| 1 | /* mpn_mul_n -- Multiply two natural numbers of length n. | 
|---|
| 2 |  | 
|---|
| 3 | Copyright (C) 1991-2020 Free Software Foundation, Inc. | 
|---|
| 4 |  | 
|---|
| 5 | This file is part of the GNU MP Library. | 
|---|
| 6 |  | 
|---|
| 7 | The GNU MP Library is free software; you can redistribute it and/or modify | 
|---|
| 8 | it under the terms of the GNU Lesser General Public License as published by | 
|---|
| 9 | the Free Software Foundation; either version 2.1 of the License, or (at your | 
|---|
| 10 | option) any later version. | 
|---|
| 11 |  | 
|---|
| 12 | The GNU MP Library is distributed in the hope that it will be useful, but | 
|---|
| 13 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|---|
| 14 | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
|---|
| 15 | License for more details. | 
|---|
| 16 |  | 
|---|
| 17 | You should have received a copy of the GNU Lesser General Public License | 
|---|
| 18 | along with the GNU MP Library; see the file COPYING.LIB.  If not, see | 
|---|
| 19 | <https://www.gnu.org/licenses/>.  */ | 
|---|
| 20 |  | 
|---|
| 21 | #include <gmp.h> | 
|---|
| 22 | #include "gmp-impl.h" | 
|---|
| 23 |  | 
|---|
| 24 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), | 
|---|
| 25 | both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are | 
|---|
| 26 | always stored.  Return the most significant limb. | 
|---|
| 27 |  | 
|---|
| 28 | Argument constraints: | 
|---|
| 29 | 1. PRODP != UP and PRODP != VP, i.e. the destination | 
|---|
| 30 | must be distinct from the multiplier and the multiplicand.  */ | 
|---|
| 31 |  | 
|---|
| 32 | /* If KARATSUBA_THRESHOLD is not already defined, define it to a | 
|---|
| 33 | value which is good on most machines.  */ | 
|---|
| 34 | #ifndef KARATSUBA_THRESHOLD | 
|---|
| 35 | #define KARATSUBA_THRESHOLD 32 | 
|---|
| 36 | #endif | 
|---|
| 37 |  | 
|---|
| 38 | /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */ | 
|---|
| 39 | #if KARATSUBA_THRESHOLD < 2 | 
|---|
| 40 | #undef KARATSUBA_THRESHOLD | 
|---|
| 41 | #define KARATSUBA_THRESHOLD 2 | 
|---|
| 42 | #endif | 
|---|
| 43 |  | 
|---|
| 44 | /* Handle simple cases with traditional multiplication. | 
|---|
| 45 |  | 
|---|
| 46 | This is the most critical code of multiplication.  All multiplies rely | 
|---|
| 47 | on this, both small and huge.  Small ones arrive here immediately.  Huge | 
|---|
| 48 | ones arrive here as this is the base case for Karatsuba's recursive | 
|---|
| 49 | algorithm below.  */ | 
|---|
| 50 |  | 
|---|
| 51 | void | 
|---|
| 52 | impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) | 
|---|
| 53 | { | 
|---|
| 54 | mp_size_t i; | 
|---|
| 55 | mp_limb_t cy_limb; | 
|---|
| 56 | mp_limb_t v_limb; | 
|---|
| 57 |  | 
|---|
| 58 | /* Multiply by the first limb in V separately, as the result can be | 
|---|
| 59 | stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|---|
| 60 | v_limb = vp[0]; | 
|---|
| 61 | if (v_limb <= 1) | 
|---|
| 62 | { | 
|---|
| 63 | if (v_limb == 1) | 
|---|
| 64 | MPN_COPY (prodp, up, size); | 
|---|
| 65 | else | 
|---|
| 66 | MPN_ZERO (prodp, size); | 
|---|
| 67 | cy_limb = 0; | 
|---|
| 68 | } | 
|---|
| 69 | else | 
|---|
| 70 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); | 
|---|
| 71 |  | 
|---|
| 72 | prodp[size] = cy_limb; | 
|---|
| 73 | prodp++; | 
|---|
| 74 |  | 
|---|
| 75 | /* For each iteration in the outer loop, multiply one limb from | 
|---|
| 76 | U with one limb from V, and add it to PROD.  */ | 
|---|
| 77 | for (i = 1; i < size; i++) | 
|---|
| 78 | { | 
|---|
| 79 | v_limb = vp[i]; | 
|---|
| 80 | if (v_limb <= 1) | 
|---|
| 81 | { | 
|---|
| 82 | cy_limb = 0; | 
|---|
| 83 | if (v_limb == 1) | 
|---|
| 84 | cy_limb = mpn_add_n (prodp, prodp, up, size); | 
|---|
| 85 | } | 
|---|
| 86 | else | 
|---|
| 87 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); | 
