| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /************************************************************************/ |
| 20 | /* MODULE_NAME: atnat2.c */ |
| 21 | /* */ |
| 22 | /* FUNCTIONS: uatan2 */ |
| 23 | /* atan2Mp */ |
| 24 | /* signArctan2 */ |
| 25 | /* normalized */ |
| 26 | /* */ |
| 27 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h */ |
| 28 | /* mpatan.c mpatan2.c mpsqrt.c */ |
| 29 | /* uatan.tbl */ |
| 30 | /* */ |
| 31 | /* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/ |
| 32 | /* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/ |
| 33 | /* */ |
| 34 | /* Assumption: Machine arithmetic operations are performed in */ |
| 35 | /* round to nearest mode of IEEE 754 standard. */ |
| 36 | /* */ |
| 37 | /************************************************************************/ |
| 38 | |
| 39 | #include <dla.h> |
| 40 | #include "mpa.h" |
| 41 | #include "MathLib.h" |
| 42 | #include "uatan.tbl" |
| 43 | #include "atnat2.h" |
| 44 | #include <fenv.h> |
| 45 | #include <float.h> |
| 46 | #include <math.h> |
| 47 | #include <math-barriers.h> |
| 48 | #include <math_private.h> |
| 49 | #include <fenv_private.h> |
| 50 | #include <stap-probe.h> |
| 51 | #include <libm-alias-finite.h> |
| 52 | |
| 53 | #ifndef SECTION |
| 54 | # define SECTION |
| 55 | #endif |
| 56 | |
| 57 | /************************************************************************/ |
| 58 | /* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */ |
| 59 | /* it computes the correctly rounded (to nearest) value of atan2(y,x). */ |
| 60 | /* Assumption: Machine arithmetic operations are performed in */ |
| 61 | /* round to nearest mode of IEEE 754 standard. */ |
| 62 | /************************************************************************/ |
| 63 | static double atan2Mp (double, double, const int[]); |
| 64 | /* Fix the sign and return after stage 1 or stage 2 */ |
| 65 | static double |
| 66 | signArctan2 (double y, double z) |
| 67 | { |
| 68 | return copysign (z, y); |
| 69 | } |
| 70 | |
| 71 | static double normalized (double, double, double, double); |
| 72 | void __mpatan2 (mp_no *, mp_no *, mp_no *, int); |
| 73 | |
| 74 | double |
| 75 | SECTION |
| 76 | __ieee754_atan2 (double y, double x) |
| 77 | { |
| 78 | int i, de, ux, dx, uy, dy; |
| 79 | static const int pr[MM] = { 6, 8, 10, 20, 32 }; |
| 80 | double ax, ay, u, du, u9, ua, v, vv, dv, t1, t2, t3, |
| 81 | z, zz, cor, s1, ss1, s2, ss2; |
| 82 | number num; |
| 83 | |
| 84 | static const int ep = 59768832, /* 57*16**5 */ |
| 85 | em = -59768832; /* -57*16**5 */ |
| 86 | |
| 87 | /* x=NaN or y=NaN */ |
| 88 | num.d = x; |
| 89 | ux = num.i[HIGH_HALF]; |
| 90 | dx = num.i[LOW_HALF]; |
| 91 | if ((ux & 0x7ff00000) == 0x7ff00000) |
| 92 | { |
| 93 | if (((ux & 0x000fffff) | dx) != 0x00000000) |
| 94 | return x + y; |
| 95 | } |
| 96 | num.d = y; |
| 97 | uy = num.i[HIGH_HALF]; |
| 98 | dy = num.i[LOW_HALF]; |
| 99 | if ((uy & 0x7ff00000) == 0x7ff00000) |
| 100 | { |
| 101 | if (((uy & 0x000fffff) | dy) != 0x00000000) |
| 102 | return y + y; |
| 103 | } |
| 104 | |
| 105 | /* y=+-0 */ |
| 106 | if (uy == 0x00000000) |
| 107 | { |
| 108 | if (dy == 0x00000000) |
| 109 | { |
| 110 | if ((ux & 0x80000000) == 0x00000000) |
| 111 | return 0; |
| 112 | else |
| 113 | return opi.d; |
| 114 | } |
| 115 | } |
| 116 | else if (uy == 0x80000000) |
