| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /****************************************************************************/ |
| 20 | /* MODULE_NAME:mpsqrt.c */ |
| 21 | /* */ |
| 22 | /* FUNCTION:mpsqrt */ |
| 23 | /* fastiroot */ |
| 24 | /* */ |
| 25 | /* FILES NEEDED:endian.h mpa.h mpsqrt.h */ |
| 26 | /* mpa.c */ |
| 27 | /* Multi-Precision square root function subroutine for precision p >= 4. */ |
| 28 | /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ |
| 29 | /* */ |
| 30 | /****************************************************************************/ |
| 31 | #include "endian.h" |
| 32 | #include "mpa.h" |
| 33 | |
| 34 | #ifndef SECTION |
| 35 | # define SECTION |
| 36 | #endif |
| 37 | |
| 38 | #include "mpsqrt.h" |
| 39 | |
| 40 | /****************************************************************************/ |
| 41 | /* Multi-Precision square root function subroutine for precision p >= 4. */ |
| 42 | /* The relative error is bounded by 3.501*r**(1-p), where r=2**24. */ |
| 43 | /* Routine receives two pointers to Multi Precision numbers: */ |
| 44 | /* x (left argument) and y (next argument). Routine also receives precision */ |
| 45 | /* p as integer. Routine computes sqrt(*x) and stores result in *y */ |
| 46 | /****************************************************************************/ |
| 47 | |
| 48 | static double fastiroot (double); |
| 49 | |
| 50 | void |
| 51 | SECTION |
| 52 | __mpsqrt (mp_no *x, mp_no *y, int p) |
| 53 | { |
| 54 | int i, m, ey; |
| 55 | double dx, dy; |
| 56 | static const mp_no mphalf = {0, {1.0, HALFRAD}}; |
| 57 | static const mp_no mp3halfs = {1, {1.0, 1.0, HALFRAD}}; |
| 58 | mp_no mpxn, mpz, mpu, mpt1, mpt2; |
| 59 | |
| 60 | ey = EX / 2; |
| 61 | __cpy (x, &mpxn, p); |
| 62 | mpxn.e -= (ey + ey); |
| 63 | __mp_dbl (&mpxn, &dx, p); |
| 64 | dy = fastiroot (dx); |
| 65 | __dbl_mp (dy, &mpu, p); |
| 66 | __mul (&mpxn, &mphalf, &mpz, p); |
| 67 | |
| 68 | m = __mpsqrt_mp[p]; |
| 69 | for (i = 0; i < m; i++) |
| 70 | { |
| 71 | __sqr (&mpu, &mpt1, p); |
| 72 | __mul (&mpt1, &mpz, &mpt2, p); |
| 73 | __sub (&mp3halfs, &mpt2, &mpt1, p); |
| 74 | __mul (&mpu, &mpt1, &mpt2, p); |
| 75 | __cpy (&mpt2, &mpu, p); |
| 76 | } |
| 77 | __mul (&mpxn, &mpu, y, p); |
| 78 | EY += ey; |
| 79 | } |
| 80 | |
| 81 | /***********************************************************/ |
| 82 | /* Compute a double precision approximation for 1/sqrt(x) */ |
| 83 | /* with the relative error bounded by 2**-51. */ |
| 84 | /***********************************************************/ |
| 85 | static double |
| 86 | SECTION |
| 87 | fastiroot (double x) |
| 88 | { |
| 89 | union |
| 90 | { |
| 91 | int i[2]; |
| 92 | double d; |
| 93 | } p, q; |
| 94 | double y, z, t; |
| 95 | int n; |
| 96 | static const double c0 = 0.99674, c1 = -0.53380; |
| 97 | static const double c2 = 0.45472, c3 = -0.21553; |
| 98 | |
| 99 | p.d = x; |
| 100 | p.i[HIGH_HALF] = (p.i[HIGH_HALF] & 0x3FFFFFFF) | 0x3FE00000; |
| 101 | q.d = x; |
| 102 | y = p.d; |
| 103 | z = y - 1.0; |
| 104 | n = (q.i[HIGH_HALF] - p.i[HIGH_HALF]) >> 1; |
| 105 | z = ((c3 * z + c2) * z + c1) * z + c0; /* 2**-7 */ |
| 106 | z = z * (1.5 - 0.5 * y * z * z); /* 2**-14 */ |
| 107 | p.d = z * (1.5 - 0.5 * y * z * z); /* 2**-28 */ |
| 108 | p.i[HIGH_HALF] -= n; |
| 109 | t = x * p.d; |
| 110 | return p.d * (1.5 - 0.5 * p.d * t); |
| 111 | } |
| 112 | |