| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | Long double expansions are |
| 14 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 15 | and are incorporated herein by permission of the author. The author |
| 16 | reserves the right to distribute this material elsewhere under different |
| 17 | copying permissions. These modifications are distributed here under the |
| 18 | following terms: |
| 19 | |
| 20 | This library is free software; you can redistribute it and/or |
| 21 | modify it under the terms of the GNU Lesser General Public |
| 22 | License as published by the Free Software Foundation; either |
| 23 | version 2.1 of the License, or (at your option) any later version. |
| 24 | |
| 25 | This library is distributed in the hope that it will be useful, |
| 26 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 27 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 28 | Lesser General Public License for more details. |
| 29 | |
| 30 | You should have received a copy of the GNU Lesser General Public |
| 31 | License along with this library; if not, see |
| 32 | <https://www.gnu.org/licenses/>. */ |
| 33 | |
| 34 | /* __ieee754_asin(x) |
| 35 | * Method : |
| 36 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
| 37 | * we approximate asin(x) on [0,0.5] by |
| 38 | * asin(x) = x + x*x^2*R(x^2) |
| 39 | * Between .5 and .625 the approximation is |
| 40 | * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) |
| 41 | * For x in [0.625,1] |
| 42 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
| 43 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
| 44 | * then for x>0.98 |
| 45 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| 46 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
| 47 | * For x<=0.98, let pio4_hi = pio2_hi/2, then |
| 48 | * f = hi part of s; |
| 49 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
| 50 | * and |
| 51 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| 52 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
| 53 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
| 54 | * |
| 55 | * Special cases: |
| 56 | * if x is NaN, return x itself; |
| 57 | * if |x|>1, return NaN with invalid signal. |
| 58 | * |
| 59 | */ |
| 60 | |
| 61 | |
| 62 | #include <float.h> |
| 63 | #include <math.h> |
| 64 | #include <math-barriers.h> |
| 65 | #include <math_private.h> |
| 66 | #include <math-underflow.h> |
| 67 | #include <libm-alias-finite.h> |
| 68 | |
| 69 | static const _Float128 |
| 70 | one = 1, |
| 71 | huge = L(1.0e+4932), |
| 72 | pio2_hi = L(1.5707963267948966192313216916397514420986), |
| 73 | pio2_lo = L(4.3359050650618905123985220130216759843812E-35), |
| 74 | pio4_hi = L(7.8539816339744830961566084581987569936977E-1), |
| 75 | |
| 76 | /* coefficient for R(x^2) */ |
| 77 | |
| 78 | /* asin(x) = x + x^3 pS(x^2) / qS(x^2) |
| 79 | 0 <= x <= 0.5 |
| 80 | peak relative error 1.9e-35 */ |
| 81 | pS0 = L(-8.358099012470680544198472400254596543711E2), |
| 82 | pS1 = L(3.674973957689619490312782828051860366493E3), |
| 83 | pS2 = L(-6.730729094812979665807581609853656623219E3), |
| 84 | pS3 = L(6.643843795209060298375552684423454077633E3), |
| 85 | pS4 = L(-3.817341990928606692235481812252049415993E3), |
| 86 | pS5 = L(1.284635388402653715636722822195716476156E3), |
| 87 | pS6 = L(-2.410736125231549204856567737329112037867E2), |
| 88 | pS7 = L(2.219191969382402856557594215833622156220E1), |
| 89 | pS8 = L(-7.249056260830627156600112195061001036533E-1), |
| 90 | pS9 = L(1.055923570937755300061509030361395604448E-3), |
| 91 | |
| 92 | qS0 = L(-5.014859407482408326519083440151745519205E3), |
| 93 | qS1 = L(2.430653047950480068881028451580393430537E4), |
| 94 | qS2 = L(-4.997904737193653607449250593976069726962E4), |
| 95 | qS3 = L(5.675712336110456923807959930107347511086E4), |
| 96 | qS4 = L(-3.881523118339661268482937768522572588022E4), |
| 97 | qS5 = L(1.634202194895541569749717032234510811216E4), |
| 98 | qS6 = L(-4.151452662440709301601820849901296953752E3), |
| 99 | qS7 = L(5.956050864057192019085175976175695342168E2), |
| 100 | qS8 = L(-4.175375777334867025769346564600396877176E1), |
| 101 | /* 1.000000000000000000000000000000000000000E0 */ |
| 102 | |
| 103 | /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) |
| 104 | -0.0625 <= x <= 0.0625 |
| 105 | peak relative error 3.3e-35 */ |
| 106 | rS0 = L(-5.619049346208901520945464704848780243887E0), |
| 107 | rS1 = L(4.460504162777731472539175700169871920352E1), |
| 108 | rS2 = L(-1.317669505315409261479577040530751477488E2), |
