| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /******************************************************************/ |
| 20 | /* MODULE_NAME:uasncs.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: uasin */ |
| 23 | /* uacos */ |
| 24 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ |
| 25 | /* doasin.c sincos32.c dosincos.c mpa.c */ |
| 26 | /* sincos.tbl asincos.tbl powtwo.tbl root.tbl */ |
| 27 | /* */ |
| 28 | /* Ultimate asin/acos routines. Given an IEEE double machine */ |
| 29 | /* number x, compute the correctly rounded value of */ |
| 30 | /* arcsin(x)or arccos(x) according to the function called. */ |
| 31 | /* Assumption: Machine arithmetic operations are performed in */ |
| 32 | /* round to nearest mode of IEEE 754 standard. */ |
| 33 | /* */ |
| 34 | /******************************************************************/ |
| 35 | #include "endian.h" |
| 36 | #include "mydefs.h" |
| 37 | #include "asincos.tbl" |
| 38 | #include "root.tbl" |
| 39 | #include "powtwo.tbl" |
| 40 | #include "MathLib.h" |
| 41 | #include "uasncs.h" |
| 42 | #include <float.h> |
| 43 | #include <math.h> |
| 44 | #include <math_private.h> |
| 45 | #include <math-underflow.h> |
| 46 | #include <libm-alias-finite.h> |
| 47 | |
| 48 | #ifndef SECTION |
| 49 | # define SECTION |
| 50 | #endif |
| 51 | |
| 52 | void __doasin(double x, double dx, double w[]); |
| 53 | void __dubsin(double x, double dx, double v[]); |
| 54 | void __dubcos(double x, double dx, double v[]); |
| 55 | void __docos(double x, double dx, double v[]); |
| 56 | double __sin32(double x, double res, double res1); |
| 57 | double __cos32(double x, double res, double res1); |
| 58 | |
| 59 | /***************************************************************************/ |
| 60 | /* An ultimate asin routine. Given an IEEE double machine number x */ |
| 61 | /* it computes the correctly rounded (to nearest) value of arcsin(x) */ |
| 62 | /***************************************************************************/ |
| 63 | double |
| 64 | SECTION |
| 65 | __ieee754_asin(double x){ |
| 66 | double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2]; |
| 67 | mynumber u,v; |
| 68 | int4 k,m,n; |
| 69 | |
| 70 | u.x = x; |
| 71 | m = u.i[HIGH_HALF]; |
| 72 | k = 0x7fffffff&m; /* no sign */ |
| 73 | |
| 74 | if (k < 0x3e500000) |
| 75 | { |
| 76 | math_check_force_underflow (x); |
| 77 | return x; /* for x->0 => sin(x)=x */ |
| 78 | } |
| 79 | /*----------------------2^-26 <= |x| < 2^ -3 -----------------*/ |
| 80 | else |
| 81 | if (k < 0x3fc00000) { |
| 82 | x2 = x*x; |
| 83 | t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x); |
| 84 | res = x+t; /* res=arcsin(x) according to Taylor series */ |
| 85 | cor = (x-res)+t; |
| 86 | if (res == res+1.025*cor) return res; |
| 87 | else { |
| 88 | x1 = x+big; |
| 89 | xx = x*x; |
| 90 | x1 -= big; |
| 91 | x2 = x - x1; |
