| 1 | /* Copyright (C) 1991-2020 Free Software Foundation, Inc. | 
|---|
| 2 | This file is part of the GNU C Library. | 
|---|
| 3 | Written by Douglas C. Schmidt (schmidt@ics.uci.edu). | 
|---|
| 4 |  | 
|---|
| 5 | The GNU C Library is free software; you can redistribute it and/or | 
|---|
| 6 | modify it under the terms of the GNU Lesser General Public | 
|---|
| 7 | License as published by the Free Software Foundation; either | 
|---|
| 8 | version 2.1 of the License, or (at your option) any later version. | 
|---|
| 9 |  | 
|---|
| 10 | The GNU C Library is distributed in the hope that it will be useful, | 
|---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|---|
| 13 | Lesser General Public License for more details. | 
|---|
| 14 |  | 
|---|
| 15 | You should have received a copy of the GNU Lesser General Public | 
|---|
| 16 | License along with the GNU C Library; if not, see | 
|---|
| 17 | <https://www.gnu.org/licenses/>.  */ | 
|---|
| 18 |  | 
|---|
| 19 | /* If you consider tuning this algorithm, you should consult first: | 
|---|
| 20 | Engineering a sort function; Jon Bentley and M. Douglas McIlroy; | 
|---|
| 21 | Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993.  */ | 
|---|
| 22 |  | 
|---|
| 23 | #include <alloca.h> | 
|---|
| 24 | #include <limits.h> | 
|---|
| 25 | #include <stdlib.h> | 
|---|
| 26 | #include <string.h> | 
|---|
| 27 |  | 
|---|
| 28 | /* Byte-wise swap two items of size SIZE. */ | 
|---|
| 29 | #define SWAP(a, b, size)						      \ | 
|---|
| 30 | do									      \ | 
|---|
| 31 | {									      \ | 
|---|
| 32 | size_t __size = (size);						      \ | 
|---|
| 33 | char *__a = (a), *__b = (b);					      \ | 
|---|
| 34 | do								      \ | 
|---|
| 35 | {								      \ | 
|---|
| 36 | char __tmp = *__a;						      \ | 
|---|
| 37 | *__a++ = *__b;						      \ | 
|---|
| 38 | *__b++ = __tmp;						      \ | 
|---|
| 39 | } while (--__size > 0);						      \ | 
|---|
| 40 | } while (0) | 
|---|
| 41 |  | 
|---|
| 42 | /* Discontinue quicksort algorithm when partition gets below this size. | 
|---|
| 43 | This particular magic number was chosen to work best on a Sun 4/260. */ | 
|---|
| 44 | #define MAX_THRESH 4 | 
|---|
| 45 |  | 
|---|
| 46 | /* Stack node declarations used to store unfulfilled partition obligations. */ | 
|---|
| 47 | typedef struct | 
|---|
| 48 | { | 
|---|
| 49 | char *lo; | 
|---|
| 50 | char *hi; | 
|---|
| 51 | } stack_node; | 
|---|
| 52 |  | 
|---|
| 53 | /* The next 4 #defines implement a very fast in-line stack abstraction. */ | 
|---|
| 54 | /* The stack needs log (total_elements) entries (we could even subtract | 
|---|
| 55 | log(MAX_THRESH)).  Since total_elements has type size_t, we get as | 
|---|
| 56 | upper bound for log (total_elements): | 
|---|
| 57 | bits per byte (CHAR_BIT) * sizeof(size_t).  */ | 
|---|
| 58 | #define STACK_SIZE	(CHAR_BIT * sizeof (size_t)) | 
|---|
| 59 | #define PUSH(low, high)	((void) ((top->lo = (low)), (top->hi = (high)), ++top)) | 
|---|
| 60 | #define	POP(low, high)	((void) (--top, (low = top->lo), (high = top->hi))) | 
|---|
| 61 | #define	STACK_NOT_EMPTY	(stack < top) | 
|---|
| 62 |  | 
|---|
| 63 |  | 
|---|
| 64 | /* Order size using quicksort.  This implementation incorporates | 
|---|
| 65 | four optimizations discussed in Sedgewick: | 
|---|
| 66 |  | 
|---|
| 67 | 1. Non-recursive, using an explicit stack of pointer that store the | 
|---|
| 68 | next array partition to sort.  To save time, this maximum amount | 
|---|
| 69 | of space required to store an array of SIZE_MAX is allocated on the | 
|---|
| 70 | stack.  Assuming a 32-bit (64 bit) integer for size_t, this needs | 
|---|
| 71 | only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes). | 
|---|
| 72 | Pretty cheap, actually. | 
