| 1 | /* @(#)e_hypot.c 5.1 93/09/24 */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | |
| 13 | /* __ieee754_hypot(x,y) |
| 14 | * |
| 15 | * Method : |
| 16 | * If (assume round-to-nearest) z=x*x+y*y |
| 17 | * has error less than sqrt(2)/2 ulp, than |
| 18 | * sqrt(z) has error less than 1 ulp (exercise). |
| 19 | * |
| 20 | * So, compute sqrt(x*x+y*y) with some care as |
| 21 | * follows to get the error below 1 ulp: |
| 22 | * |
| 23 | * Assume x>y>0; |
| 24 | * (if possible, set rounding to round-to-nearest) |
| 25 | * 1. if x > 2y use |
| 26 | * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y |
| 27 | * where x1 = x with lower 32 bits cleared, x2 = x-x1; else |
| 28 | * 2. if x <= 2y use |
| 29 | * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) |
| 30 | * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, |
| 31 | * y1= y with lower 32 bits chopped, y2 = y-y1. |
| 32 | * |
| 33 | * NOTE: scaling may be necessary if some argument is too |
| 34 | * large or too tiny |
| 35 | * |
| 36 | * Special cases: |
| 37 | * hypot(x,y) is INF if x or y is +INF or -INF; else |
| 38 | * hypot(x,y) is NAN if x or y is NAN. |
| 39 | * |
| 40 | * Accuracy: |
| 41 | * hypot(x,y) returns sqrt(x^2+y^2) with error less |
| 42 | * than 1 ulps (units in the last place) |
| 43 | */ |
| 44 | |
| 45 | #include <math.h> |
| 46 | #include <math_private.h> |
| 47 | #include <math-underflow.h> |
| 48 | #include <libm-alias-finite.h> |
| 49 | |
| 50 | double |
| 51 | __ieee754_hypot (double x, double y) |
| 52 | { |
| 53 | double a, b, t1, t2, y1, y2, w; |
| 54 | int32_t j, k, ha, hb; |
| 55 | |
| 56 | GET_HIGH_WORD (ha, x); |
| 57 | ha &= 0x7fffffff; |
| 58 | GET_HIGH_WORD (hb, y); |
| 59 | hb &= 0x7fffffff; |
| 60 | if (hb > ha) |
| 61 | { |
| 62 | a = y; b = x; j = ha; ha = hb; hb = j; |
| 63 | } |
| 64 | else |
| 65 | { |
| 66 | a = x; b = y; |
| 67 | } |
| 68 | SET_HIGH_WORD (a, ha); /* a <- |a| */ |
| 69 | SET_HIGH_WORD (b, hb); /* b <- |b| */ |
| 70 | if ((ha - hb) > 0x3c00000) |
| 71 | { |
| 72 | return a + b; |
| 73 | } /* x/y > 2**60 */ |
| 74 | k = 0; |
| 75 | if (__glibc_unlikely (ha > 0x5f300000)) /* a>2**500 */ |
| 76 | { |
| 77 | if (ha >= 0x7ff00000) /* Inf or NaN */ |
| 78 | { |
| 79 | uint32_t low; |
| 80 | w = a + b; /* for sNaN */ |
| 81 | if (issignaling (a) || issignaling (b)) |
| 82 | return w; |
| 83 | GET_LOW_WORD (low, a); |
| 84 | if (((ha & 0xfffff) | low) == 0) |
| 85 | w = a; |
| 86 | GET_LOW_WORD (low, b); |
| 87 | if (((hb ^ 0x7ff00000) | low) == 0) |
| 88 | w = b; |
| 89 | return w; |
| 90 | } |
| 91 | /* scale a and b by 2**-600 */ |
| 92 | ha -= 0x25800000; hb -= 0x25800000; k += 600; |
| 93 | SET_HIGH_WORD (a, ha); |
| 94 | SET_HIGH_WORD (b, hb); |
| 95 | } |
| 96 | if (__builtin_expect (hb < 0x23d00000, 0)) /* b < 2**-450 */ |
| 97 | { |
| 98 | if (hb <= 0x000fffff) /* subnormal b or 0 */ |
| 99 | { |
| 100 | uint32_t low; |
| 101 | GET_LOW_WORD (low, b); |
| 102 | if ((hb | low) == 0) |
| 103 | return a; |
| 104 | t1 = 0; |
| 105 | SET_HIGH_WORD (t1, 0x7fd00000); /* t1=2^1022 */ |
| 106 | b *= t1; |
| 107 | a *= t1; |
| 108 | k -= 1022; |
| 109 | GET_HIGH_WORD (ha, a); |
| 110 | GET_HIGH_WORD (hb, b); |
| 111 | if (hb > ha) |
| 112 | { |
| 113 | t1 = a; |
| 114 | a = b; |
| 115 | b = t1; |
| 116 | j = ha; |
| 117 | ha = hb; |
| 118 | hb = j; |
| 119 | } |
| 120 | } |
| 121 | else /* scale a and b by 2^600 */ |
| 122 | { |
| 123 | ha += 0x25800000; /* a *= 2^600 */ |
| 124 | hb += 0x25800000; /* b *= 2^600 */ |
| 125 | k -= 600; |
| 126 | SET_HIGH_WORD (a, ha); |
| 127 | SET_HIGH_WORD (b, hb); |
| 128 | } |
| 129 | } |
| 130 | /* medium size a and b */ |
| 131 | w = a - b; |
| 132 | if (w > b) |
| 133 | { |
| 134 | t1 = 0; |
| 135 | SET_HIGH_WORD (t1, ha); |
| 136 | t2 = a - t1; |
| 137 | w = sqrt (t1 * t1 - (b * (-b) - t2 * (a + t1))); |
| 138 | } |
| 139 | else |
| 140 | { |
| 141 | a = a + a; |
| 142 | y1 = 0; |
| 143 | SET_HIGH_WORD (y1, hb); |
| 144 | y2 = b - y1; |
| 145 | t1 = 0; |
| 146 | SET_HIGH_WORD (t1, ha + 0x00100000); |
| 147 | t2 = a - t1; |
| 148 | w = sqrt (t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b))); |
| 149 | } |
| 150 | if (k != 0) |
| 151 | { |
| 152 | uint32_t high; |
| 153 | t1 = 1.0; |
| 154 | GET_HIGH_WORD (high, t1); |
| 155 | SET_HIGH_WORD (t1, high + (k << 20)); |
| 156 | w *= t1; |
| 157 | math_check_force_underflow_nonneg (w); |
| 158 | return w; |
| 159 | } |
| 160 | else |
| 161 | return w; |
| 162 | } |
| 163 | #ifndef __ieee754_hypot |
| 164 | libm_alias_finite (__ieee754_hypot, __hypot) |
| 165 | #endif |
| 166 | |