| 92 | p = x1*x1*x1; |
| 93 | s1 = a1.x*p; |
| 94 | s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x + |
| 95 | ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p; |
| 96 | res1 = x+s1; |
| 97 | s2 = ((x-res1)+s1)+s2; |
| 98 | res = res1+s2; |
| 99 | cor = (res1-res)+s2; |
| 100 | if (res == res+1.00014*cor) return res; |
| 101 | else { |
| 102 | __doasin(x,0,w); |
| 103 | if (w[0]==(w[0]+1.00000001*w[1])) return w[0]; |
| 104 | else { |
| 105 | y=fabs(x); |
| 106 | res=fabs(w[0]); |
| 107 | res1=fabs(w[0]+1.1*w[1]); |
| 108 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | /*---------------------0.125 <= |x| < 0.5 -----------------------------*/ |
| 114 | else if (k < 0x3fe00000) { |
| 115 | if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15); |
| 116 | else n = 11*((k&0x000fffff)>>14)+352; |
| 117 | if (m>0) xx = x - asncs.x[n]; |
| 118 | else xx = -x - asncs.x[n]; |
| 119 | t = asncs.x[n+1]*xx; |
| 120 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] |
| 121 | +xx*asncs.x[n+6]))))+asncs.x[n+7]; |
| 122 | t+=p; |
| 123 | res =asncs.x[n+8] +t; |
| 124 | cor = (asncs.x[n+8]-res)+t; |
| 125 | if (res == res+1.05*cor) return (m>0)?res:-res; |
| 126 | else { |
| 127 | r=asncs.x[n+8]+xx*asncs.x[n+9]; |
| 128 | t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]); |
| 129 | res = r+t; |
| 130 | cor = (r-res)+t; |
| 131 | if (res == res+1.0005*cor) return (m>0)?res:-res; |
| 132 | else { |
| 133 | res1=res+1.1*cor; |
| 134 | z=0.5*(res1-res); |
| 135 | __dubsin(res,z,w); |
| 136 | z=(w[0]-fabs(x))+w[1]; |
| 137 | if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); |
| 138 | else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); |
| 139 | else { |
| 140 | y=fabs(x); |
| 141 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 142 | } |
| 143 | } |
| 144 | } |
| 145 | } /* else if (k < 0x3fe00000) */ |
| 146 | /*-------------------- 0.5 <= |x| < 0.75 -----------------------------*/ |
| 147 | else |
| 148 | if (k < 0x3fe80000) { |
| 149 | n = 1056+((k&0x000fe000)>>11)*3; |
| 150 | if (m>0) xx = x - asncs.x[n]; |
| 151 | else xx = -x - asncs.x[n]; |
| 152 | t = asncs.x[n+1]*xx; |
| 153 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] |
| 154 | +xx*(asncs.x[n+6]+xx*asncs.x[n+7])))))+asncs.x[n+8]; |
| 155 | t+=p; |
| 156 | res =asncs.x[n+9] +t; |
| 157 | cor = (asncs.x[n+9]-res)+t; |
| 158 | if (res == res+1.01*cor) return (m>0)?res:-res; |
| 159 | else { |
| 160 | r=asncs.x[n+9]+xx*asncs.x[n+10]; |
| 161 | t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]); |
| 162 | res = r+t; |
| 163 | cor = (r-res)+t; |
| 164 | if (res == res+1.0005*cor) return (m>0)?res:-res; |
| 165 | else { |
| 166 | res1=res+1.1*cor; |
| 167 | z=0.5*(res1-res); |
| 168 | __dubsin(res,z,w); |
| 169 | z=(w[0]-fabs(x))+w[1]; |
| 170 | if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); |