|---|
| 88 |  | 
|---|
| 89 | prodp[size] = cy_limb; | 
|---|
| 90 | prodp++; | 
|---|
| 91 | } | 
|---|
| 92 | } | 
|---|
| 93 |  | 
|---|
| 94 | void | 
|---|
| 95 | impn_mul_n (mp_ptr prodp, | 
|---|
| 96 | mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace) | 
|---|
| 97 | { | 
|---|
| 98 | if ((size & 1) != 0) | 
|---|
| 99 | { | 
|---|
| 100 | /* The size is odd, the code code below doesn't handle that. | 
|---|
| 101 | Multiply the least significant (size - 1) limbs with a recursive | 
|---|
| 102 | call, and handle the most significant limb of S1 and S2 | 
|---|
| 103 | separately.  */ | 
|---|
| 104 | /* A slightly faster way to do this would be to make the Karatsuba | 
|---|
| 105 | code below behave as if the size were even, and let it check for | 
|---|
| 106 | odd size in the end.  I.e., in essence move this code to the end. | 
|---|
| 107 | Doing so would save us a recursive call, and potentially make the | 
|---|
| 108 | stack grow a lot less.  */ | 
|---|
| 109 |  | 
|---|
| 110 | mp_size_t esize = size - 1;	/* even size */ | 
|---|
| 111 | mp_limb_t cy_limb; | 
|---|
| 112 |  | 
|---|
| 113 | MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace); | 
|---|
| 114 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]); | 
|---|
| 115 | prodp[esize + esize] = cy_limb; | 
|---|
| 116 | cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]); | 
|---|
| 117 |  | 
|---|
| 118 | prodp[esize + size] = cy_limb; | 
|---|
| 119 | } | 
|---|
| 120 | else | 
|---|
| 121 | { | 
|---|
| 122 | /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. | 
|---|
| 123 |  | 
|---|
| 124 | Split U in two pieces, U1 and U0, such that | 
|---|
| 125 | U = U0 + U1*(B**n), | 
|---|
| 126 | and V in V1 and V0, such that | 
|---|
| 127 | V = V0 + V1*(B**n). | 
|---|
| 128 |  | 
|---|
| 129 | UV is then computed recursively using the identity | 
|---|
| 130 |  | 
|---|
| 131 | 2n   n          n                     n | 
|---|
| 132 | UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V | 
|---|
| 133 | 1 1        1  0   0  1              0 0 | 
|---|
| 134 |  | 
|---|
| 135 | Where B = 2**BITS_PER_MP_LIMB.  */ | 
|---|
| 136 |  | 
|---|
| 137 | mp_size_t hsize = size >> 1; | 
|---|
| 138 | mp_limb_t cy; | 
|---|
| 139 | int negflg; | 
|---|
| 140 |  | 
|---|
| 141 | /*** Product H.	 ________________  ________________ | 
|---|
| 142 | |_____U1 x V1____||____U0 x V0_____|  */ | 
|---|
| 143 | /* Put result in upper part of PROD and pass low part of TSPACE | 
|---|
| 144 | as new TSPACE.  */ | 
|---|
| 145 | MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace); | 
|---|
| 146 |  | 
|---|
| 147 | /*** Product M.	 ________________ | 
|---|
| 148 | |_(U1-U0)(V0-V1)_|  */ | 
|---|
| 149 | if (mpn_cmp (up + hsize, up, hsize) >= 0) | 
|---|
| 150 | { | 
|---|
| 151 | mpn_sub_n (prodp, up + hsize, up, hsize); | 
|---|
| 152 | negflg = 0; | 
|---|
| 153 | } | 
|---|
| 154 | else | 
|---|
| 155 | { | 
|---|
| 156 | mpn_sub_n (prodp, up, up + hsize, hsize); | 
|---|
| 157 | negflg = 1; | 
|---|
| 158 | } | 
|---|
| 159 | if (mpn_cmp (vp + hsize, vp, hsize) >= 0) | 
|---|
| 160 | { | 
|---|
| 161 | mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize); | 
|---|
| 162 | negflg ^= 1; | 
|---|
| 163 | } | 
|---|
| 164 | else | 
|---|
| 165 | { | 
|---|
| 166 | mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize); | 
|---|
| 167 | /* No change of NEGFLG.  */ | 
|---|
| 168 | } | 
|---|
| 169 | /* Read temporary operands from low part of PROD. | 
|---|
| 170 | Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 171 | as new TSPACE.  */ | 
|---|
| 172 | MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size); | 
|---|
| 173 |  | 
|---|
| 174 | /*** Add/copy product H.  */ | 
|---|
| 175 | MPN_COPY (prodp + hsize, prodp + size, hsize); | 
|---|
