| 1 | /* |
| 2 | * IBM Accurate Mathematical Library |
| 3 | * written by International Business Machines Corp. |
| 4 | * Copyright (C) 2001-2020 Free Software Foundation, Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU Lesser General Public License as published by |
| 8 | * the Free Software Foundation; either version 2.1 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU Lesser General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU Lesser General Public License |
| 17 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | /****************************************************************************/ |
| 20 | /* */ |
| 21 | /* MODULE_NAME:usncs.c */ |
| 22 | /* */ |
| 23 | /* FUNCTIONS: usin */ |
| 24 | /* ucos */ |
| 25 | /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ |
| 26 | /* branred.c sincos.tbl */ |
| 27 | /* */ |
| 28 | /* An ultimate sin and cos routine. Given an IEEE double machine number x */ |
| 29 | /* it computes sin(x) or cos(x) with ~0.55 ULP. */ |
| 30 | /* Assumption: Machine arithmetic operations are performed in */ |
| 31 | /* round to nearest mode of IEEE 754 standard. */ |
| 32 | /* */ |
| 33 | /****************************************************************************/ |
| 34 | |
| 35 | |
| 36 | #include <errno.h> |
| 37 | #include <float.h> |
| 38 | #include "endian.h" |
| 39 | #include "mydefs.h" |
| 40 | #include "usncs.h" |
| 41 | #include "MathLib.h" |
| 42 | #include <math.h> |
| 43 | #include <math_private.h> |
| 44 | #include <fenv_private.h> |
| 45 | #include <math-underflow.h> |
| 46 | #include <libm-alias-double.h> |
| 47 | #include <fenv.h> |
| 48 | |
| 49 | /* Helper macros to compute sin of the input values. */ |
| 50 | #define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx)) |
| 51 | |
| 52 | #define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1) |
| 53 | |
| 54 | /* The computed polynomial is a variation of the Taylor series expansion for |
| 55 | sin(a): |
| 56 | |
| 57 | a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2 |
| 58 | |
| 59 | The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so |
| 60 | on. The result is returned to LHS. */ |
| 61 | #define TAYLOR_SIN(xx, a, da) \ |
| 62 | ({ \ |
| 63 | double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \ |
| 64 | double res = (a) + t; \ |
| 65 | res; \ |
| 66 | }) |
| 67 | |
| 68 | #define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \ |
| 69 | ({ \ |
| 70 | int4 k = u.i[LOW_HALF] << 2; \ |
| 71 | sn = __sincostab.x[k]; \ |
| 72 | ssn = __sincostab.x[k + 1]; \ |
| 73 | cs = __sincostab.x[k + 2]; \ |
| 74 | ccs = __sincostab.x[k + 3]; \ |
| 75 | }) |
| 76 | |
| 77 | #ifndef SECTION |
| 78 | # define SECTION |
| 79 | #endif |
| 80 | |
| 81 | extern const union |
| 82 | { |
| 83 | int4 i[880]; |
| 84 | double x[440]; |
| 85 | } __sincostab attribute_hidden; |
| 86 | |
| 87 | static const double |
| 88 | sn3 = -1.66666666666664880952546298448555E-01, |
| 89 | sn5 = 8.33333214285722277379541354343671E-03, |
| 90 | cs2 = 4.99999999999999999999950396842453E-01, |
| 91 | cs4 = -4.16666666666664434524222570944589E-02, |
| 92 | cs6 = 1.38888874007937613028114285595617E-03; |
| 93 | |
| 94 | int __branred (double x, double *a, double *aa); |
| 95 | |
| 96 | /* Given a number partitioned into X and DX, this function computes the cosine |
| 97 | of the number by combining the sin and cos of X (as computed by a variation |
| 98 | of the Taylor series) with the values looked up from the sin/cos table to |
| 99 | get the result. */ |
| 100 | static __always_inline double |
| 101 | do_cos (double x, double dx) |
| 102 | { |
| 103 | mynumber u; |