| 117 | { |
| 118 | if (dy == 0x00000000) |
| 119 | { |
| 120 | if ((ux & 0x80000000) == 0x00000000) |
| 121 | return -0.0; |
| 122 | else |
| 123 | return mopi.d; |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | /* x=+-0 */ |
| 128 | if (x == 0) |
| 129 | { |
| 130 | if ((uy & 0x80000000) == 0x00000000) |
| 131 | return hpi.d; |
| 132 | else |
| 133 | return mhpi.d; |
| 134 | } |
| 135 | |
| 136 | /* x=+-INF */ |
| 137 | if (ux == 0x7ff00000) |
| 138 | { |
| 139 | if (dx == 0x00000000) |
| 140 | { |
| 141 | if (uy == 0x7ff00000) |
| 142 | { |
| 143 | if (dy == 0x00000000) |
| 144 | return qpi.d; |
| 145 | } |
| 146 | else if (uy == 0xfff00000) |
| 147 | { |
| 148 | if (dy == 0x00000000) |
| 149 | return mqpi.d; |
| 150 | } |
| 151 | else |
| 152 | { |
| 153 | if ((uy & 0x80000000) == 0x00000000) |
| 154 | return 0; |
| 155 | else |
| 156 | return -0.0; |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | else if (ux == 0xfff00000) |
| 161 | { |
| 162 | if (dx == 0x00000000) |
| 163 | { |
| 164 | if (uy == 0x7ff00000) |
| 165 | { |
| 166 | if (dy == 0x00000000) |
| 167 | return tqpi.d; |
| 168 | } |
| 169 | else if (uy == 0xfff00000) |
| 170 | { |
| 171 | if (dy == 0x00000000) |
| 172 | return mtqpi.d; |
| 173 | } |
| 174 | else |
| 175 | { |
| 176 | if ((uy & 0x80000000) == 0x00000000) |
| 177 | return opi.d; |
| 178 | else |
| 179 | return mopi.d; |
| 180 | } |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | /* y=+-INF */ |
| 185 | if (uy == 0x7ff00000) |
| 186 | { |
| 187 | if (dy == 0x00000000) |
| 188 | return hpi.d; |
| 189 | } |
| 190 | else if (uy == 0xfff00000) |
| 191 | { |
| 192 | if (dy == 0x00000000) |
| 193 | return mhpi.d; |
| 194 | } |
| 195 | |
| 196 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 197 | /* either x/y or y/x is very close to zero */ |
| 198 | ax = (x < 0) ? -x : x; |
| 199 | ay = (y < 0) ? -y : y; |
| 200 | de = (uy & 0x7ff00000) - (ux & 0x7ff00000); |
| 201 | if (de >= ep) |
| 202 | { |
| 203 | return ((y > 0) ? hpi.d : mhpi.d); |
| 204 | } |
| 205 | else if (de <= em) |
| 206 | { |
| 207 | if (x > 0) |
| 208 | { |
| 209 | double ret; |
| 210 | if ((z = ay / ax) < TWOM1022) |
| 211 | ret = normalized (ax, ay, y, z); |
| 212 | else |
| 213 | ret = signArctan2 (y, z); |
| 214 | if (fabs (ret) < DBL_MIN) |
| 215 | { |
| 216 | double vret = ret ? ret : DBL_MIN; |
| 217 | double force_underflow = vret * vret; |
| 218 | math_force_eval (force_underflow); |
| 219 | } |
| 220 | return ret; |
| 221 | } |
| 222 | else |
| 223 | { |
| 224 | return ((y > 0) ? opi.d : mopi.d); |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ |
| 229 | if (ax < twom500.d || ay < twom500.d) |
| 230 | { |
| 231 | ax *= two500.d; |
| 232 | ay *= two500.d; |
| 233 | } |
| 234 | |
| 235 | /* Likewise for large x and y. */ |
| 236 | if (ax > two500.d || ay > two500.d) |
| 237 | { |
| 238 | ax *= twom500.d; |
| 239 | ay *= twom500.d; |
| 240 | } |
| 241 | |
| 242 | /* x,y which are neither special nor extreme */ |
| 243 | if (ay < ax) |
| 244 | { |
| 245 | u = ay / ax; |
| 246 | EMULV (ax, u, v, vv); |
| 247 | du = ((ay - v) - vv) / ax; |
| 248 | } |
| 249 | else |
| 250 | { |
| 251 | u = ax / ay; |
| 252 | EMULV (ay, u, v, vv); |
| 253 | du = ((ax - v) - vv) / ay; |
| 254 | } |
| 255 | |
| 256 | if (x > 0) |
| 257 | { |
| 258 | /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ |
| 259 | if (ay < ax) |
| 260 | { |
| 261 | if (u < inv16.d) |
| 262 | { |
| 263 | v = u * u; |
| 264 | |
| 265 | zz = du + u * v * (d3.d |
| 266 | + v * (d5.d |
| 267 | + v * (d7.d |
| 268 | + v * (d9.d |
| 269 | + v * (d11.d |
| 270 | + v * d13.d))))); |
| 271 | |
| 272 | if ((z = u + (zz - u1.d * u)) == u + (zz + u1.d * u)) |
| 273 | return signArctan2 (y, z); |
| 274 | |
| 275 | MUL2 (u, du, u, du, v, vv, t1, t2); |
| 276 | s1 = v * (f11.d + v * (f13.d |
| 277 | + v * (f15.d + v * (f17.d + v * f19.d)))); |
| 278 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
| 279 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 280 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
| 281 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 282 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
| 283 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 284 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
| 285 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 286 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
| 287 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
| 288 | |
| 289 | if ((z = s1 + (ss1 - u5.d * s1)) == s1 + (ss1 + u5.d * s1)) |
| 290 | return signArctan2 (y, z); |
| 291 | |
| 292 | return atan2Mp (x, y, pr); |
| 293 | } |
| 294 | |
| 295 | i = (TWO52 + TWO8 * u) - TWO52; |
| 296 | i -= 16; |
| 297 | t3 = u - cij[i][0].d; |
| 298 | EADD (t3, du, v, dv); |
| 299 | t1 = cij[i][1].d; |
| 300 | t2 = cij[i][2].d; |
| 301 | zz = v * t2 + (dv * t2 |
| 302 | + v * v * (cij[i][3].d |
| 303 | + v * (cij[i][4].d |
| 304 | + v * (cij[i][5].d |
| 305 | + v * cij[i][6].d)))); |
| 306 | if (i < 112) |
| 307 | { |
| 308 | if (i < 48) |
| 309 | u9 = u91.d; /* u < 1/4 */ |
| 310 | else |
| 311 | u9 = u92.d; |
| 312 | } /* 1/4 <= u < 1/2 */ |
| 313 | else |
| 314 | { |
| 315 | if (i < 176) |
| 316 | u9 = u93.d; /* 1/2 <= u < 3/4 */ |
| 317 | else |
| 318 | u9 = u94.d; |
| 319 | } /* 3/4 <= u <= 1 */ |
| 320 | if ((z = t1 + (zz - u9 * t1)) == t1 + (zz + u9 * t1)) |
| 321 | return signArctan2 (y, z); |
| 322 | |
| 323 | t1 = u - hij[i][0].d; |
| 324 | EADD (t1, du, v, vv); |
| 325 | s1 = v * (hij[i][11].d |
| 326 | + v * (hij[i][12].d |
| 327 | + v * (hij[i][13].d |
| 328 | + v * (hij[i][14].d |
| 329 | + v * hij[i][15].d)))); |
| 330 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
| 331 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 332 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
| 333 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 334 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
| 335 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 336 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
| 337 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 338 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
| 339 | |
| 340 | if ((z = s2 + (ss2 - ub.d * s2)) == s2 + (ss2 + ub.d * s2)) |
| 341 | return signArctan2 (y, z); |
| 342 | return atan2Mp (x, y, pr); |
| 343 | } |
| 344 | |
| 345 | /* (ii) x>0, abs(x)<=abs(y): pi/2-atan(ax/ay) */ |
| 346 | if (u < inv16.d) |
| 347 | { |
| 348 | v = u * u; |
| 349 | zz = u * v * (d3.d |
| 350 | + v * (d5.d |
| 351 | + v * (d7.d |
| 352 | + v * (d9.d |
| 353 | + v * (d11.d |
| 354 | + v * d13.d))))); |
| 355 | ESUB (hpi.d, u, t2, cor); |
| 356 | t3 = ((hpi1.d + cor) - du) - zz; |