| 171 | else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); |
| 172 | else { |
| 173 | y=fabs(x); |
| 174 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | } /* else if (k < 0x3fe80000) */ |
| 179 | /*--------------------- 0.75 <= |x|< 0.921875 ----------------------*/ |
| 180 | else |
| 181 | if (k < 0x3fed8000) { |
| 182 | n = 992+((k&0x000fe000)>>13)*13; |
| 183 | if (m>0) xx = x - asncs.x[n]; |
| 184 | else xx = -x - asncs.x[n]; |
| 185 | t = asncs.x[n+1]*xx; |
| 186 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+xx*(asncs.x[n+5] |
| 187 | +xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+xx*asncs.x[n+8]))))))+asncs.x[n+9]; |
| 188 | t+=p; |
| 189 | res =asncs.x[n+10] +t; |
| 190 | cor = (asncs.x[n+10]-res)+t; |
| 191 | if (res == res+1.01*cor) return (m>0)?res:-res; |
| 192 | else { |
| 193 | r=asncs.x[n+10]+xx*asncs.x[n+11]; |
| 194 | t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]); |
| 195 | res = r+t; |
| 196 | cor = (r-res)+t; |
| 197 | if (res == res+1.0008*cor) return (m>0)?res:-res; |
| 198 | else { |
| 199 | res1=res+1.1*cor; |
| 200 | z=0.5*(res1-res); |
| 201 | y=hp0.x-res; |
| 202 | z=((hp0.x-y)-res)+(hp1.x-z); |
| 203 | __dubcos(y,z,w); |
| 204 | z=(w[0]-fabs(x))+w[1]; |
| 205 | if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); |
| 206 | else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); |
| 207 | else { |
| 208 | y=fabs(x); |
| 209 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | } /* else if (k < 0x3fed8000) */ |
| 214 | /*-------------------0.921875 <= |x| < 0.953125 ------------------------*/ |
| 215 | else |
| 216 | if (k < 0x3fee8000) { |
| 217 | n = 884+((k&0x000fe000)>>13)*14; |
| 218 | if (m>0) xx = x - asncs.x[n]; |
| 219 | else xx = -x - asncs.x[n]; |
| 220 | t = asncs.x[n+1]*xx; |
| 221 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 222 | xx*(asncs.x[n+5]+xx*(asncs.x[n+6] |
| 223 | +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ |
| 224 | xx*asncs.x[n+9])))))))+asncs.x[n+10]; |
| 225 | t+=p; |
| 226 | res =asncs.x[n+11] +t; |
| 227 | cor = (asncs.x[n+11]-res)+t; |
| 228 | if (res == res+1.01*cor) return (m>0)?res:-res; |
| 229 | else { |
| 230 | r=asncs.x[n+11]+xx*asncs.x[n+12]; |
| 231 | t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]); |
| 232 | res = r+t; |
| 233 | cor = (r-res)+t; |
| 234 | if (res == res+1.0007*cor) return (m>0)?res:-res; |
| 235 | else { |
| 236 | res1=res+1.1*cor; |
| 237 | z=0.5*(res1-res); |
| 238 | y=(hp0.x-res)-z; |
| 239 | z=y+hp1.x; |
| 240 | y=(y-z)+hp1.x; |
| 241 | __dubcos(z,y,w); |
| 242 | z=(w[0]-fabs(x))+w[1]; |
| 243 | if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); |
| 244 | else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); |
| 245 | else { |
| 246 | y=fabs(x); |
| 247 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 248 | } |
| 249 | } |
| 250 | } |