| 104 | |
| 105 | if (x < 0) |
| 106 | dx = -dx; |
| 107 | |
| 108 | u.x = big + fabs (x); |
| 109 | x = fabs (x) - (u.x - big) + dx; |
| 110 | |
| 111 | double xx, s, sn, ssn, c, cs, ccs, cor; |
| 112 | xx = x * x; |
| 113 | s = x + x * xx * (sn3 + xx * sn5); |
| 114 | c = xx * (cs2 + xx * (cs4 + xx * cs6)); |
| 115 | SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); |
| 116 | cor = (ccs - s * ssn - cs * c) - sn * s; |
| 117 | return cs + cor; |
| 118 | } |
| 119 | |
| 120 | /* Given a number partitioned into X and DX, this function computes the sine of |
| 121 | the number by combining the sin and cos of X (as computed by a variation of |
| 122 | the Taylor series) with the values looked up from the sin/cos table to get |
| 123 | the result. */ |
| 124 | static __always_inline double |
| 125 | do_sin (double x, double dx) |
| 126 | { |
| 127 | double xold = x; |
| 128 | /* Max ULP is 0.501 if |x| < 0.126, otherwise ULP is 0.518. */ |
| 129 | if (fabs (x) < 0.126) |
| 130 | return TAYLOR_SIN (x * x, x, dx); |
| 131 | |
| 132 | mynumber u; |
| 133 | |
| 134 | if (x <= 0) |
| 135 | dx = -dx; |
| 136 | u.x = big + fabs (x); |
| 137 | x = fabs (x) - (u.x - big); |
| 138 | |
| 139 | double xx, s, sn, ssn, c, cs, ccs, cor; |
| 140 | xx = x * x; |
| 141 | s = x + (dx + x * xx * (sn3 + xx * sn5)); |
| 142 | c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); |
| 143 | SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); |
| 144 | cor = (ssn + s * ccs - sn * c) + cs * s; |
| 145 | return copysign (sn + cor, xold); |
| 146 | } |
| 147 | |
| 148 | /* Reduce range of x to within PI/2 with abs (x) < 105414350. The high part |
| 149 | is written to *a, the low part to *da. Range reduction is accurate to 136 |
| 150 | bits so that when x is large and *a very close to zero, all 53 bits of *a |
| 151 | are correct. */ |
| 152 | static __always_inline int4 |
| 153 | reduce_sincos (double x, double *a, double *da) |
| 154 | { |
| 155 | mynumber v; |
| 156 | |
| 157 | double t = (x * hpinv + toint); |
| 158 | double xn = t - toint; |
| 159 | v.x = t; |
| 160 | double y = (x - xn * mp1) - xn * mp2; |
| 161 | int4 n = v.i[LOW_HALF] & 3; |
| 162 | |
| 163 | double b, db, t1, t2; |
| 164 | t1 = xn * pp3; |
| 165 | t2 = y - t1; |
| 166 | db = (y - t2) - t1; |
| 167 | |
| 168 | t1 = xn * pp4; |
| 169 | b = t2 - t1; |
| 170 | db += (t2 - b) - t1; |
| 171 | |
| 172 | *a = b; |
| 173 | *da = db; |
| 174 | return n; |
| 175 | } |
| 176 | |
| 177 | /* Compute sin or cos (A + DA) for the given quadrant N. */ |
| 178 | static __always_inline double |
| 179 | do_sincos (double a, double da, int4 n) |
| 180 | { |
| 181 | double retval; |
| 182 | |
| 183 | if (n & 1) |
| 184 | /* Max ULP is 0.513. */ |
| 185 | retval = do_cos (a, da); |
| 186 | else |
| 187 | /* Max ULP is 0.501 if xx < 0.01588, otherwise ULP is 0.518. */ |
| 188 | retval = do_sin (a, da); |
| 189 | |
| 190 | return (n & 2) ? -retval : retval; |
| 191 | } |
| 192 | |
| 193 | |
| 194 | /*******************************************************************/ |
| 195 | /* An ultimate sin routine. Given an IEEE double machine number x */ |
| 196 | /* it computes the rounded value of sin(x). */ |
| 197 | /*******************************************************************/ |
| 198 | #ifndef IN_SINCOS |
| 199 | double |
| 200 | SECTION |
| 201 | __sin (double x) |
| 202 | { |
| 203 | double t, a, da; |
| 204 | mynumber u; |
| 205 | int4 k, m, n; |
| 206 | double retval = 0; |
| 207 | |
| 208 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
| 209 | |
| 210 | u.x = x; |
| 211 | m = u.i[HIGH_HALF]; |
| 212 | k = 0x7fffffff & m; /* no sign */ |
