| 1 | /* mpn_mul -- Multiply two natural numbers. | 
|---|
| 2 |  | 
|---|
| 3 | Copyright (C) 1991-2020 Free Software Foundation, Inc. | 
|---|
| 4 |  | 
|---|
| 5 | This file is part of the GNU MP Library. | 
|---|
| 6 |  | 
|---|
| 7 | The GNU MP Library is free software; you can redistribute it and/or modify | 
|---|
| 8 | it under the terms of the GNU Lesser General Public License as published by | 
|---|
| 9 | the Free Software Foundation; either version 2.1 of the License, or (at your | 
|---|
| 10 | option) any later version. | 
|---|
| 11 |  | 
|---|
| 12 | The GNU MP Library is distributed in the hope that it will be useful, but | 
|---|
| 13 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|---|
| 14 | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
|---|
| 15 | License for more details. | 
|---|
| 16 |  | 
|---|
| 17 | You should have received a copy of the GNU Lesser General Public License | 
|---|
| 18 | along with the GNU MP Library; see the file COPYING.LIB.  If not, see | 
|---|
| 19 | <https://www.gnu.org/licenses/>.  */ | 
|---|
| 20 |  | 
|---|
| 21 | #include <gmp.h> | 
|---|
| 22 | #include "gmp-impl.h" | 
|---|
| 23 |  | 
|---|
| 24 | /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) | 
|---|
| 25 | and v (pointed to by VP, with VSIZE limbs), and store the result at | 
|---|
| 26 | PRODP.  USIZE + VSIZE limbs are always stored, but if the input | 
|---|
| 27 | operands are normalized.  Return the most significant limb of the | 
|---|
| 28 | result. | 
|---|
| 29 |  | 
|---|
| 30 | NOTE: The space pointed to by PRODP is overwritten before finished | 
|---|
| 31 | with U and V, so overlap is an error. | 
|---|
| 32 |  | 
|---|
| 33 | Argument constraints: | 
|---|
| 34 | 1. USIZE >= VSIZE. | 
|---|
| 35 | 2. PRODP != UP and PRODP != VP, i.e. the destination | 
|---|
| 36 | must be distinct from the multiplier and the multiplicand.  */ | 
|---|
| 37 |  | 
|---|
| 38 | /* If KARATSUBA_THRESHOLD is not already defined, define it to a | 
|---|
| 39 | value which is good on most machines.  */ | 
|---|
| 40 | #ifndef KARATSUBA_THRESHOLD | 
|---|
| 41 | #define KARATSUBA_THRESHOLD 32 | 
|---|
| 42 | #endif | 
|---|
| 43 |  | 
|---|
| 44 | mp_limb_t | 
|---|
| 45 | mpn_mul (mp_ptr prodp, | 
|---|
| 46 | mp_srcptr up, mp_size_t usize, | 
|---|
| 47 | mp_srcptr vp, mp_size_t vsize) | 
|---|
| 48 | { | 
|---|
| 49 | mp_ptr prod_endp = prodp + usize + vsize - 1; | 
|---|
| 50 | mp_limb_t cy; | 
|---|
| 51 | mp_ptr tspace; | 
|---|
| 52 | TMP_DECL (marker); | 
|---|
| 53 |  | 
|---|
| 54 | if (vsize < KARATSUBA_THRESHOLD) | 
|---|
| 55 | { | 
|---|
| 56 | /* Handle simple cases with traditional multiplication. | 
|---|
| 57 |  | 
|---|
| 58 | This is the most critical code of the entire function.  All | 
|---|
| 59 | multiplies rely on this, both small and huge.  Small ones arrive | 
|---|
| 60 | here immediately.  Huge ones arrive here as this is the base case | 
|---|