| 251 | } /* else if (k < 0x3fee8000) */ |
| 252 | |
| 253 | /*--------------------0.953125 <= |x| < 0.96875 ------------------------*/ |
| 254 | else |
| 255 | if (k < 0x3fef0000) { |
| 256 | n = 768+((k&0x000fe000)>>13)*15; |
| 257 | if (m>0) xx = x - asncs.x[n]; |
| 258 | else xx = -x - asncs.x[n]; |
| 259 | t = asncs.x[n+1]*xx; |
| 260 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 261 | xx*(asncs.x[n+5]+xx*(asncs.x[n+6] |
| 262 | +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ |
| 263 | xx*(asncs.x[n+9]+xx*asncs.x[n+10]))))))))+asncs.x[n+11]; |
| 264 | t+=p; |
| 265 | res =asncs.x[n+12] +t; |
| 266 | cor = (asncs.x[n+12]-res)+t; |
| 267 | if (res == res+1.01*cor) return (m>0)?res:-res; |
| 268 | else { |
| 269 | r=asncs.x[n+12]+xx*asncs.x[n+13]; |
| 270 | t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]); |
| 271 | res = r+t; |
| 272 | cor = (r-res)+t; |
| 273 | if (res == res+1.0007*cor) return (m>0)?res:-res; |
| 274 | else { |
| 275 | res1=res+1.1*cor; |
| 276 | z=0.5*(res1-res); |
| 277 | y=(hp0.x-res)-z; |
| 278 | z=y+hp1.x; |
| 279 | y=(y-z)+hp1.x; |
| 280 | __dubcos(z,y,w); |
| 281 | z=(w[0]-fabs(x))+w[1]; |
| 282 | if (z>1.0e-27) return (m>0)?min(res,res1):-min(res,res1); |
| 283 | else if (z<-1.0e-27) return (m>0)?max(res,res1):-max(res,res1); |
| 284 | else { |
| 285 | y=fabs(x); |
| 286 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | } /* else if (k < 0x3fef0000) */ |
| 291 | /*--------------------0.96875 <= |x| < 1 --------------------------------*/ |
| 292 | else |
| 293 | if (k<0x3ff00000) { |
| 294 | z = 0.5*((m>0)?(1.0-x):(1.0+x)); |
| 295 | v.x=z; |
| 296 | k=v.i[HIGH_HALF]; |
| 297 | t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)]; |
| 298 | r=1.0-t*t*z; |
| 299 | t = t*(rt0+r*(rt1+r*(rt2+r*rt3))); |
| 300 | c=t*z; |
| 301 | t=c*(1.5-0.5*t*c); |
| 302 | y=(c+t24)-t24; |
| 303 | cc = (z-y*y)/(t+y); |
| 304 | p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z; |
| 305 | cor = (hp1.x - 2.0*cc)-2.0*(y+cc)*p; |
| 306 | res1 = hp0.x - 2.0*y; |
| 307 | res =res1 + cor; |
| 308 | if (res == res+1.003*((res1-res)+cor)) return (m>0)?res:-res; |
| 309 | else { |
| 310 | c=y+cc; |
| 311 | cc=(y-c)+cc; |
| 312 | __doasin(c,cc,w); |
| 313 | res1=hp0.x-2.0*w[0]; |
| 314 | cor=((hp0.x-res1)-2.0*w[0])+(hp1.x-2.0*w[1]); |
| 315 | res = res1+cor; |
| 316 | cor = (res1-res)+cor; |
| 317 | if (res==(res+1.0000001*cor)) return (m>0)?res:-res; |
| 318 | else { |
| 319 | y=fabs(x); |
| 320 | res1=res+1.1*cor; |
| 321 | return (m>0)?__sin32(y,res,res1):-__sin32(y,res,res1); |
| 322 | } |
| 323 | } |
| 324 | } /* else if (k < 0x3ff00000) */ |
| 325 | /*---------------------------- |x|>=1 -------------------------------*/ |
| 326 | else if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?hp0.x:-hp0.x; |
| 327 | else |
| 328 | if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x + x; |
