| 1 | /* @(#)s_log1p.c 5.1 93/09/24 */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, |
| 13 | for performance improvement on pipelined processors. |
| 14 | */ |
| 15 | |
| 16 | /* double log1p(double x) |
| 17 | * |
| 18 | * Method : |
| 19 | * 1. Argument Reduction: find k and f such that |
| 20 | * 1+x = 2^k * (1+f), |
| 21 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 22 | * |
| 23 | * Note. If k=0, then f=x is exact. However, if k!=0, then f |
| 24 | * may not be representable exactly. In that case, a correction |
| 25 | * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
| 26 | * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
| 27 | * and add back the correction term c/u. |
| 28 | * (Note: when x > 2**53, one can simply return log(x)) |
| 29 | * |
| 30 | * 2. Approximation of log1p(f). |
| 31 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| 32 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| 33 | * = 2s + s*R |
| 34 | * We use a special Reme algorithm on [0,0.1716] to generate |
| 35 | * a polynomial of degree 14 to approximate R The maximum error |
| 36 | * of this polynomial approximation is bounded by 2**-58.45. In |
| 37 | * other words, |
| 38 | * 2 4 6 8 10 12 14 |
| 39 | * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s |
| 40 | * (the values of Lp1 to Lp7 are listed in the program) |
| 41 | * and |
| 42 | * | 2 14 | -58.45 |
| 43 | * | Lp1*s +...+Lp7*s - R(z) | <= 2 |
| 44 | * | | |
| 45 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
| 46 | * In order to guarantee error in log below 1ulp, we compute log |
| 47 | * by |
| 48 | * log1p(f) = f - (hfsq - s*(hfsq+R)). |
| 49 | * |
| 50 | * 3. Finally, log1p(x) = k*ln2 + log1p(f). |
| 51 | * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
| 52 | * Here ln2 is split into two floating point number: |
| 53 | * ln2_hi + ln2_lo, |
| 54 | * where n*ln2_hi is always exact for |n| < 2000. |
| 55 | * |
| 56 | * Special cases: |
| 57 | * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
| 58 | * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
| 59 | * log1p(NaN) is that NaN with no signal. |
| 60 | * |
| 61 | * Accuracy: |
| 62 | * according to an error analysis, the error is always less than |
| 63 | * 1 ulp (unit in the last place). |
| 64 | * |
| 65 | * Constants: |
| 66 | * The hexadecimal values are the intended ones for the following |
| 67 | * constants. The decimal values may be used, provided that the |
| 68 | * compiler will convert from decimal to binary accurately enough |
| 69 | * to produce the hexadecimal values shown. |
| 70 | * |
| 71 | * Note: Assuming log() return accurate answer, the following |
| 72 | * algorithm can be used to compute log1p(x) to within a few ULP: |
| 73 | * |
| 74 | * u = 1+x; |
| 75 | * if(u==1.0) return x ; else |
| 76 | * return log(u)*(x/(u-1.0)); |
| 77 | * |
| 78 | * See HP-15C Advanced Functions Handbook, p.193. |
| 79 | */ |
| 80 | |
| 81 | #include <float.h> |
| 82 | #include <math.h> |
| 83 | #include <math-barriers.h> |
| 84 | #include <math_private.h> |
| 85 | #include <math-underflow.h> |
| 86 | #include <libc-diag.h> |
| 87 | |
| 88 | static const double |
| 89 | ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| 90 | ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| 91 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ |
| 92 | Lp[] = { 0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| 93 | 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| 94 | 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| 95 | 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| 96 | 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| 97 | 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| 98 | 1.479819860511658591e-01 }; /* 3FC2F112 DF3E5244 */ |
| 99 | |
| 100 | static const double zero = 0.0; |
| 101 | |
| 102 | double |
| 103 | __log1p (double x) |
| 104 | { |
| 105 | double hfsq, f, c, s, z, R, u, z2, z4, z6, R1, R2, R3, R4; |
| 106 | int32_t k, hx, hu, ax; |
| 107 | |
| 108 | GET_HIGH_WORD (hx, x); |
| 109 | ax = hx & 0x7fffffff; |
| 110 | |
| 111 | k = 1; |
| 112 | if (hx < 0x3FDA827A) /* x < 0.41422 */ |
| 113 | { |
| 114 | if (__glibc_unlikely (ax >= 0x3ff00000)) /* x <= -1.0 */ |
| 115 | { |
| 116 | if (x == -1.0) |
| 117 | return -two54 / zero; /* log1p(-1)=-inf */ |
| 118 | else |
| 119 | return (x - x) / (x - x); /* log1p(x<-1)=NaN */ |
| 120 | } |
| 121 | if (__glibc_unlikely (ax < 0x3e200000)) /* |x| < 2**-29 */ |
| 122 | { |
| 123 | math_force_eval (two54 + x); /* raise inexact */ |
| 124 | if (ax < 0x3c900000) /* |x| < 2**-54 */ |
| 125 | { |
| 126 | math_check_force_underflow (x); |
| 127 | return x; |
| 128 | } |
| 129 | else |
| 130 | return x - x * x * 0.5; |
| 131 | } |
| 132 | if (hx > 0 || hx <= ((int32_t) 0xbfd2bec3)) |
| 133 | { |
| 134 | k = 0; f = x; hu = 1; |
| 135 | } /* -0.2929<x<0.41422 */ |
| 136 | } |
| 137 | else if (__glibc_unlikely (hx >= 0x7ff00000)) |
| 138 | return x + x; |
| 139 | if (k != 0) |
| 140 | { |
| 141 | if (hx < 0x43400000) |
| 142 | { |
| 143 | u = 1.0 + x; |
| 144 | GET_HIGH_WORD (hu, u); |
| 145 | k = (hu >> 20) - 1023; |
| 146 | c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */ |
| 147 | c /= u; |
| 148 | } |
| 149 | else |
| 150 | { |
| 151 | u = x; |
| 152 | GET_HIGH_WORD (hu, u); |
| 153 | k = (hu >> 20) - 1023; |
| 154 | c = 0; |
| 155 | } |
| 156 | hu &= 0x000fffff; |
| 157 | if (hu < 0x6a09e) |
| 158 | { |
| 159 | SET_HIGH_WORD (u, hu | 0x3ff00000); /* normalize u */ |
| 160 | } |
| 161 | else |
| 162 | { |
| 163 | k += 1; |
| 164 | SET_HIGH_WORD (u, hu | 0x3fe00000); /* normalize u/2 */ |
| 165 | hu = (0x00100000 - hu) >> 2; |
| 166 | } |
| 167 | f = u - 1.0; |
| 168 | } |
| 169 | hfsq = 0.5 * f * f; |
| 170 | if (hu == 0) /* |f| < 2**-20 */ |
| 171 | { |
| 172 | if (f == zero) |
| 173 | { |
| 174 | if (k == 0) |
| 175 | return zero; |
| 176 | else |
| 177 | { |
| 178 | c += k * ln2_lo; return k * ln2_hi + c; |
| 179 | } |
| 180 | } |
| 181 | R = hfsq * (1.0 - 0.66666666666666666 * f); |
| 182 | if (k == 0) |
| 183 | return f - R; |
| 184 | else |
| 185 | return k * ln2_hi - ((R - (k * ln2_lo + c)) - f); |
| 186 | } |
| 187 | s = f / (2.0 + f); |
| 188 | z = s * s; |
| 189 | R1 = z * Lp[1]; z2 = z * z; |
| 190 | R2 = Lp[2] + z * Lp[3]; z4 = z2 * z2; |
| 191 | R3 = Lp[4] + z * Lp[5]; z6 = z4 * z2; |
| 192 | R4 = Lp[6] + z * Lp[7]; |
| 193 | R = R1 + z2 * R2 + z4 * R3 + z6 * R4; |
| 194 | if (k == 0) |
| 195 | return f - (hfsq - s * (hfsq + R)); |
| 196 | else |
| 197 | { |
| 198 | /* With GCC 7 when compiling with -Os the compiler warns that c |
| 199 | might be used uninitialized. This can't be true because k |
| 200 | must be 0 for c to be uninitialized and we handled that |
| 201 | computation earlier without using c. */ |
| 202 | DIAG_PUSH_NEEDS_COMMENT; |
| 203 | DIAG_IGNORE_Os_NEEDS_COMMENT (7, "-Wmaybe-uninitialized" ); |
| 204 | return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f); |
| 205 | DIAG_POP_NEEDS_COMMENT; |
| 206 | } |
| 207 | } |
| 208 | |