| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /*********************************************************************/ |
| 20 | /* MODULE_NAME: uroot.c */ |
| 21 | /* */ |
| 22 | /* FUNCTION: usqrt */ |
| 23 | /* */ |
| 24 | /* FILES NEEDED: dla.h endian.h mydefs.h */ |
| 25 | /* uroot.tbl */ |
| 26 | /* */ |
| 27 | /* An ultimate sqrt routine. Given an IEEE double machine number x */ |
| 28 | /* it computes the correctly rounded (to nearest) value of square */ |
| 29 | /* root of x. */ |
| 30 | /* Assumption: Machine arithmetic operations are performed in */ |
| 31 | /* round to nearest mode of IEEE 754 standard. */ |
| 32 | /* */ |
| 33 | /*********************************************************************/ |
| 34 | |
| 35 | #include "endian.h" |
| 36 | #include "mydefs.h" |
| 37 | #include <dla.h> |
| 38 | #include "MathLib.h" |
| 39 | #include "root.tbl" |
| 40 | #include <math-barriers.h> |
| 41 | #include <math_private.h> |
| 42 | #include <fenv_private.h> |
| 43 | #include <libm-alias-finite.h> |
| 44 | #include <math-use-builtins.h> |
| 45 | |
| 46 | /*********************************************************************/ |
| 47 | /* An ultimate sqrt routine. Given an IEEE double machine number x */ |
| 48 | /* it computes the correctly rounded (to nearest) value of square */ |
| 49 | /* root of x. */ |
| 50 | /*********************************************************************/ |
| 51 | double |
| 52 | __ieee754_sqrt (double x) |
| 53 | { |
| 54 | #if USE_SQRT_BUILTIN |
| 55 | return __builtin_sqrt (x); |
| 56 | #else |
| 57 | /* Use generic implementation. */ |
| 58 | static const double |
| 59 | rt0 = 9.99999999859990725855365213134618E-01, |
| 60 | rt1 = 4.99999999495955425917856814202739E-01, |
| 61 | rt2 = 3.75017500867345182581453026130850E-01, |
| 62 | rt3 = 3.12523626554518656309172508769531E-01; |
| 63 | static const double big = 134217728.0; |
| 64 | double y, t, del, res, res1, hy, z, zz, s; |
| 65 | mynumber a, c = { { 0, 0 } }; |
| 66 | int4 k; |
| 67 | |
| 68 | a.x = x; |
| 69 | k = a.i[HIGH_HALF]; |
| 70 | a.i[HIGH_HALF] = (k & 0x001fffff) | 0x3fe00000; |
| 71 | t = inroot[(k & 0x001fffff) >> 14]; |
| 72 | s = a.x; |
| 73 | /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/ |
| 74 | if (k > 0x000fffff && k < 0x7ff00000) |
| 75 | { |
| 76 | int rm = __fegetround (); |
| 77 | fenv_t env; |
| 78 | libc_feholdexcept_setround (&env, FE_TONEAREST); |
| 79 | double ret; |
| 80 | y = 1.0 - t * (t * s); |
| 81 | t = t * (rt0 + y * (rt1 + y * (rt2 + y * rt3))); |
| 82 | c.i[HIGH_HALF] = 0x20000000 + ((k & 0x7fe00000) >> 1); |
| 83 | y = t * s; |
| 84 | hy = (y + big) - big; |
| 85 | del = 0.5 * t * ((s - hy * hy) - (y - hy) * (y + hy)); |
| 86 | res = y + del; |
| 87 | if (res == (res + 1.002 * ((y - res) + del))) |
| 88 | ret = res * c.x; |
| 89 | else |
| 90 | { |
| 91 | res1 = res + 1.5 * ((y - res) + del); |
| 92 | EMULV (res, res1, z, zz); /* (z+zz)=res*res1 */ |
| 93 | res = ((((z - s) + zz) < 0) ? max (res, res1) : |
| 94 | min (res, res1)); |
| 95 | ret = res * c.x; |
| 96 | } |
| 97 | math_force_eval (ret); |
| 98 | libc_fesetenv (&env); |
| 99 | double dret = x / ret; |
| 100 | if (dret != ret) |
| 101 | { |
| 102 | double force_inexact = 1.0 / 3.0; |
| 103 | math_force_eval (force_inexact); |
| 104 | /* The square root is inexact, ret is the round-to-nearest |
| 105 | value which may need adjusting for other rounding |
| 106 | modes. */ |
| 107 | switch (rm) |
| 108 | { |
| 109 | #ifdef FE_UPWARD |
| 110 | case FE_UPWARD: |
| 111 | if (dret > ret) |
| 112 | ret = (res + 0x1p-1022) * c.x; |
| 113 | break; |
| 114 | #endif |
| 115 | |
| 116 | #ifdef FE_DOWNWARD |
| 117 | case FE_DOWNWARD: |
| 118 | #endif |
| 119 | #ifdef FE_TOWARDZERO |
| 120 | case FE_TOWARDZERO: |
| 121 | #endif |
| 122 | #if defined FE_DOWNWARD || defined FE_TOWARDZERO |
| 123 | if (dret < ret) |
| 124 | ret = (res - 0x1p-1022) * c.x; |
| 125 | break; |
| 126 | #endif |
| 127 | |
| 128 | default: |
| 129 | break; |
| 130 | } |
| 131 | } |
| 132 | /* Otherwise (x / ret == ret), either the square root was exact or |
| 133 | the division was inexact. */ |
| 134 | return ret; |
| 135 | } |
| 136 | else |
| 137 | { |
| 138 | if ((k & 0x7ff00000) == 0x7ff00000) |
| 139 | return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ |
| 140 | if (x == 0) |
| 141 | return x; /* sqrt(+0)=+0, sqrt(-0)=-0 */ |
| 142 | if (k < 0) |
| 143 | return (x - x) / (x - x); /* sqrt(-ve)=sNaN */ |
| 144 | return 0x1p-256 * __ieee754_sqrt (x * 0x1p512); |
| 145 | } |
| 146 | #endif /* ! USE_SQRT_BUILTIN */ |
| 147 | } |
| 148 | #ifndef __ieee754_sqrt |
| 149 | libm_alias_finite (__ieee754_sqrt, __sqrt) |
| 150 | #endif |
| 151 | |