| 329 | else { |
| 330 | u.i[HIGH_HALF]=0x7ff00000; |
| 331 | v.i[HIGH_HALF]=0x7ff00000; |
| 332 | u.i[LOW_HALF]=0; |
| 333 | v.i[LOW_HALF]=0; |
| 334 | return u.x/v.x; /* NaN */ |
| 335 | } |
| 336 | } |
| 337 | #ifndef __ieee754_asin |
| 338 | libm_alias_finite (__ieee754_asin, __asin) |
| 339 | #endif |
| 340 | |
| 341 | /*******************************************************************/ |
| 342 | /* */ |
| 343 | /* End of arcsine, below is arccosine */ |
| 344 | /* */ |
| 345 | /*******************************************************************/ |
| 346 | |
| 347 | double |
| 348 | SECTION |
| 349 | __ieee754_acos(double x) |
| 350 | { |
| 351 | double x1,x2,xx,s1,s2,res1,p,t,res,r,cor,cc,y,c,z,w[2],eps; |
| 352 | mynumber u,v; |
| 353 | int4 k,m,n; |
| 354 | u.x = x; |
| 355 | m = u.i[HIGH_HALF]; |
| 356 | k = 0x7fffffff&m; |
| 357 | /*------------------- |x|<2.77556*10^-17 ----------------------*/ |
| 358 | if (k < 0x3c880000) return hp0.x; |
| 359 | |
| 360 | /*----------------- 2.77556*10^-17 <= |x| < 2^-3 --------------*/ |
| 361 | else |
| 362 | if (k < 0x3fc00000) { |
| 363 | x2 = x*x; |
| 364 | t = (((((f6*x2 + f5)*x2 + f4)*x2 + f3)*x2 + f2)*x2 + f1)*(x2*x); |
| 365 | r=hp0.x-x; |
| 366 | cor=(((hp0.x-r)-x)+hp1.x)-t; |
| 367 | res = r+cor; |
| 368 | cor = (r-res)+cor; |
| 369 | if (res == res+1.004*cor) return res; |
| 370 | else { |
| 371 | x1 = x+big; |
| 372 | xx = x*x; |
| 373 | x1 -= big; |
| 374 | x2 = x - x1; |
| 375 | p = x1*x1*x1; |
| 376 | s1 = a1.x*p; |
| 377 | s2 = ((((((c7*xx + c6)*xx + c5)*xx + c4)*xx + c3)*xx + c2)*xx*xx*x + |
| 378 | ((a1.x+a2.x)*x2*x2+ 0.5*x1*x)*x2) + a2.x*p; |
| 379 | res1 = x+s1; |
| 380 | s2 = ((x-res1)+s1)+s2; |
| 381 | r=hp0.x-res1; |
| 382 | cor=(((hp0.x-r)-res1)+hp1.x)-s2; |
| 383 | res = r+cor; |
| 384 | cor = (r-res)+cor; |
| 385 | if (res == res+1.00004*cor) return res; |
| 386 | else { |
| 387 | __doasin(x,0,w); |
| 388 | r=hp0.x-w[0]; |
| 389 | cor=((hp0.x-r)-w[0])+(hp1.x-w[1]); |
| 390 | res=r+cor; |
| 391 | cor=(r-res)+cor; |
| 392 | if (res ==(res +1.00000001*cor)) return res; |
| 393 | else { |
| 394 | res1=res+1.1*cor; |
| 395 | return __cos32(x,res,res1); |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | } /* else if (k < 0x3fc00000) */ |
| 400 | /*---------------------- 0.125 <= |x| < 0.5 --------------------*/ |
| 401 | else |
| 402 | if (k < 0x3fe00000) { |
| 403 | if (k<0x3fd00000) n = 11*((k&0x000fffff)>>15); |
| 404 | else n = 11*((k&0x000fffff)>>14)+352; |
| 405 | if (m>0) xx = x - asncs.x[n]; |
| 406 | else xx = -x - asncs.x[n]; |
| 407 | t = asncs.x[n+1]*xx; |
| 408 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 409 | xx*(asncs.x[n+5]+xx*asncs.x[n+6]))))+asncs.x[n+7]; |
| 410 | t+=p; |
| 411 | y = (m>0)?(hp0.x-asncs.x[n+8]):(hp0.x+asncs.x[n+8]); |
| 412 | t = (m>0)?(hp1.x-t):(hp1.x+t); |
| 413 | res = y+t; |
| 414 | if (res == res+1.02*((y-res)+t)) return res; |