| 109 | rS3 = L(1.626532582423661989632442410808596009227E2), |
| 110 | rS4 = L(-3.144806644195158614904369445440583873264E1), |
| 111 | rS5 = L(-9.806674443470740708765165604769099559553E1), |
| 112 | rS6 = L(5.708468492052010816555762842394927806920E1), |
| 113 | rS7 = L(1.396540499232262112248553357962639431922E1), |
| 114 | rS8 = L(-1.126243289311910363001762058295832610344E1), |
| 115 | rS9 = L(-4.956179821329901954211277873774472383512E-1), |
| 116 | rS10 = L(3.313227657082367169241333738391762525780E-1), |
| 117 | |
| 118 | sS0 = L(-4.645814742084009935700221277307007679325E0), |
| 119 | sS1 = L(3.879074822457694323970438316317961918430E1), |
| 120 | sS2 = L(-1.221986588013474694623973554726201001066E2), |
| 121 | sS3 = L(1.658821150347718105012079876756201905822E2), |
| 122 | sS4 = L(-4.804379630977558197953176474426239748977E1), |
| 123 | sS5 = L(-1.004296417397316948114344573811562952793E2), |
| 124 | sS6 = L(7.530281592861320234941101403870010111138E1), |
| 125 | sS7 = L(1.270735595411673647119592092304357226607E1), |
| 126 | sS8 = L(-1.815144839646376500705105967064792930282E1), |
| 127 | sS9 = L(-7.821597334910963922204235247786840828217E-2), |
| 128 | /* 1.000000000000000000000000000000000000000E0 */ |
| 129 | |
| 130 | asinr5625 = L(5.9740641664535021430381036628424864397707E-1); |
| 131 | |
| 132 | |
| 133 | |
| 134 | _Float128 |
| 135 | __ieee754_asinl (_Float128 x) |
| 136 | { |
| 137 | _Float128 t, w, p, q, c, r, s; |
| 138 | int32_t ix, sign, flag; |
| 139 | ieee854_long_double_shape_type u; |
| 140 | |
| 141 | flag = 0; |
| 142 | u.value = x; |
| 143 | sign = u.parts32.w0; |
| 144 | ix = sign & 0x7fffffff; |
| 145 | u.parts32.w0 = ix; /* |x| */ |
| 146 | if (ix >= 0x3fff0000) /* |x|>= 1 */ |
| 147 | { |
| 148 | if (ix == 0x3fff0000 |
| 149 | && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) |
| 150 | /* asin(1)=+-pi/2 with inexact */ |
| 151 | return x * pio2_hi + x * pio2_lo; |
| 152 | return (x - x) / (x - x); /* asin(|x|>1) is NaN */ |
| 153 | } |
| 154 | else if (ix < 0x3ffe0000) /* |x| < 0.5 */ |
| 155 | { |
| 156 | if (ix < 0x3fc60000) /* |x| < 2**-57 */ |
| 157 | { |
| 158 | math_check_force_underflow (x); |
| 159 | _Float128 force_inexact = huge + x; |
| 160 | math_force_eval (force_inexact); |
| 161 | return x; /* return x with inexact if x!=0 */ |
| 162 | } |
| 163 | else |
| 164 | { |
| 165 | t = x * x; |
| 166 | /* Mark to use pS, qS later on. */ |
| 167 | flag = 1; |
| 168 | } |
| 169 | } |
| 170 | else if (ix < 0x3ffe4000) /* 0.625 */ |
| 171 | { |
| 172 | t = u.value - 0.5625; |
| 173 | p = ((((((((((rS10 * t |
| 174 | + rS9) * t |
| 175 | + rS8) * t |
| 176 | + rS7) * t |
| 177 | + rS6) * t |
| 178 | + rS5) * t |
| 179 | + rS4) * t |
| 180 | + rS3) * t |
| 181 | + rS2) * t |
| 182 | + rS1) * t |
| 183 | + rS0) * t; |
| 184 | |
| 185 | q = ((((((((( t |
| 186 | + sS9) * t |
| 187 | + sS8) * t |
| 188 | + sS7) * t |
| 189 | + sS6) * t |
| 190 | + sS5) * t |
| 191 | + sS4) * t |
| 192 | + sS3) * t |
| 193 | + sS2) * t |
| 194 | + sS1) * t |
| 195 | + sS0; |
| 196 | t = asinr5625 + p / q; |
| 197 | if ((sign & 0x80000000) == 0) |
| 198 | return t; |
| 199 | else |
| 200 | return -t; |
| 201 | } |
| 202 | else |
| 203 | { |
| 204 | /* 1 > |x| >= 0.625 */ |
| 205 | w = one - u.value; |
| 206 | t = w * 0.5; |
| 207 | } |
| 208 | |
| 209 | p = (((((((((pS9 * t |
| 210 | + pS8) * t |
| 211 | + pS7) * t |
| 212 | + pS6) * t |
| 213 | + pS5) * t |
| 214 | + pS4) * t |
| 215 | + pS3) * t |
| 216 | + pS2) * t |
| 217 | + pS1) * t |
| 218 | + pS0) * t; |
| 219 | |
| 220 | q = (((((((( t |
| 221 | + qS8) * t |
| 222 | + qS7) * t |
| 223 | + qS6) * t |
| 224 | + qS5) * t |
| 225 | + qS4) * t |
| 226 | + qS3) * t |
| 227 | + qS2) * t |
| 228 | + qS1) * t |
| 229 | + qS0; |
| 230 | |
| 231 | if (flag) /* 2^-57 < |x| < 0.5 */ |
| 232 | { |
| 233 | w = p / q; |
| 234 | return x + x * w; |
| 235 | } |
| 236 | |
| 237 | s = sqrtl (t); |
| 238 | if (ix >= 0x3ffef333) /* |x| > 0.975 */ |
| 239 | { |
| 240 | w = p / q; |
| 241 | t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); |
| 242 | } |
| 243 | else |
| 244 | { |
| 245 | u.value = s; |
| 246 | u.parts32.w3 = 0; |
| 247 | u.parts32.w2 = 0; |
| 248 | w = u.value; |
| 249 | c = (t - w * w) / (s + w); |
| 250 | r = p / q; |
| 251 | p = 2.0 * s * r - (pio2_lo - 2.0 * c); |
| 252 | q = pio4_hi - 2.0 * w; |
| 253 | t = pio4_hi - (p - q); |
| 254 | } |
| 255 | |
| 256 | if ((sign & 0x80000000) == 0) |
| 257 | return t; |
| 258 | else |
| 259 | return -t; |
| 260 | } |
| 261 | libm_alias_finite (__ieee754_asinl, __asinl) |
| 262 | |