| 61 | for Karatsuba's recursive algorithm below.  */ | 
|---|
| 62 | mp_size_t i; | 
|---|
| 63 | mp_limb_t cy_limb; | 
|---|
| 64 | mp_limb_t v_limb; | 
|---|
| 65 |  | 
|---|
| 66 | if (vsize == 0) | 
|---|
| 67 | return 0; | 
|---|
| 68 |  | 
|---|
| 69 | /* Multiply by the first limb in V separately, as the result can be | 
|---|
| 70 | stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|---|
| 71 | v_limb = vp[0]; | 
|---|
| 72 | if (v_limb <= 1) | 
|---|
| 73 | { | 
|---|
| 74 | if (v_limb == 1) | 
|---|
| 75 | MPN_COPY (prodp, up, usize); | 
|---|
| 76 | else | 
|---|
| 77 | MPN_ZERO (prodp, usize); | 
|---|
| 78 | cy_limb = 0; | 
|---|
| 79 | } | 
|---|
| 80 | else | 
|---|
| 81 | cy_limb = mpn_mul_1 (prodp, up, usize, v_limb); | 
|---|
| 82 |  | 
|---|
| 83 | prodp[usize] = cy_limb; | 
|---|
| 84 | prodp++; | 
|---|
| 85 |  | 
|---|
| 86 | /* For each iteration in the outer loop, multiply one limb from | 
|---|
| 87 | U with one limb from V, and add it to PROD.  */ | 
|---|
| 88 | for (i = 1; i < vsize; i++) | 
|---|
| 89 | { | 
|---|
| 90 | v_limb = vp[i]; | 
|---|
| 91 | if (v_limb <= 1) | 
|---|
| 92 | { | 
|---|
| 93 | cy_limb = 0; | 
|---|
| 94 | if (v_limb == 1) | 
|---|
| 95 | cy_limb = mpn_add_n (prodp, prodp, up, usize); | 
|---|
| 96 | } | 
|---|
| 97 | else | 
|---|
| 98 | cy_limb = mpn_addmul_1 (prodp, up, usize, v_limb); | 
|---|
| 99 |  | 
|---|
| 100 | prodp[usize] = cy_limb; | 
|---|
| 101 | prodp++; | 
|---|
| 102 | } | 
|---|
| 103 | return cy_limb; | 
|---|
| 104 | } | 
|---|
| 105 |  | 
|---|
| 106 | TMP_MARK (marker); | 
|---|
| 107 |  | 
|---|
| 108 | tspace = (mp_ptr) TMP_ALLOC (2 * vsize * BYTES_PER_MP_LIMB); | 
|---|
| 109 | MPN_MUL_N_RECURSE (prodp, up, vp, vsize, tspace); | 
|---|
| 110 |  | 
|---|
| 111 | prodp += vsize; | 
|---|
| 112 | up += vsize; | 
|---|
| 113 | usize -= vsize; | 
|---|
| 114 | if (usize >= vsize) | 
|---|
| 115 | { | 
|---|
| 116 | mp_ptr tp = (mp_ptr) TMP_ALLOC (2 * vsize * BYTES_PER_MP_LIMB); | 
|---|
| 117 | do | 
|---|
| 118 | { | 
|---|
| 119 | MPN_MUL_N_RECURSE (tp, up, vp, vsize, tspace); | 
|---|
| 120 | cy = mpn_add_n (prodp, prodp, tp, vsize); | 
|---|
| 121 | mpn_add_1 (prodp + vsize, tp + vsize, vsize, cy); | 
|---|
| 122 | prodp += vsize; | 
|---|
| 123 | up += vsize; | 
|---|
| 124 | usize -= vsize; | 
|---|
| 125 | } | 
|---|
| 126 | while (usize >= vsize); | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | /* True: usize < vsize.  */ | 
|---|
| 130 |  | 
|---|
| 131 | /* Make life simple: Recurse.  */ | 
|---|
| 132 |  | 
|---|
| 133 | if (usize != 0) | 
|---|
| 134 | { | 
|---|
| 135 | mpn_mul (tspace, vp, vsize, up, usize); | 
|---|
| 136 | cy = mpn_add_n (prodp, prodp, tspace, vsize); | 
|---|
| 137 | mpn_add_1 (prodp + vsize, tspace + vsize, usize, cy); | 
|---|
| 138 | } | 
|---|
| 139 |  | 
|---|
| 140 | TMP_FREE (marker); | 
|---|
| 141 | return *prod_endp; | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|