|---|
| 73 |  | 
|---|
| 74 | 2. Chose the pivot element using a median-of-three decision tree. | 
|---|
| 75 | This reduces the probability of selecting a bad pivot value and | 
|---|
| 76 | eliminates certain extraneous comparisons. | 
|---|
| 77 |  | 
|---|
| 78 | 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving | 
|---|
| 79 | insertion sort to order the MAX_THRESH items within each partition. | 
|---|
| 80 | This is a big win, since insertion sort is faster for small, mostly | 
|---|
| 81 | sorted array segments. | 
|---|
| 82 |  | 
|---|
| 83 | 4. The larger of the two sub-partitions is always pushed onto the | 
|---|
| 84 | stack first, with the algorithm then concentrating on the | 
|---|
| 85 | smaller partition.  This *guarantees* no more than log (total_elems) | 
|---|
| 86 | stack size is needed (actually O(1) in this case)!  */ | 
|---|
| 87 |  | 
|---|
| 88 | void | 
|---|
| 89 | _quicksort (void *const pbase, size_t total_elems, size_t size, | 
|---|
| 90 | __compar_d_fn_t cmp, void *arg) | 
|---|
| 91 | { | 
|---|
| 92 | char *base_ptr = (char *) pbase; | 
|---|
| 93 |  | 
|---|
| 94 | const size_t max_thresh = MAX_THRESH * size; | 
|---|
| 95 |  | 
|---|
| 96 | if (total_elems == 0) | 
|---|
| 97 | /* Avoid lossage with unsigned arithmetic below.  */ | 
|---|
| 98 | return; | 
|---|
| 99 |  | 
|---|
| 100 | if (total_elems > MAX_THRESH) | 
|---|
| 101 | { | 
|---|
| 102 | char *lo = base_ptr; | 
|---|
| 103 | char *hi = &lo[size * (total_elems - 1)]; | 
|---|
| 104 | stack_node stack[STACK_SIZE]; | 
|---|
| 105 | stack_node *top = stack; | 
|---|
| 106 |  | 
|---|
| 107 | PUSH (NULL, NULL); | 
|---|
| 108 |  | 
|---|
| 109 | while (STACK_NOT_EMPTY) | 
|---|
| 110 | { | 
|---|
| 111 | char *left_ptr; | 
|---|
| 112 | char *right_ptr; | 
|---|
| 113 |  | 
|---|
| 114 | /* Select median value from among LO, MID, and HI. Rearrange | 
|---|
| 115 | LO and HI so the three values are sorted. This lowers the | 
|---|
| 116 | probability of picking a pathological pivot value and | 
|---|
| 117 | skips a comparison for both the LEFT_PTR and RIGHT_PTR in | 
|---|
| 118 | the while loops. */ | 
|---|
| 119 |  | 
|---|
| 120 | char *mid = lo + size * ((hi - lo) / size >> 1); | 
|---|
| 121 |  | 
|---|
| 122 | if ((*cmp) ((void *) mid, (void *) lo, arg) < 0) | 
|---|
| 123 | SWAP (mid, lo, size); | 
|---|
| 124 | if ((*cmp) ((void *) hi, (void *) mid, arg) < 0) | 
|---|
| 125 | SWAP (mid, hi, size); | 
|---|
| 126 | else | 
|---|
| 127 | goto jump_over; | 
|---|
| 128 | if ((*cmp) ((void *) mid, (void *) lo, arg) < 0) | 
|---|
| 129 | SWAP (mid, lo, size); | 
|---|
| 130 | jump_over:; | 
|---|
| 131 |  | 
|---|
| 132 | left_ptr  = lo + size; | 
|---|
| 133 | right_ptr = hi - size; | 
|---|
| 134 |  | 
|---|
| 135 | /* Here's the famous ``collapse the walls'' section of quicksort. | 
|---|
| 136 | Gotta like those tight inner loops!  They are the main reason | 
|---|
| 137 | that this algorithm runs much faster than others. */ | 
|---|
| 138 | do | 
|---|
| 139 | { | 
|---|
| 140 | while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0) | 
|---|
| 141 | left_ptr += size; | 
|---|
| 142 |  | 
|---|
| 143 | while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0) | 
|---|
| 144 | right_ptr -= size; | 
|---|
| 145 |  | 
|---|
| 146 | if (left_ptr < right_ptr) | 
|---|
| 147 | { | 
|---|
| 148 | SWAP (left_ptr, right_ptr, size); | 
|---|
| 149 | if (mid == left_ptr) | 
|---|
| 150 | mid = right_ptr; | 
|---|
| 151 | else if (mid == right_ptr) | 
|---|
| 152 | mid = left_ptr; | 
|---|
| 153 | left_ptr += size; | 
|---|
| 154 | right_ptr -= size; | 
|---|
| 155 | } | 
|---|
| 156 | else if (left_ptr == right_ptr) | 
|---|
| 157 | { | 
|---|
| 158 | left_ptr += size; | 
|---|