| 357 | if ((z = t2 + (t3 - u2.d)) == t2 + (t3 + u2.d)) |
| 358 | return signArctan2 (y, z); |
| 359 | |
| 360 | MUL2 (u, du, u, du, v, vv, t1, t2); |
| 361 | s1 = v * (f11.d |
| 362 | + v * (f13.d |
| 363 | + v * (f15.d + v * (f17.d + v * f19.d)))); |
| 364 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
| 365 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 366 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
| 367 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 368 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
| 369 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 370 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
| 371 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 372 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
| 373 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
| 374 | SUB2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); |
| 375 | |
| 376 | if ((z = s2 + (ss2 - u6.d)) == s2 + (ss2 + u6.d)) |
| 377 | return signArctan2 (y, z); |
| 378 | return atan2Mp (x, y, pr); |
| 379 | } |
| 380 | |
| 381 | i = (TWO52 + TWO8 * u) - TWO52; |
| 382 | i -= 16; |
| 383 | v = (u - cij[i][0].d) + du; |
| 384 | |
| 385 | zz = hpi1.d - v * (cij[i][2].d |
| 386 | + v * (cij[i][3].d |
| 387 | + v * (cij[i][4].d |
| 388 | + v * (cij[i][5].d |
| 389 | + v * cij[i][6].d)))); |
| 390 | t1 = hpi.d - cij[i][1].d; |
| 391 | if (i < 112) |
| 392 | ua = ua1.d; /* w < 1/2 */ |
| 393 | else |
| 394 | ua = ua2.d; /* w >= 1/2 */ |
| 395 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
| 396 | return signArctan2 (y, z); |
| 397 | |
| 398 | t1 = u - hij[i][0].d; |
| 399 | EADD (t1, du, v, vv); |
| 400 | |
| 401 | s1 = v * (hij[i][11].d |
| 402 | + v * (hij[i][12].d |
| 403 | + v * (hij[i][13].d |
| 404 | + v * (hij[i][14].d |
| 405 | + v * hij[i][15].d)))); |
| 406 | |
| 407 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
| 408 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 409 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
| 410 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 411 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
| 412 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 413 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
| 414 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 415 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
| 416 | SUB2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); |
| 417 | |
| 418 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
| 419 | return signArctan2 (y, z); |
| 420 | return atan2Mp (x, y, pr); |
| 421 | } |
| 422 | |
| 423 | /* (iii) x<0, abs(x)< abs(y): pi/2+atan(ax/ay) */ |
| 424 | if (ax < ay) |
| 425 | { |
| 426 | if (u < inv16.d) |
| 427 | { |
| 428 | v = u * u; |
| 429 | zz = u * v * (d3.d |
| 430 | + v * (d5.d |
| 431 | + v * (d7.d |
| 432 | + v * (d9.d |
| 433 | + v * (d11.d + v * d13.d))))); |
| 434 | EADD (hpi.d, u, t2, cor); |
| 435 | t3 = ((hpi1.d + cor) + du) + zz; |
| 436 | if ((z = t2 + (t3 - u3.d)) == t2 + (t3 + u3.d)) |
| 437 | return signArctan2 (y, z); |
| 438 | |
| 439 | MUL2 (u, du, u, du, v, vv, t1, t2); |
| 440 | s1 = v * (f11.d |
| 441 | + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); |
| 442 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
