| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * Written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /*******************************************************************/ |
| 20 | /* */ |
| 21 | /* MODULE_NAME: branred.c */ |
| 22 | /* */ |
| 23 | /* FUNCTIONS: branred */ |
| 24 | /* */ |
| 25 | /* FILES NEEDED: branred.h mydefs.h endian.h mpa.h */ |
| 26 | /* mha.c */ |
| 27 | /* */ |
| 28 | /* Routine branred() performs range reduction of a double number */ |
| 29 | /* x into Double length number a+aa,such that */ |
| 30 | /* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */ |
| 31 | /* Routine returns the integer (n mod 4) of the above description */ |
| 32 | /* of x. */ |
| 33 | /*******************************************************************/ |
| 34 | |
| 35 | #include "endian.h" |
| 36 | #include "mydefs.h" |
| 37 | #include "branred.h" |
| 38 | #include <math.h> |
| 39 | #include <math_private.h> |
| 40 | |
| 41 | #ifndef SECTION |
| 42 | # define SECTION |
| 43 | #endif |
| 44 | |
| 45 | |
| 46 | /*******************************************************************/ |
| 47 | /* Routine branred() performs range reduction of a double number */ |
| 48 | /* x into Double length number a+aa,such that */ |
| 49 | /* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */ |
| 50 | /* Routine return integer (n mod 4) */ |
| 51 | /*******************************************************************/ |
| 52 | int |
| 53 | SECTION |
| 54 | __branred(double x, double *a, double *aa) |
| 55 | { |
| 56 | int i,k; |
| 57 | mynumber u,gor; |
| 58 | double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2; |
| 59 | |
| 60 | x*=tm600.x; |
| 61 | t=x*split; /* split x to two numbers */ |
| 62 | x1=t-(t-x); |
| 63 | x2=x-x1; |
| 64 | sum=0; |
| 65 | u.x = x1; |
| 66 | k = (u.i[HIGH_HALF]>>20)&2047; |
| 67 | k = (k-450)/24; |
| 68 | if (k<0) |
| 69 | k=0; |
| 70 | gor.x = t576.x; |
| 71 | gor.i[HIGH_HALF] -= ((k*24)<<20); |
| 72 | for (i=0;i<6;i++) |
| 73 | { r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; } |
| 74 | for (i=0;i<3;i++) { |
| 75 | s=(r[i]+big.x)-big.x; |
| 76 | sum+=s; |
| 77 | r[i]-=s; |
| 78 | } |
| 79 | t=0; |
| 80 | for (i=0;i<6;i++) |
| 81 | t+=r[5-i]; |
| 82 | bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5]; |
| 83 | s=(t+big.x)-big.x; |
| 84 | sum+=s; |
| 85 | t-=s; |
| 86 | b=t+bb; |
| 87 | bb=(t-b)+bb; |
| 88 | s=(sum+big1.x)-big1.x; |
| 89 | sum-=s; |
| 90 | b1=b; |
| 91 | bb1=bb; |
| 92 | sum1=sum; |
| 93 | sum=0; |
| 94 | |
| 95 | u.x = x2; |
| 96 | k = (u.i[HIGH_HALF]>>20)&2047; |
| 97 | k = (k-450)/24; |
| 98 | if (k<0) |
| 99 | k=0; |
| 100 | gor.x = t576.x; |
| 101 | gor.i[HIGH_HALF] -= ((k*24)<<20); |
| 102 | for (i=0;i<6;i++) |
| 103 | { r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; } |
| 104 | for (i=0;i<3;i++) { |
| 105 | s=(r[i]+big.x)-big.x; |
| 106 | sum+=s; |
| 107 | r[i]-=s; |
| 108 | } |
| 109 | t=0; |
| 110 | for (i=0;i<6;i++) |
| 111 | t+=r[5-i]; |
| 112 | bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5]; |
| 113 | s=(t+big.x)-big.x; |
| 114 | sum+=s; |
| 115 | t-=s; |
| 116 | b=t+bb; |
| 117 | bb=(t-b)+bb; |
| 118 | s=(sum+big1.x)-big1.x; |
| 119 | sum-=s; |
| 120 | |
| 121 | b2=b; |
| 122 | bb2=bb; |
| 123 | sum2=sum; |
| 124 | |
| 125 | sum=sum1+sum2; |
| 126 | b=b1+b2; |
| 127 | bb = (fabs(b1)>fabs(b2))? (b1-b)+b2 : (b2-b)+b1; |
| 128 | if (b > 0.5) |
| 129 | {b-=1.0; sum+=1.0;} |
| 130 | else if (b < -0.5) |
| 131 | {b+=1.0; sum-=1.0;} |
| 132 | s=b+(bb+bb1+bb2); |
| 133 | t=((b-s)+bb)+(bb1+bb2); |
| 134 | b=s*split; |
| 135 | t1=b-(b-s); |
| 136 | t2=s-t1; |
| 137 | b=s*hp0.x; |
| 138 | bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x); |
| 139 | s=b+bb; |
| 140 | t=(b-s)+bb; |
| 141 | *a=s; |
| 142 | *aa=t; |
| 143 | return ((int) sum)&3; /* return quater of unit circle */ |
| 144 | } |
| 145 | |