entrance_nodes = re_malloc (re_node_set, 1); |
| 1714 | if (__glibc_unlikely (entrance_nodes == NULL)) |
| 1715 | { |
| 1716 | free_state (newstate); |
| 1717 | return NULL; |
| 1718 | } |
| 1719 | newstate->entrance_nodes = entrance_nodes; |
| 1720 | if (re_node_set_init_copy (newstate->entrance_nodes, nodes) |
| 1721 | != REG_NOERROR) |
| 1722 | { |
| 1723 | free_state (newstate); |
| 1724 | return NULL; |
| 1725 | } |
| 1726 | nctx_nodes = 0; |
| 1727 | newstate->has_constraint = 1; |
| 1728 | } |
| 1729 | |
| 1730 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) |
| 1731 | { |
| 1732 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); |
| 1733 | ++nctx_nodes; |
| 1734 | } |
| 1735 | } |
| 1736 | } |
| 1737 | err = register_state (dfa, newstate, hash); |
| 1738 | if (__glibc_unlikely (err != REG_NOERROR)) |
| 1739 | { |
| 1740 | free_state (newstate); |
| 1741 | newstate = NULL; |
| 1742 | } |
| 1743 | return newstate; |
| 1744 | } |
| 1745 | |