| 1 | /* Double-precision log2(x) function. |
| 2 | Copyright (C) 2018-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <math.h> |
| 20 | #include <stdint.h> |
| 21 | #include <math-svid-compat.h> |
| 22 | #include <libm-alias-finite.h> |
| 23 | #include <libm-alias-double.h> |
| 24 | #include "math_config.h" |
| 25 | |
| 26 | #define T __log2_data.tab |
| 27 | #define T2 __log2_data.tab2 |
| 28 | #define B __log2_data.poly1 |
| 29 | #define A __log2_data.poly |
| 30 | #define InvLn2hi __log2_data.invln2hi |
| 31 | #define InvLn2lo __log2_data.invln2lo |
| 32 | #define N (1 << LOG2_TABLE_BITS) |
| 33 | #define OFF 0x3fe6000000000000 |
| 34 | |
| 35 | /* Top 16 bits of a double. */ |
| 36 | static inline uint32_t |
| 37 | top16 (double x) |
| 38 | { |
| 39 | return asuint64 (x) >> 48; |
| 40 | } |
| 41 | |
| 42 | double |
| 43 | __log2 (double x) |
| 44 | { |
| 45 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ |
| 46 | double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; |
| 47 | uint64_t ix, iz, tmp; |
| 48 | uint32_t top; |
| 49 | int k, i; |
| 50 | |
| 51 | ix = asuint64 (x); |
| 52 | top = top16 (x); |
| 53 | |
| 54 | #define LO asuint64 (1.0 - 0x1.5b51p-5) |
| 55 | #define HI asuint64 (1.0 + 0x1.6ab2p-5) |
| 56 | if (__glibc_unlikely (ix - LO < HI - LO)) |
| 57 | { |
| 58 | /* Handle close to 1.0 inputs separately. */ |
| 59 | /* Fix sign of zero with downward rounding when x==1. */ |
| 60 | if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0))) |
| 61 | return 0; |
| 62 | r = x - 1.0; |
| 63 | #ifdef __FP_FAST_FMA |
| 64 | hi = r * InvLn2hi; |
| 65 | lo = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -hi); |
| 66 | #else |
| 67 | double_t rhi, rlo; |
| 68 | rhi = asdouble (asuint64 (r) & -1ULL << 32); |
| 69 | rlo = r - rhi; |
| 70 | hi = rhi * InvLn2hi; |
| 71 | lo = rlo * InvLn2hi + r * InvLn2lo; |
| 72 | #endif |
| 73 | r2 = r * r; /* rounding error: 0x1p-62. */ |
| 74 | r4 = r2 * r2; |
| 75 | /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ |
| 76 | p = r2 * (B[0] + r * B[1]); |
| 77 | y = hi + p; |
| 78 | lo += hi - y + p; |
| 79 | lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) |
| 80 | + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); |
| 81 | y += lo; |
| 82 | return y; |
| 83 | } |
| 84 | if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) |
| 85 | { |
| 86 | /* x < 0x1p-1022 or inf or nan. */ |
| 87 | if (ix * 2 == 0) |
| 88 | return __math_divzero (1); |
| 89 | if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ |
| 90 | return x; |
| 91 | if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) |
| 92 | return __math_invalid (x); |
| 93 | /* x is subnormal, normalize it. */ |
| 94 | ix = asuint64 (x * 0x1p52); |
| 95 | ix -= 52ULL << 52; |
| 96 | } |
| 97 | |
| 98 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. |
| 99 | The range is split into N subintervals. |
| 100 | The ith subinterval contains z and c is near its center. */ |
| 101 | tmp = ix - OFF; |
| 102 | i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; |
| 103 | k = (int64_t) tmp >> 52; /* arithmetic shift */ |
| 104 | iz = ix - (tmp & 0xfffULL << 52); |
| 105 | invc = T[i].invc; |
| 106 | logc = T[i].logc; |
| 107 | z = asdouble (iz); |
| 108 | kd = (double_t) k; |
| 109 | |
| 110 | /* log2(x) = log2(z/c) + log2(c) + k. */ |
| 111 | /* r ~= z/c - 1, |r| < 1/(2*N). */ |
| 112 | #ifdef __FP_FAST_FMA |
| 113 | /* rounding error: 0x1p-55/N. */ |
| 114 | r = __builtin_fma (z, invc, -1.0); |
| 115 | t1 = r * InvLn2hi; |
| 116 | t2 = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -t1); |
| 117 | #else |
| 118 | double_t rhi, rlo; |
| 119 | /* rounding error: 0x1p-55/N + 0x1p-65. */ |
| 120 | r = (z - T2[i].chi - T2[i].clo) * invc; |
| 121 | rhi = asdouble (asuint64 (r) & -1ULL << 32); |
| 122 | rlo = r - rhi; |
| 123 | t1 = rhi * InvLn2hi; |
| 124 | t2 = rlo * InvLn2hi + r * InvLn2lo; |
| 125 | #endif |
| 126 | |
| 127 | /* hi + lo = r/ln2 + log2(c) + k. */ |
| 128 | t3 = kd + logc; |
| 129 | hi = t3 + t1; |
| 130 | lo = t3 - hi + t1 + t2; |
| 131 | |
| 132 | /* log2(r+1) = r/ln2 + r^2*poly(r). */ |
| 133 | /* Evaluation is optimized assuming superscalar pipelined execution. */ |
| 134 | r2 = r * r; /* rounding error: 0x1p-54/N^2. */ |
| 135 | r4 = r2 * r2; |
| 136 | /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). |
| 137 | ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ |
| 138 | p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); |
| 139 | y = lo + r2 * p + hi; |
| 140 | return y; |
| 141 | } |
| 142 | #ifndef __log2 |
| 143 | strong_alias (__log2, __ieee754_log2) |
| 144 | libm_alias_finite (__ieee754_log2, __log2) |
| 145 | # if LIBM_SVID_COMPAT |
| 146 | versioned_symbol (libm, __log2, log2, GLIBC_2_29); |
| 147 | libm_alias_double_other (__log2, log2) |
| 148 | # else |
| 149 | libm_alias_double (__log2, log2) |
| 150 | # endif |
| 151 | #endif |
| 152 | |