| 159 | right_ptr -= size; | 
|---|
| 160 | break; | 
|---|
| 161 | } | 
|---|
| 162 | } | 
|---|
| 163 | while (left_ptr <= right_ptr); | 
|---|
| 164 |  | 
|---|
| 165 | /* Set up pointers for next iteration.  First determine whether | 
|---|
| 166 | left and right partitions are below the threshold size.  If so, | 
|---|
| 167 | ignore one or both.  Otherwise, push the larger partition's | 
|---|
| 168 | bounds on the stack and continue sorting the smaller one. */ | 
|---|
| 169 |  | 
|---|
| 170 | if ((size_t) (right_ptr - lo) <= max_thresh) | 
|---|
| 171 | { | 
|---|
| 172 | if ((size_t) (hi - left_ptr) <= max_thresh) | 
|---|
| 173 | /* Ignore both small partitions. */ | 
|---|
| 174 | POP (lo, hi); | 
|---|
| 175 | else | 
|---|
| 176 | /* Ignore small left partition. */ | 
|---|
| 177 | lo = left_ptr; | 
|---|
| 178 | } | 
|---|
| 179 | else if ((size_t) (hi - left_ptr) <= max_thresh) | 
|---|
| 180 | /* Ignore small right partition. */ | 
|---|
| 181 | hi = right_ptr; | 
|---|
| 182 | else if ((right_ptr - lo) > (hi - left_ptr)) | 
|---|
| 183 | { | 
|---|
| 184 | /* Push larger left partition indices. */ | 
|---|
| 185 | PUSH (lo, right_ptr); | 
|---|
| 186 | lo = left_ptr; | 
|---|
| 187 | } | 
|---|
| 188 | else | 
|---|
| 189 | { | 
|---|
| 190 | /* Push larger right partition indices. */ | 
|---|
| 191 | PUSH (left_ptr, hi); | 
|---|
| 192 | hi = right_ptr; | 
|---|
| 193 | } | 
|---|
| 194 | } | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | /* Once the BASE_PTR array is partially sorted by quicksort the rest | 
|---|
| 198 | is completely sorted using insertion sort, since this is efficient | 
|---|
| 199 | for partitions below MAX_THRESH size. BASE_PTR points to the beginning | 
|---|
| 200 | of the array to sort, and END_PTR points at the very last element in | 
|---|
| 201 | the array (*not* one beyond it!). */ | 
|---|
| 202 |  | 
|---|
| 203 | #define min(x, y) ((x) < (y) ? (x) : (y)) | 
|---|
| 204 |  | 
|---|
| 205 | { | 
|---|
| 206 | char *const end_ptr = &base_ptr[size * (total_elems - 1)]; | 
|---|
| 207 | char *tmp_ptr = base_ptr; | 
|---|
| 208 | char *thresh = min(end_ptr, base_ptr + max_thresh); | 
|---|
| 209 | char *run_ptr; | 
|---|
| 210 |  | 
|---|
| 211 | /* Find smallest element in first threshold and place it at the | 
|---|
| 212 | array's beginning.  This is the smallest array element, | 
|---|
| 213 | and the operation speeds up insertion sort's inner loop. */ | 
|---|
| 214 |  | 
|---|
| 215 | for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size) | 
|---|
| 216 | if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0) | 
|---|
| 217 | tmp_ptr = run_ptr; | 
|---|
| 218 |  | 
|---|
| 219 | if (tmp_ptr != base_ptr) | 
|---|
| 220 | SWAP (tmp_ptr, base_ptr, size); | 
|---|
| 221 |  | 
|---|
| 222 | /* Insertion sort, running from left-hand-side up to right-hand-side.  */ | 
|---|
| 223 |  | 
|---|
| 224 | run_ptr = base_ptr + size; | 
|---|
| 225 | while ((run_ptr += size) <= end_ptr) | 
|---|
| 226 | { | 
|---|
| 227 | tmp_ptr = run_ptr - size; | 
|---|
| 228 | while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0) | 
|---|
| 229 | tmp_ptr -= size; | 
|---|
| 230 |  | 
|---|
| 231 | tmp_ptr += size; | 
|---|
| 232 | if (tmp_ptr != run_ptr) | 
|---|
| 233 | { | 
|---|
| 234 | char *trav; | 
|---|
| 235 |  | 
|---|
| 236 | trav = run_ptr + size; | 
|---|
| 237 | while (--trav >= run_ptr) | 
|---|
| 238 | { | 
|---|
| 239 | char c = *trav; | 
|---|
| 240 | char *hi, *lo; | 
|---|
| 241 |  | 
|---|
| 242 | for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo) | 
|---|
| 243 | *hi = *lo; | 
|---|
| 244 | *hi = c; | 
|---|
| 245 | } | 
|---|
| 246 | } | 
|---|
| 247 | } | 
|---|
| 248 | } | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|