| 415 | else { |
| 416 | r=asncs.x[n+8]+xx*asncs.x[n+9]; |
| 417 | t=((asncs.x[n+8]-r)+xx*asncs.x[n+9])+(p+xx*asncs.x[n+10]); |
| 418 | if (m>0) |
| 419 | {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; } |
| 420 | else |
| 421 | {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); } |
| 422 | res = p+t; |
| 423 | cor = (p-res)+t; |
| 424 | if (res == (res+1.0002*cor)) return res; |
| 425 | else { |
| 426 | res1=res+1.1*cor; |
| 427 | z=0.5*(res1-res); |
| 428 | __docos(res,z,w); |
| 429 | z=(w[0]-x)+w[1]; |
| 430 | if (z>1.0e-27) return max(res,res1); |
| 431 | else if (z<-1.0e-27) return min(res,res1); |
| 432 | else return __cos32(x,res,res1); |
| 433 | } |
| 434 | } |
| 435 | } /* else if (k < 0x3fe00000) */ |
| 436 | |
| 437 | /*--------------------------- 0.5 <= |x| < 0.75 ---------------------*/ |
| 438 | else |
| 439 | if (k < 0x3fe80000) { |
| 440 | n = 1056+((k&0x000fe000)>>11)*3; |
| 441 | if (m>0) {xx = x - asncs.x[n]; eps=1.04; } |
| 442 | else {xx = -x - asncs.x[n]; eps=1.02; } |
| 443 | t = asncs.x[n+1]*xx; |
| 444 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 445 | xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+ |
| 446 | xx*asncs.x[n+7])))))+asncs.x[n+8]; |
| 447 | t+=p; |
| 448 | y = (m>0)?(hp0.x-asncs.x[n+9]):(hp0.x+asncs.x[n+9]); |
| 449 | t = (m>0)?(hp1.x-t):(hp1.x+t); |
| 450 | res = y+t; |
| 451 | if (res == res+eps*((y-res)+t)) return res; |
| 452 | else { |
| 453 | r=asncs.x[n+9]+xx*asncs.x[n+10]; |
| 454 | t=((asncs.x[n+9]-r)+xx*asncs.x[n+10])+(p+xx*asncs.x[n+11]); |
| 455 | if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0004; } |
| 456 | else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0002; } |
| 457 | res = p+t; |
| 458 | cor = (p-res)+t; |
| 459 | if (res == (res+eps*cor)) return res; |
| 460 | else { |
| 461 | res1=res+1.1*cor; |
| 462 | z=0.5*(res1-res); |
| 463 | __docos(res,z,w); |
| 464 | z=(w[0]-x)+w[1]; |
| 465 | if (z>1.0e-27) return max(res,res1); |
| 466 | else if (z<-1.0e-27) return min(res,res1); |
| 467 | else return __cos32(x,res,res1); |
| 468 | } |
| 469 | } |
| 470 | } /* else if (k < 0x3fe80000) */ |
| 471 | |
| 472 | /*------------------------- 0.75 <= |x| < 0.921875 -------------*/ |
| 473 | else |
| 474 | if (k < 0x3fed8000) { |
| 475 | n = 992+((k&0x000fe000)>>13)*13; |
| 476 | if (m>0) {xx = x - asncs.x[n]; eps = 1.04; } |
| 477 | else {xx = -x - asncs.x[n]; eps = 1.01; } |
| 478 | t = asncs.x[n+1]*xx; |
| 479 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 480 | xx*(asncs.x[n+5]+xx*(asncs.x[n+6]+xx*(asncs.x[n+7]+ |
| 481 | xx*asncs.x[n+8]))))))+asncs.x[n+9]; |
| 482 | t+=p; |
| 483 | y = (m>0)?(hp0.x-asncs.x[n+10]):(hp0.x+asncs.x[n+10]); |
| 484 | t = (m>0)?(hp1.x-t):(hp1.x+t); |
| 485 | res = y+t; |
| 486 | if (res == res+eps*((y-res)+t)) return res; |
| 487 | else { |
| 488 | r=asncs.x[n+10]+xx*asncs.x[n+11]; |