| 443 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 444 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
| 445 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 446 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
| 447 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 448 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
| 449 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 450 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
| 451 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
| 452 | ADD2 (hpi.d, hpi1.d, s1, ss1, s2, ss2, t1, t2); |
| 453 | |
| 454 | if ((z = s2 + (ss2 - u7.d)) == s2 + (ss2 + u7.d)) |
| 455 | return signArctan2 (y, z); |
| 456 | return atan2Mp (x, y, pr); |
| 457 | } |
| 458 | |
| 459 | i = (TWO52 + TWO8 * u) - TWO52; |
| 460 | i -= 16; |
| 461 | v = (u - cij[i][0].d) + du; |
| 462 | zz = hpi1.d + v * (cij[i][2].d |
| 463 | + v * (cij[i][3].d |
| 464 | + v * (cij[i][4].d |
| 465 | + v * (cij[i][5].d |
| 466 | + v * cij[i][6].d)))); |
| 467 | t1 = hpi.d + cij[i][1].d; |
| 468 | if (i < 112) |
| 469 | ua = ua1.d; /* w < 1/2 */ |
| 470 | else |
| 471 | ua = ua2.d; /* w >= 1/2 */ |
| 472 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
| 473 | return signArctan2 (y, z); |
| 474 | |
| 475 | t1 = u - hij[i][0].d; |
| 476 | EADD (t1, du, v, vv); |
| 477 | s1 = v * (hij[i][11].d |
| 478 | + v * (hij[i][12].d |
| 479 | + v * (hij[i][13].d |
| 480 | + v * (hij[i][14].d |
| 481 | + v * hij[i][15].d)))); |
| 482 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
| 483 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 484 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
| 485 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 486 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
| 487 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 488 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
| 489 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 490 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
| 491 | ADD2 (hpi.d, hpi1.d, s2, ss2, s1, ss1, t1, t2); |
| 492 | |
| 493 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
| 494 | return signArctan2 (y, z); |
| 495 | return atan2Mp (x, y, pr); |
| 496 | } |
| 497 | |
| 498 | /* (iv) x<0, abs(y)<=abs(x): pi-atan(ax/ay) */ |
| 499 | if (u < inv16.d) |
| 500 | { |
| 501 | v = u * u; |
| 502 | zz = u * v * (d3.d |
| 503 | + v * (d5.d |
| 504 | + v * (d7.d |
| 505 | + v * (d9.d + v * (d11.d + v * d13.d))))); |
| 506 | ESUB (opi.d, u, t2, cor); |
| 507 | t3 = ((opi1.d + cor) - du) - zz; |
| 508 | if ((z = t2 + (t3 - u4.d)) == t2 + (t3 + u4.d)) |
| 509 | return signArctan2 (y, z); |
| 510 | |
| 511 | MUL2 (u, du, u, du, v, vv, t1, t2); |
| 512 | s1 = v * (f11.d + v * (f13.d + v * (f15.d + v * (f17.d + v * f19.d)))); |
| 513 | ADD2 (f9.d, ff9.d, s1, 0, s2, ss2, t1, t2); |
| 514 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 515 | ADD2 (f7.d, ff7.d, s1, ss1, s2, ss2, t1, t2); |
| 516 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 517 | ADD2 (f5.d, ff5.d, s1, ss1, s2, ss2, t1, t2); |
| 518 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 519 | ADD2 (f3.d, ff3.d, s1, ss1, s2, ss2, t1, t2); |
| 520 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 521 | MUL2 (u, du, s1, ss1, s2, ss2, t1, t2); |
| 522 | ADD2 (u, du, s2, ss2, s1, ss1, t1, t2); |
| 523 | SUB2 (opi.d, opi1.d, s1, ss1, s2, ss2, t1, t2); |