| 176 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); | 
|---|
| 177 |  | 
|---|
| 178 | /*** Add product M (if NEGFLG M is a negative number).  */ | 
|---|
| 179 | if (negflg) | 
|---|
| 180 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); | 
|---|
| 181 | else | 
|---|
| 182 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); | 
|---|
| 183 |  | 
|---|
| 184 | /*** Product L.	 ________________  ________________ | 
|---|
| 185 | |________________||____U0 x V0_____|  */ | 
|---|
| 186 | /* Read temporary operands from low part of PROD. | 
|---|
| 187 | Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 188 | as new TSPACE.  */ | 
|---|
| 189 | MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size); | 
|---|
| 190 |  | 
|---|
| 191 | /*** Add/copy Product L (twice).  */ | 
|---|
| 192 |  | 
|---|
| 193 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); | 
|---|
| 194 | if (cy) | 
|---|
| 195 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); | 
|---|
| 196 |  | 
|---|
| 197 | MPN_COPY (prodp, tspace, hsize); | 
|---|
| 198 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); | 
|---|
| 199 | if (cy) | 
|---|
| 200 | mpn_add_1 (prodp + size, prodp + size, size, 1); | 
|---|
| 201 | } | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | void | 
|---|
| 205 | impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size) | 
|---|
| 206 | { | 
|---|
| 207 | mp_size_t i; | 
|---|
| 208 | mp_limb_t cy_limb; | 
|---|
| 209 | mp_limb_t v_limb; | 
|---|
| 210 |  | 
|---|
| 211 | /* Multiply by the first limb in V separately, as the result can be | 
|---|
| 212 | stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|---|
| 213 | v_limb = up[0]; | 
|---|
| 214 | if (v_limb <= 1) | 
|---|
| 215 | { | 
|---|
| 216 | if (v_limb == 1) | 
|---|
| 217 | MPN_COPY (prodp, up, size); | 
|---|
| 218 | else | 
|---|
| 219 | MPN_ZERO (prodp, size); | 
|---|
| 220 | cy_limb = 0; | 
|---|
| 221 | } | 
|---|
| 222 | else | 
|---|
| 223 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); | 
|---|
| 224 |  | 
|---|
| 225 | prodp[size] = cy_limb; | 
|---|
| 226 | prodp++; | 
|---|
| 227 |  | 
|---|
| 228 | /* For each iteration in the outer loop, multiply one limb from | 
|---|
| 229 | U with one limb from V, and add it to PROD.  */ | 
|---|
| 230 | for (i = 1; i < size; i++) | 
|---|
| 231 | { | 
|---|
| 232 | v_limb = up[i]; | 
|---|
| 233 | if (v_limb <= 1) | 
|---|
| 234 | { | 
|---|
| 235 | cy_limb = 0; | 
|---|
| 236 | if (v_limb == 1) | 
|---|
| 237 | cy_limb = mpn_add_n (prodp, prodp, up, size); | 
|---|
| 238 | } | 
|---|
| 239 | else | 
|---|
| 240 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); | 
|---|
| 241 |  | 
|---|
| 242 | prodp[size] = cy_limb; | 
|---|
| 243 | prodp++; | 
|---|
| 244 | } | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | void | 
|---|
| 248 | impn_sqr_n (mp_ptr prodp, | 
|---|
| 249 | mp_srcptr up, mp_size_t size, mp_ptr tspace) | 
|---|
| 250 | { | 
|---|
| 251 | if ((size & 1) != 0) | 
|---|
| 252 | { | 
|---|
| 253 | /* The size is odd, the code code below doesn't handle that. | 
|---|
| 254 | Multiply the least significant (size - 1) limbs with a recursive | 
|---|
| 255 | call, and handle the most significant limb of S1 and S2 | 
|---|
| 256 | separately.  */ | 
|---|
| 257 | /* A slightly faster way to do this would be to make the Karatsuba | 
|---|
| 258 | code below behave as if the size were even, and let it check for | 
|---|
| 259 | odd size in the end.  I.e., in essence move this code to the end. | 
|---|
| 260 | Doing so would save us a recursive call, and potentially make the | 
|---|
| 261 | stack grow a lot less.  */ | 
|---|
| 262 |  | 
|---|
| 263 | mp_size_t esize = size - 1;	/* even size */ | 
|---|
| 264 | mp_limb_t cy_limb; | 
|---|
| 265 |  | 
|---|
| 266 | MPN_SQR_N_RECURSE (prodp, up, esize, tspace); | 
|---|