| 489 | t=((asncs.x[n+10]-r)+xx*asncs.x[n+11])+(p+xx*asncs.x[n+12]); |
| 490 | if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0032; } |
| 491 | else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0008; } |
| 492 | res = p+t; |
| 493 | cor = (p-res)+t; |
| 494 | if (res == (res+eps*cor)) return res; |
| 495 | else { |
| 496 | res1=res+1.1*cor; |
| 497 | z=0.5*(res1-res); |
| 498 | __docos(res,z,w); |
| 499 | z=(w[0]-x)+w[1]; |
| 500 | if (z>1.0e-27) return max(res,res1); |
| 501 | else if (z<-1.0e-27) return min(res,res1); |
| 502 | else return __cos32(x,res,res1); |
| 503 | } |
| 504 | } |
| 505 | } /* else if (k < 0x3fed8000) */ |
| 506 | |
| 507 | /*-------------------0.921875 <= |x| < 0.953125 ------------------*/ |
| 508 | else |
| 509 | if (k < 0x3fee8000) { |
| 510 | n = 884+((k&0x000fe000)>>13)*14; |
| 511 | if (m>0) {xx = x - asncs.x[n]; eps=1.04; } |
| 512 | else {xx = -x - asncs.x[n]; eps =1.005; } |
| 513 | t = asncs.x[n+1]*xx; |
| 514 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 515 | xx*(asncs.x[n+5]+xx*(asncs.x[n+6] |
| 516 | +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+ |
| 517 | xx*asncs.x[n+9])))))))+asncs.x[n+10]; |
| 518 | t+=p; |
| 519 | y = (m>0)?(hp0.x-asncs.x[n+11]):(hp0.x+asncs.x[n+11]); |
| 520 | t = (m>0)?(hp1.x-t):(hp1.x+t); |
| 521 | res = y+t; |
| 522 | if (res == res+eps*((y-res)+t)) return res; |
| 523 | else { |
| 524 | r=asncs.x[n+11]+xx*asncs.x[n+12]; |
| 525 | t=((asncs.x[n+11]-r)+xx*asncs.x[n+12])+(p+xx*asncs.x[n+13]); |
| 526 | if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; } |
| 527 | else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; } |
| 528 | res = p+t; |
| 529 | cor = (p-res)+t; |
| 530 | if (res == (res+eps*cor)) return res; |
| 531 | else { |
| 532 | res1=res+1.1*cor; |
| 533 | z=0.5*(res1-res); |
| 534 | __docos(res,z,w); |
| 535 | z=(w[0]-x)+w[1]; |
| 536 | if (z>1.0e-27) return max(res,res1); |
| 537 | else if (z<-1.0e-27) return min(res,res1); |
| 538 | else return __cos32(x,res,res1); |
| 539 | } |
| 540 | } |
| 541 | } /* else if (k < 0x3fee8000) */ |
| 542 | |
| 543 | /*--------------------0.953125 <= |x| < 0.96875 ----------------*/ |
| 544 | else |
| 545 | if (k < 0x3fef0000) { |
| 546 | n = 768+((k&0x000fe000)>>13)*15; |
| 547 | if (m>0) {xx = x - asncs.x[n]; eps=1.04; } |
| 548 | else {xx = -x - asncs.x[n]; eps=1.005;} |
| 549 | t = asncs.x[n+1]*xx; |
| 550 | p=xx*xx*(asncs.x[n+2]+xx*(asncs.x[n+3]+xx*(asncs.x[n+4]+ |
| 551 | xx*(asncs.x[n+5]+xx*(asncs.x[n+6] |
| 552 | +xx*(asncs.x[n+7]+xx*(asncs.x[n+8]+xx*(asncs.x[n+9]+ |
| 553 | xx*asncs.x[n+10]))))))))+asncs.x[n+11]; |
| 554 | t+=p; |
| 555 | y = (m>0)?(hp0.x-asncs.x[n+12]):(hp0.x+asncs.x[n+12]); |
| 556 | t = (m>0)?(hp1.x-t):(hp1.x+t); |
| 557 | res = y+t; |
| 558 | if (res == res+eps*((y-res)+t)) return res; |
| 559 | else { |
| 560 | r=asncs.x[n+12]+xx*asncs.x[n+13]; |