| 524 | |
| 525 | if ((z = s2 + (ss2 - u8.d)) == s2 + (ss2 + u8.d)) |
| 526 | return signArctan2 (y, z); |
| 527 | return atan2Mp (x, y, pr); |
| 528 | } |
| 529 | |
| 530 | i = (TWO52 + TWO8 * u) - TWO52; |
| 531 | i -= 16; |
| 532 | v = (u - cij[i][0].d) + du; |
| 533 | zz = opi1.d - v * (cij[i][2].d |
| 534 | + v * (cij[i][3].d |
| 535 | + v * (cij[i][4].d |
| 536 | + v * (cij[i][5].d + v * cij[i][6].d)))); |
| 537 | t1 = opi.d - cij[i][1].d; |
| 538 | if (i < 112) |
| 539 | ua = ua1.d; /* w < 1/2 */ |
| 540 | else |
| 541 | ua = ua2.d; /* w >= 1/2 */ |
| 542 | if ((z = t1 + (zz - ua)) == t1 + (zz + ua)) |
| 543 | return signArctan2 (y, z); |
| 544 | |
| 545 | t1 = u - hij[i][0].d; |
| 546 | |
| 547 | EADD (t1, du, v, vv); |
| 548 | |
| 549 | s1 = v * (hij[i][11].d |
| 550 | + v * (hij[i][12].d |
| 551 | + v * (hij[i][13].d |
| 552 | + v * (hij[i][14].d + v * hij[i][15].d)))); |
| 553 | |
| 554 | ADD2 (hij[i][9].d, hij[i][10].d, s1, 0, s2, ss2, t1, t2); |
| 555 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 556 | ADD2 (hij[i][7].d, hij[i][8].d, s1, ss1, s2, ss2, t1, t2); |
| 557 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 558 | ADD2 (hij[i][5].d, hij[i][6].d, s1, ss1, s2, ss2, t1, t2); |
| 559 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 560 | ADD2 (hij[i][3].d, hij[i][4].d, s1, ss1, s2, ss2, t1, t2); |
| 561 | MUL2 (v, vv, s2, ss2, s1, ss1, t1, t2); |
| 562 | ADD2 (hij[i][1].d, hij[i][2].d, s1, ss1, s2, ss2, t1, t2); |
| 563 | SUB2 (opi.d, opi1.d, s2, ss2, s1, ss1, t1, t2); |
| 564 | |
| 565 | if ((z = s1 + (ss1 - uc.d)) == s1 + (ss1 + uc.d)) |
| 566 | return signArctan2 (y, z); |
| 567 | return atan2Mp (x, y, pr); |
| 568 | } |
| 569 | |
| 570 | #ifndef __ieee754_atan2 |
| 571 | libm_alias_finite (__ieee754_atan2, __atan2) |
| 572 | #endif |
| 573 | |
| 574 | /* Treat the Denormalized case */ |
| 575 | static double |
| 576 | SECTION |
| 577 | normalized (double ax, double ay, double y, double z) |
| 578 | { |
| 579 | int p; |
| 580 | mp_no mpx, mpy, mpz, mperr, mpz2, mpt1; |
| 581 | p = 6; |
| 582 | __dbl_mp (ax, &mpx, p); |
| 583 | __dbl_mp (ay, &mpy, p); |
| 584 | __dvd (&mpy, &mpx, &mpz, p); |
| 585 | __dbl_mp (ue.d, &mpt1, p); |
| 586 | __mul (&mpz, &mpt1, &mperr, p); |
| 587 | __sub (&mpz, &mperr, &mpz2, p); |
| 588 | __mp_dbl (&mpz2, &z, p); |
| 589 | return signArctan2 (y, z); |
| 590 | } |
| 591 | |
| 592 | /* Stage 3: Perform a multi-Precision computation */ |
| 593 | static double |
| 594 | SECTION |
| 595 | atan2Mp (double x, double y, const int pr[]) |
| 596 | { |
| 597 | double z1, z2; |
| 598 | int i, p; |
| 599 | mp_no mpx, mpy, mpz, mpz1, mpz2, mperr, mpt1; |
| 600 | for (i = 0; i < MM; i++) |
| 601 | { |
| 602 | p = pr[i]; |
| 603 | __dbl_mp (x, &mpx, p); |
| 604 | __dbl_mp (y, &mpy, p); |
| 605 | __mpatan2 (&mpy, &mpx, &mpz, p); |
| 606 | __dbl_mp (ud[i].d, &mpt1, p); |
| 607 | __mul (&mpz, &mpt1, &mperr, p); |
| 608 | __add (&mpz, &mperr, &mpz1, p); |
| 609 | __sub (&mpz, &mperr, &mpz2, p); |
| 610 | __mp_dbl (&mpz1, &z1, p); |
| 611 | __mp_dbl (&mpz2, &z2, p); |
| 612 | if (z1 == z2) |
| 613 | { |
| 614 | LIBC_PROBE (slowatan2, 4, &p, &x, &y, &z1); |
| 615 | return z1; |
| 616 | } |
| 617 | } |
| 618 | LIBC_PROBE (slowatan2_inexact, 4, &p, &x, &y, &z1); |
| 619 | return z1; /*if impossible to do exact computing */ |
| 620 | } |
| 621 | |