| 267 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]); | 
|---|
| 268 | prodp[esize + esize] = cy_limb; | 
|---|
| 269 | cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]); | 
|---|
| 270 |  | 
|---|
| 271 | prodp[esize + size] = cy_limb; | 
|---|
| 272 | } | 
|---|
| 273 | else | 
|---|
| 274 | { | 
|---|
| 275 | mp_size_t hsize = size >> 1; | 
|---|
| 276 | mp_limb_t cy; | 
|---|
| 277 |  | 
|---|
| 278 | /*** Product H.	 ________________  ________________ | 
|---|
| 279 | |_____U1 x U1____||____U0 x U0_____|  */ | 
|---|
| 280 | /* Put result in upper part of PROD and pass low part of TSPACE | 
|---|
| 281 | as new TSPACE.  */ | 
|---|
| 282 | MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace); | 
|---|
| 283 |  | 
|---|
| 284 | /*** Product M.	 ________________ | 
|---|
| 285 | |_(U1-U0)(U0-U1)_|  */ | 
|---|
| 286 | if (mpn_cmp (up + hsize, up, hsize) >= 0) | 
|---|
| 287 | { | 
|---|
| 288 | mpn_sub_n (prodp, up + hsize, up, hsize); | 
|---|
| 289 | } | 
|---|
| 290 | else | 
|---|
| 291 | { | 
|---|
| 292 | mpn_sub_n (prodp, up, up + hsize, hsize); | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | /* Read temporary operands from low part of PROD. | 
|---|
| 296 | Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 297 | as new TSPACE.  */ | 
|---|
| 298 | MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size); | 
|---|
| 299 |  | 
|---|
| 300 | /*** Add/copy product H.  */ | 
|---|
| 301 | MPN_COPY (prodp + hsize, prodp + size, hsize); | 
|---|
| 302 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); | 
|---|
| 303 |  | 
|---|
| 304 | /*** Add product M (if NEGFLG M is a negative number).  */ | 
|---|
| 305 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); | 
|---|
| 306 |  | 
|---|
| 307 | /*** Product L.	 ________________  ________________ | 
|---|
| 308 | |________________||____U0 x U0_____|  */ | 
|---|
| 309 | /* Read temporary operands from low part of PROD. | 
|---|
| 310 | Put result in low part of TSPACE using upper part of TSPACE | 
|---|
| 311 | as new TSPACE.  */ | 
|---|
| 312 | MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); | 
|---|
| 313 |  | 
|---|
| 314 | /*** Add/copy Product L (twice).  */ | 
|---|
| 315 |  | 
|---|
| 316 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); | 
|---|
| 317 | if (cy) | 
|---|
| 318 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); | 
|---|
| 319 |  | 
|---|
| 320 | MPN_COPY (prodp, tspace, hsize); | 
|---|
| 321 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); | 
|---|
| 322 | if (cy) | 
|---|
| 323 | mpn_add_1 (prodp + size, prodp + size, size, 1); | 
|---|
| 324 | } | 
|---|
| 325 | } | 
|---|
| 326 |  | 
|---|
| 327 | /* This should be made into an inline function in gmp.h.  */ | 
|---|
| 328 | void | 
|---|
| 329 | mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) | 
|---|
| 330 | { | 
|---|
| 331 | TMP_DECL (marker); | 
|---|
| 332 | TMP_MARK (marker); | 
|---|
| 333 | if (up == vp) | 
|---|
| 334 | { | 
|---|
| 335 | if (size < KARATSUBA_THRESHOLD) | 
|---|
| 336 | { | 
|---|
| 337 | impn_sqr_n_basecase (prodp, up, size); | 
|---|
| 338 | } | 
|---|
| 339 | else | 
|---|
| 340 | { | 
|---|
| 341 | mp_ptr tspace; | 
|---|
| 342 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); | 
|---|
| 343 | impn_sqr_n (prodp, up, size, tspace); | 
|---|
| 344 | } | 
|---|
| 345 | } | 
|---|
| 346 | else | 
|---|
| 347 | { | 
|---|
| 348 | if (size < KARATSUBA_THRESHOLD) | 
|---|
| 349 | { | 
|---|
| 350 | impn_mul_n_basecase (prodp, up, vp, size); | 
|---|
| 351 | } | 
|---|
| 352 | else | 
|---|
| 353 | { | 
|---|
| 354 | mp_ptr tspace; | 
|---|
| 355 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); | 
|---|
| 356 | impn_mul_n (prodp, up, vp, size, tspace); | 
|---|
| 357 | } | 
|---|
| 358 | } | 
|---|
| 359 | TMP_FREE (marker); | 
|---|
| 360 | } | 
|---|
| 361 |  | 
|---|