| 561 | t=((asncs.x[n+12]-r)+xx*asncs.x[n+13])+(p+xx*asncs.x[n+14]); |
| 562 | if (m>0) {p = hp0.x-r; t = (((hp0.x-p)-r)-t)+hp1.x; eps=1.0030; } |
| 563 | else {p = hp0.x+r; t = ((hp0.x-p)+r)+(hp1.x+t); eps=1.0005; } |
| 564 | res = p+t; |
| 565 | cor = (p-res)+t; |
| 566 | if (res == (res+eps*cor)) return res; |
| 567 | else { |
| 568 | res1=res+1.1*cor; |
| 569 | z=0.5*(res1-res); |
| 570 | __docos(res,z,w); |
| 571 | z=(w[0]-x)+w[1]; |
| 572 | if (z>1.0e-27) return max(res,res1); |
| 573 | else if (z<-1.0e-27) return min(res,res1); |
| 574 | else return __cos32(x,res,res1); |
| 575 | } |
| 576 | } |
| 577 | } /* else if (k < 0x3fef0000) */ |
| 578 | /*-----------------0.96875 <= |x| < 1 ---------------------------*/ |
| 579 | |
| 580 | else |
| 581 | if (k<0x3ff00000) { |
| 582 | z = 0.5*((m>0)?(1.0-x):(1.0+x)); |
| 583 | v.x=z; |
| 584 | k=v.i[HIGH_HALF]; |
| 585 | t=inroot[(k&0x001fffff)>>14]*powtwo[511-(k>>21)]; |
| 586 | r=1.0-t*t*z; |
| 587 | t = t*(rt0+r*(rt1+r*(rt2+r*rt3))); |
| 588 | c=t*z; |
| 589 | t=c*(1.5-0.5*t*c); |
| 590 | y = (t27*c+c)-t27*c; |
| 591 | cc = (z-y*y)/(t+y); |
| 592 | p=(((((f6*z+f5)*z+f4)*z+f3)*z+f2)*z+f1)*z; |
| 593 | if (m<0) { |
| 594 | cor = (hp1.x - cc)-(y+cc)*p; |
| 595 | res1 = hp0.x - y; |
| 596 | res =res1 + cor; |
| 597 | if (res == res+1.002*((res1-res)+cor)) return (res+res); |
| 598 | else { |
| 599 | c=y+cc; |
| 600 | cc=(y-c)+cc; |
| 601 | __doasin(c,cc,w); |
| 602 | res1=hp0.x-w[0]; |
| 603 | cor=((hp0.x-res1)-w[0])+(hp1.x-w[1]); |
| 604 | res = res1+cor; |
| 605 | cor = (res1-res)+cor; |
| 606 | if (res==(res+1.000001*cor)) return (res+res); |
| 607 | else { |
| 608 | res=res+res; |
| 609 | res1=res+1.2*cor; |
| 610 | return __cos32(x,res,res1); |
| 611 | } |
| 612 | } |
| 613 | } |
| 614 | else { |
| 615 | cor = cc+p*(y+cc); |
| 616 | res = y + cor; |
| 617 | if (res == res+1.03*((y-res)+cor)) return (res+res); |
| 618 | else { |
| 619 | c=y+cc; |
| 620 | cc=(y-c)+cc; |
| 621 | __doasin(c,cc,w); |
| 622 | res = w[0]; |
| 623 | cor=w[1]; |
| 624 | if (res==(res+1.000001*cor)) return (res+res); |
| 625 | else { |
| 626 | res=res+res; |
| 627 | res1=res+1.2*cor; |
| 628 | return __cos32(x,res,res1); |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | } /* else if (k < 0x3ff00000) */ |
| 633 | |
| 634 | /*---------------------------- |x|>=1 -----------------------*/ |
| 635 | else |
| 636 | if (k==0x3ff00000 && u.i[LOW_HALF]==0) return (m>0)?0:2.0*hp0.x; |
| 637 | else |
| 638 | if (k>0x7ff00000 || (k == 0x7ff00000 && u.i[LOW_HALF] != 0)) return x + x; |
| 639 | else { |
| 640 | u.i[HIGH_HALF]=0x7ff00000; |
| 641 | v.i[HIGH_HALF]=0x7ff00000; |
| 642 | u.i[LOW_HALF]=0; |
| 643 | v.i[LOW_HALF]=0; |
| 644 | return u.x/v.x; |
| 645 | } |
| 646 | } |
| 647 | #ifndef __ieee754_acos |
| 648 | libm_alias_finite (__ieee754_acos, __acos) |
| 649 | #endif |
| 650 | |