| 1 | /* log2l.c |
| 2 | * Base 2 logarithm, 128-bit long double precision |
| 3 | * |
| 4 | * |
| 5 | * |
| 6 | * SYNOPSIS: |
| 7 | * |
| 8 | * long double x, y, log2l(); |
| 9 | * |
| 10 | * y = log2l( x ); |
| 11 | * |
| 12 | * |
| 13 | * |
| 14 | * DESCRIPTION: |
| 15 | * |
| 16 | * Returns the base 2 logarithm of x. |
| 17 | * |
| 18 | * The argument is separated into its exponent and fractional |
| 19 | * parts. If the exponent is between -1 and +1, the (natural) |
| 20 | * logarithm of the fraction is approximated by |
| 21 | * |
| 22 | * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). |
| 23 | * |
| 24 | * Otherwise, setting z = 2(x-1)/x+1), |
| 25 | * |
| 26 | * log(x) = z + z^3 P(z)/Q(z). |
| 27 | * |
| 28 | * |
| 29 | * |
| 30 | * ACCURACY: |
| 31 | * |
| 32 | * Relative error: |
| 33 | * arithmetic domain # trials peak rms |
| 34 | * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35 |
| 35 | * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35 |
| 36 | * |
| 37 | * In the tests over the interval exp(+-10000), the logarithms |
| 38 | * of the random arguments were uniformly distributed over |
| 39 | * [-10000, +10000]. |
| 40 | * |
| 41 | */ |
| 42 | |
| 43 | /* |
| 44 | Cephes Math Library Release 2.2: January, 1991 |
| 45 | Copyright 1984, 1991 by Stephen L. Moshier |
| 46 | Adapted for glibc November, 2001 |
| 47 | |
| 48 | This library is free software; you can redistribute it and/or |
| 49 | modify it under the terms of the GNU Lesser General Public |
| 50 | License as published by the Free Software Foundation; either |
| 51 | version 2.1 of the License, or (at your option) any later version. |
| 52 | |
| 53 | This library is distributed in the hope that it will be useful, |
| 54 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 55 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 56 | Lesser General Public License for more details. |
| 57 | |
| 58 | You should have received a copy of the GNU Lesser General Public |
| 59 | License along with this library; if not, see <https://www.gnu.org/licenses/>. |
| 60 | */ |
| 61 | |
| 62 | #include <math.h> |
| 63 | #include <math_private.h> |
| 64 | #include <libm-alias-finite.h> |
| 65 | |
| 66 | /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) |
| 67 | * 1/sqrt(2) <= x < sqrt(2) |
| 68 | * Theoretical peak relative error = 5.3e-37, |
| 69 | * relative peak error spread = 2.3e-14 |
| 70 | */ |
| 71 | static const _Float128 P[13] = |
| 72 | { |
| 73 | L(1.313572404063446165910279910527789794488E4), |
| 74 | L(7.771154681358524243729929227226708890930E4), |
| 75 | L(2.014652742082537582487669938141683759923E5), |
| 76 | L(3.007007295140399532324943111654767187848E5), |
| 77 | L(2.854829159639697837788887080758954924001E5), |
| 78 | L(1.797628303815655343403735250238293741397E5), |
| 79 | L(7.594356839258970405033155585486712125861E4), |
| 80 | L(2.128857716871515081352991964243375186031E4), |
| 81 | L(3.824952356185897735160588078446136783779E3), |
| 82 | L(4.114517881637811823002128927449878962058E2), |
| 83 | L(2.321125933898420063925789532045674660756E1), |
| 84 | L(4.998469661968096229986658302195402690910E-1), |
| 85 | L(1.538612243596254322971797716843006400388E-6) |
| 86 | }; |
| 87 | static const _Float128 Q[12] = |
| 88 | { |
| 89 | L(3.940717212190338497730839731583397586124E4), |
| 90 | L(2.626900195321832660448791748036714883242E5), |
| 91 | L(7.777690340007566932935753241556479363645E5), |
| 92 | L(1.347518538384329112529391120390701166528E6), |
| 93 | L(1.514882452993549494932585972882995548426E6), |
| 94 | L(1.158019977462989115839826904108208787040E6), |
| 95 | L(6.132189329546557743179177159925690841200E5), |
| 96 | L(2.248234257620569139969141618556349415120E5), |
| 97 | L(5.605842085972455027590989944010492125825E4), |
| 98 | L(9.147150349299596453976674231612674085381E3), |
| 99 | L(9.104928120962988414618126155557301584078E2), |
| 100 | L(4.839208193348159620282142911143429644326E1) |
| 101 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 102 | }; |
| 103 | |
| 104 | /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| 105 | * where z = 2(x-1)/(x+1) |