| 213 | if (k < 0x3e500000) /* if x->0 =>sin(x)=x */ |
| 214 | { |
| 215 | math_check_force_underflow (x); |
| 216 | retval = x; |
| 217 | } |
| 218 | /*--------------------------- 2^-26<|x|< 0.855469---------------------- */ |
| 219 | else if (k < 0x3feb6000) |
| 220 | { |
| 221 | /* Max ULP is 0.548. */ |
| 222 | retval = do_sin (x, 0); |
| 223 | } /* else if (k < 0x3feb6000) */ |
| 224 | |
| 225 | /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/ |
| 226 | else if (k < 0x400368fd) |
| 227 | { |
| 228 | t = hp0 - fabs (x); |
| 229 | /* Max ULP is 0.51. */ |
| 230 | retval = copysign (do_cos (t, hp1), x); |
| 231 | } /* else if (k < 0x400368fd) */ |
| 232 | |
| 233 | /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/ |
| 234 | else if (k < 0x419921FB) |
| 235 | { |
| 236 | n = reduce_sincos (x, &a, &da); |
| 237 | retval = do_sincos (a, da, n); |
| 238 | } /* else if (k < 0x419921FB ) */ |
| 239 | |
| 240 | /* --------------------105414350 <|x| <2^1024------------------------------*/ |
| 241 | else if (k < 0x7ff00000) |
| 242 | { |
| 243 | n = __branred (x, &a, &da); |
| 244 | retval = do_sincos (a, da, n); |
| 245 | } |
| 246 | /*--------------------- |x| > 2^1024 ----------------------------------*/ |
| 247 | else |
| 248 | { |
| 249 | if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) |
| 250 | __set_errno (EDOM); |
| 251 | retval = x / x; |
| 252 | } |
| 253 | |
| 254 | return retval; |
| 255 | } |
| 256 | |
| 257 | |
| 258 | /*******************************************************************/ |
| 259 | /* An ultimate cos routine. Given an IEEE double machine number x */ |
| 260 | /* it computes the rounded value of cos(x). */ |
| 261 | /*******************************************************************/ |
| 262 | |
| 263 | double |
| 264 | SECTION |
| 265 | __cos (double x) |
| 266 | { |
| 267 | double y, a, da; |
| 268 | mynumber u; |
| 269 | int4 k, m, n; |
| 270 | |
| 271 | double retval = 0; |
| 272 | |
| 273 | SET_RESTORE_ROUND_53BIT (FE_TONEAREST); |
| 274 | |
| 275 | u.x = x; |
| 276 | m = u.i[HIGH_HALF]; |
| 277 | k = 0x7fffffff & m; |
| 278 | |
| 279 | /* |x|<2^-27 => cos(x)=1 */ |
| 280 | if (k < 0x3e400000) |
| 281 | retval = 1.0; |
| 282 | |
| 283 | else if (k < 0x3feb6000) |
| 284 | { /* 2^-27 < |x| < 0.855469 */ |
| 285 | /* Max ULP is 0.51. */ |
| 286 | retval = do_cos (x, 0); |
| 287 | } /* else if (k < 0x3feb6000) */ |
| 288 | |
| 289 | else if (k < 0x400368fd) |
| 290 | { /* 0.855469 <|x|<2.426265 */ ; |
| 291 | y = hp0 - fabs (x); |
| 292 | a = y + hp1; |
| 293 | da = (y - a) + hp1; |
| 294 | /* Max ULP is 0.501 if xx < 0.01588 or 0.518 otherwise. |
| 295 | Range reduction uses 106 bits here which is sufficient. */ |
| 296 | retval = do_sin (a, da); |
| 297 | } /* else if (k < 0x400368fd) */ |
| 298 | |
| 299 | else if (k < 0x419921FB) |
| 300 | { /* 2.426265<|x|< 105414350 */ |
| 301 | n = reduce_sincos (x, &a, &da); |
| 302 | retval = do_sincos (a, da, n + 1); |
| 303 | } /* else if (k < 0x419921FB ) */ |
| 304 | |
| 305 | /* 105414350 <|x| <2^1024 */ |
| 306 | else if (k < 0x7ff00000) |
| 307 | { |
| 308 | n = __branred (x, &a, &da); |
| 309 | retval = do_sincos (a, da, n + 1); |
| 310 | } |
| 311 | |
| 312 | else |
| 313 | { |
| 314 | if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) |
| 315 | __set_errno (EDOM); |
| 316 | retval = x / x; /* |x| > 2^1024 */ |
| 317 | } |
| 318 | |
| 319 | return retval; |
| 320 | } |
| 321 | |
| 322 | #ifndef __cos |
| 323 | libm_alias_double (__cos, cos) |
| 324 | #endif |
| 325 | #ifndef __sin |
| 326 | libm_alias_double (__sin, sin) |
| 327 | #endif |
| 328 | |
| 329 | #endif |
| 330 | |