| 1 | /* Private function declarations for libm. | 
|---|
| 2 | Copyright (C) 2011-2020 Free Software Foundation, Inc. | 
|---|
| 3 | This file is part of the GNU C Library. | 
|---|
| 4 |  | 
|---|
| 5 | The GNU C Library is free software; you can redistribute it and/or | 
|---|
| 6 | modify it under the terms of the GNU Lesser General Public | 
|---|
| 7 | License as published by the Free Software Foundation; either | 
|---|
| 8 | version 2.1 of the License, or (at your option) any later version. | 
|---|
| 9 |  | 
|---|
| 10 | The GNU C Library is distributed in the hope that it will be useful, | 
|---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|---|
| 13 | Lesser General Public License for more details. | 
|---|
| 14 |  | 
|---|
| 15 | You should have received a copy of the GNU Lesser General Public | 
|---|
| 16 | License along with the GNU C Library; if not, see | 
|---|
| 17 | <https://www.gnu.org/licenses/>.  */ | 
|---|
| 18 |  | 
|---|
| 19 | #define __MSUF_X(x, suffix) x ## suffix | 
|---|
| 20 | #define __MSUF_S(...) __MSUF_X (__VA_ARGS__) | 
|---|
| 21 | #define __MSUF(x) __MSUF_S (x, _MSUF_) | 
|---|
| 22 |  | 
|---|
| 23 | #define __MSUF_R_X(x, suffix) x ## suffix ## _r | 
|---|
| 24 | #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__) | 
|---|
| 25 | #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_) | 
|---|
| 26 |  | 
|---|
| 27 | /* IEEE style elementary functions.  */ | 
|---|
| 28 | extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_); | 
|---|
| 29 | extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_); | 
|---|
| 30 | extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_); | 
|---|
| 31 | extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_); | 
|---|
| 32 | extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_); | 
|---|
| 33 | extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_); | 
|---|
| 34 | extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_); | 
|---|
| 35 | extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_); | 
|---|
| 36 | extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_); | 
|---|
| 37 | extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_); | 
|---|
| 38 | extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_); | 
|---|
| 39 | extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *); | 
|---|
| 40 | extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_); | 
|---|
| 41 | extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_); | 
|---|
| 42 | extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_); | 
|---|
| 43 | extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_); | 
|---|
| 44 | extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_); | 
|---|
| 45 | extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *); | 
|---|
| 46 | extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_); | 
|---|
| 47 | extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_); | 
|---|
| 48 | extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_); | 
|---|
| 49 | extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_); | 
|---|
| 50 | extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_); | 
|---|
| 51 | extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_); | 
|---|
| 52 | extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_); | 
|---|
| 53 | extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_); | 
|---|
| 54 | extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_); | 
|---|
| 55 | extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_); | 
|---|
| 56 |  | 
|---|
| 57 | extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_); | 
|---|
| 58 | extern int __MSUF (__ieee754_ilogb) (_Mdouble_); | 
|---|
| 59 |  | 
|---|
| 60 | extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *); | 
|---|
| 61 |  | 
|---|
| 62 | /* fdlibm kernel functions.  */ | 
|---|
| 63 | extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int); | 
|---|
| 64 | extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_); | 
|---|
| 65 | extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int); | 
|---|
| 66 |  | 
|---|
| 67 | #if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN | 
|---|
| 68 | extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_, | 
|---|
| 69 | _Mdouble_ *, _Mdouble_ *, int); | 
|---|
| 70 | #endif | 
|---|
| 71 |  | 
|---|
| 72 | #if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN | 
|---|
| 73 | extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int, | 
|---|
| 74 | int, int, const int32_t *); | 
|---|
| 75 | #endif | 
|---|
| 76 |  | 
|---|
| 77 | /* Internal functions.  */ | 
|---|
| 78 |  | 
|---|
| 79 | /* Return X^2 + Y^2 - 1, computed without large cancellation error. | 
|---|
| 80 | It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >= | 
|---|
| 81 | 0.5.  */ | 
|---|
| 82 | extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y); | 
|---|
| 83 |  | 
|---|
| 84 | /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N | 
|---|
| 85 | - 1, in the form R * (1 + *EPS) where the return value R is an | 
|---|
| 86 | approximation to the product and *EPS is set to indicate the | 
|---|
| 87 | approximate error in the return value.  X is such that all the | 
|---|
| 88 | values X + 1, ..., X + N - 1 are exactly representable, and X_EPS / | 
|---|
| 89 | X is small enough that factors quadratic in it can be | 
|---|
| 90 | neglected.  */ | 
|---|
| 91 | extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps, | 
|---|
| 92 | int n, _Mdouble_ *eps); | 
|---|
| 93 |  | 
|---|
| 94 | /* Compute lgamma of a negative argument X, if it is in a range | 
|---|
| 95 | (depending on the floating-point format) for which expansion around | 
|---|
| 96 | zeros is used, setting *SIGNGAMP accordingly.  */ | 
|---|
| 97 | extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp); | 
|---|
| 98 |  | 
|---|
| 99 | /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + | 
|---|
| 100 | 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1.  X is such that | 
|---|
| 101 | all the values X + 1, ..., X + N - 1 are exactly representable, and | 
|---|
| 102 | X_EPS / X is small enough that factors quadratic in it can be | 
|---|
| 103 | neglected.  */ | 
|---|
| 104 | #if !defined __MATH_DECLARING_FLOAT | 
|---|
| 105 | extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x, | 
|---|
| 106 | _Mdouble_ x_eps, int n); | 
|---|
| 107 | #endif | 
|---|
| 108 |  | 
|---|
| 109 | #undef __MSUF_X | 
|---|
| 110 | #undef __MSUF_S | 
|---|
| 111 | #undef __MSUF | 
|---|
| 112 |  | 
|---|
| 113 | #undef __MSUF_R_X | 
|---|
| 114 | #undef __MSUF_R_S | 
|---|
| 115 | #undef __MSUF_R | 
|---|
| 116 |  | 
|---|