| 106 | * 1/sqrt(2) <= x < sqrt(2) |
| 107 | * Theoretical peak relative error = 1.1e-35, |
| 108 | * relative peak error spread 1.1e-9 |
| 109 | */ |
| 110 | static const _Float128 R[6] = |
| 111 | { |
| 112 | L(1.418134209872192732479751274970992665513E5), |
| 113 | L(-8.977257995689735303686582344659576526998E4), |
| 114 | L(2.048819892795278657810231591630928516206E4), |
| 115 | L(-2.024301798136027039250415126250455056397E3), |
| 116 | L(8.057002716646055371965756206836056074715E1), |
| 117 | L(-8.828896441624934385266096344596648080902E-1) |
| 118 | }; |
| 119 | static const _Float128 S[6] = |
| 120 | { |
| 121 | L(1.701761051846631278975701529965589676574E6), |
| 122 | L(-1.332535117259762928288745111081235577029E6), |
| 123 | L(4.001557694070773974936904547424676279307E5), |
| 124 | L(-5.748542087379434595104154610899551484314E4), |
| 125 | L(3.998526750980007367835804959888064681098E3), |
| 126 | L(-1.186359407982897997337150403816839480438E2) |
| 127 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 128 | }; |
| 129 | |
| 130 | static const _Float128 |
| 131 | /* log2(e) - 1 */ |
| 132 | LOG2EA = L(4.4269504088896340735992468100189213742664595E-1), |
| 133 | /* sqrt(2)/2 */ |
| 134 | SQRTH = L(7.071067811865475244008443621048490392848359E-1); |
| 135 | |
| 136 | |
| 137 | /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ |
| 138 | |
| 139 | static _Float128 |
| 140 | neval (_Float128 x, const _Float128 *p, int n) |
| 141 | { |
| 142 | _Float128 y; |
| 143 | |
| 144 | p += n; |
| 145 | y = *p--; |
| 146 | do |
| 147 | { |
| 148 | y = y * x + *p--; |
| 149 | } |
| 150 | while (--n > 0); |
| 151 | return y; |
| 152 | } |
| 153 | |
| 154 | |
| 155 | /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ |
| 156 | |
| 157 | static _Float128 |
| 158 | deval (_Float128 x, const _Float128 *p, int n) |
| 159 | { |
| 160 | _Float128 y; |
| 161 | |
| 162 | p += n; |
| 163 | y = x + *p--; |
| 164 | do |
| 165 | { |
| 166 | y = y * x + *p--; |
| 167 | } |
| 168 | while (--n > 0); |
| 169 | return y; |
| 170 | } |
| 171 | |
| 172 | |
| 173 | |
| 174 | _Float128 |
| 175 | __ieee754_log2l (_Float128 x) |
| 176 | { |
| 177 | _Float128 z; |
| 178 | _Float128 y; |
| 179 | int e; |
| 180 | int64_t hx, lx; |
| 181 | |
| 182 | /* Test for domain */ |
| 183 | GET_LDOUBLE_WORDS64 (hx, lx, x); |
| 184 | if (((hx & 0x7fffffffffffffffLL) | lx) == 0) |
| 185 | return (-1 / fabsl (x)); /* log2l(+-0)=-inf */ |
| 186 | if (hx < 0) |
| 187 | return (x - x) / (x - x); |
| 188 | if (hx >= 0x7fff000000000000LL) |
| 189 | return (x + x); |
| 190 | |
| 191 | if (x == 1) |
| 192 | return 0; |
| 193 | |
| 194 | /* separate mantissa from exponent */ |
| 195 | |
| 196 | /* Note, frexp is used so that denormal numbers |
| 197 | * will be handled properly. |
| 198 | */ |
| 199 | x = __frexpl (x, &e); |
| 200 | |
| 201 | |
| 202 | /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
| 203 | * where z = 2(x-1)/x+1) |
| 204 | */ |
| 205 | if ((e > 2) || (e < -2)) |
| 206 | { |
| 207 | if (x < SQRTH) |
| 208 | { /* 2( 2x-1 )/( 2x+1 ) */ |
| 209 | e -= 1; |
| 210 | z = x - L(0.5); |
| 211 | y = L(0.5) * z + L(0.5); |
| 212 | } |
| 213 | else |
| 214 | { /* 2 (x-1)/(x+1) */ |
| 215 | z = x - L(0.5); |
| 216 | z -= L(0.5); |
| 217 | y = L(0.5) * x + L(0.5); |
| 218 | } |
| 219 | x = z / y; |
| 220 | z = x * x; |
| 221 | y = x * (z * neval (z, R, 5) / deval (z, S, 5)); |
| 222 | goto done; |
| 223 | } |
| 224 | |
| 225 | |
| 226 | /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
| 227 | |
| 228 | if (x < SQRTH) |
| 229 | { |
| 230 | e -= 1; |
| 231 | x = 2.0 * x - 1; /* 2x - 1 */ |
| 232 | } |
| 233 | else |
| 234 | { |
| 235 | x = x - 1; |
| 236 | } |
| 237 | z = x * x; |
| 238 | y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); |
| 239 | y = y - 0.5 * z; |
| 240 | |
| 241 | done: |
| 242 | |
| 243 | /* Multiply log of fraction by log2(e) |
| 244 | * and base 2 exponent by 1 |
| 245 | */ |
| 246 | z = y * LOG2EA; |
| 247 | z += x * LOG2EA; |
| 248 | z += y; |
| 249 | z += x; |
| 250 | z += e; |
| 251 | return (z); |
| 252 | } |
| 253 | libm_alias_finite (__ieee754_log2l, __log2l) |
| 254 | |