| 1 | /* Quad-precision floating point sine and cosine on <-pi/4,pi/4>. |
| 2 | Copyright (C) 1999-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Jakub Jelinek <jj@ultra.linux.cz> |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include <float.h> |
| 21 | #include <math.h> |
| 22 | #include <math_private.h> |
| 23 | #include <math-underflow.h> |
| 24 | |
| 25 | static const _Float128 c[] = { |
| 26 | #define ONE c[0] |
| 27 | L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ |
| 28 | |
| 29 | /* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) |
| 30 | x in <0,1/256> */ |
| 31 | #define SCOS1 c[1] |
| 32 | #define SCOS2 c[2] |
| 33 | #define SCOS3 c[3] |
| 34 | #define SCOS4 c[4] |
| 35 | #define SCOS5 c[5] |
| 36 | L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */ |
| 37 | L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */ |
| 38 | L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */ |
| 39 | L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */ |
| 40 | L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */ |
| 41 | |
| 42 | /* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 ) |
| 43 | x in <0,0.1484375> */ |
| 44 | #define COS1 c[6] |
| 45 | #define COS2 c[7] |
| 46 | #define COS3 c[8] |
| 47 | #define COS4 c[9] |
| 48 | #define COS5 c[10] |
| 49 | #define COS6 c[11] |
| 50 | #define COS7 c[12] |
| 51 | #define COS8 c[13] |
| 52 | L(-4.99999999999999999999999999999999759E-01), /* bffdfffffffffffffffffffffffffffb */ |
| 53 | L(4.16666666666666666666666666651287795E-02), /* 3ffa5555555555555555555555516f30 */ |
| 54 | L(-1.38888888888888888888888742314300284E-03), /* bff56c16c16c16c16c16c16a463dfd0d */ |
| 55 | L(2.48015873015873015867694002851118210E-05), /* 3fefa01a01a01a01a0195cebe6f3d3a5 */ |
| 56 | L(-2.75573192239858811636614709689300351E-07), /* bfe927e4fb7789f5aa8142a22044b51f */ |
| 57 | L(2.08767569877762248667431926878073669E-09), /* 3fe21eed8eff881d1e9262d7adff4373 */ |
| 58 | L(-1.14707451049343817400420280514614892E-11), /* bfda9397496922a9601ed3d4ca48944b */ |
| 59 | L(4.77810092804389587579843296923533297E-14), /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */ |
| 60 | |
| 61 | /* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) |
| 62 | x in <0,1/256> */ |
| 63 | #define SSIN1 c[14] |
| 64 | #define SSIN2 c[15] |
| 65 | #define SSIN3 c[16] |
| 66 | #define SSIN4 c[17] |
| 67 | #define SSIN5 c[18] |
| 68 | L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */ |
| 69 | L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */ |
| 70 | L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */ |
| 71 | L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */ |
| 72 | L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */ |
| 73 | |
| 74 | /* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) |
| 75 | x in <0,0.1484375> */ |
| 76 | #define SIN1 c[19] |
| 77 | #define SIN2 c[20] |
| 78 | #define SIN3 c[21] |
| 79 | #define SIN4 c[22] |
| 80 | #define SIN5 c[23] |
| 81 | #define SIN6 c[24] |
| 82 | #define SIN7 c[25] |
| 83 | #define SIN8 c[26] |
| 84 | L(-1.66666666666666666666666666666666538e-01), /* bffc5555555555555555555555555550 */ |
| 85 | L(8.33333333333333333333333333307532934e-03), /* 3ff811111111111111111111110e7340 */ |
| 86 | L(-1.98412698412698412698412534478712057e-04), /* bff2a01a01a01a01a01a019e7a626296 */ |
| 87 | L(2.75573192239858906520896496653095890e-06), /* 3fec71de3a556c7338fa38527474b8f5 */ |
| 88 | L(-2.50521083854417116999224301266655662e-08), /* bfe5ae64567f544e16c7de65c2ea551f */ |
| 89 | L(1.60590438367608957516841576404938118e-10), /* 3fde6124613a811480538a9a41957115 */ |
| 90 | L(-7.64716343504264506714019494041582610e-13), /* bfd6ae7f3d5aef30c7bc660b060ef365 */ |
| 91 | L(2.81068754939739570236322404393398135e-15), /* 3fce9510115aabf87aceb2022a9a9180 */ |
| 92 | }; |
| 93 | |
| 94 | #define SINCOSL_COS_HI 0 |
| 95 | #define SINCOSL_COS_LO 1 |
| 96 | #define SINCOSL_SIN_HI 2 |
| 97 | #define SINCOSL_SIN_LO 3 |
| 98 | extern const _Float128 __sincosl_table[]; |
| 99 | |
| 100 | void |
| 101 | __kernel_sincosl(_Float128 x, _Float128 y, _Float128 *sinx, _Float128 *cosx, int iy) |
| 102 | { |
| 103 | _Float128 h, l, z, sin_l, cos_l_m1; |
| 104 | int64_t ix; |
| 105 | uint32_t tix, hix, index; |
| 106 | GET_LDOUBLE_MSW64 (ix, x); |
| 107 | tix = ((uint64_t)ix) >> 32; |
| 108 | tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ |
| 109 | if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ |
| 110 | { |
| 111 | /* Argument is small enough to approximate it by a Chebyshev |
| 112 | polynomial of degree 16(17). */ |
| 113 | if (tix < 0x3fc60000) /* |x| < 2^-57 */ |
| 114 | { |
| 115 | math_check_force_underflow (x); |
| 116 | if (!((int)x)) /* generate inexact */ |
| 117 | { |
| 118 | *sinx = x; |
| 119 | *cosx = ONE; |
| 120 | return; |
| 121 | } |
| 122 | } |
| 123 | z = x * x; |
| 124 | *sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ |
| 125 | z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); |
| 126 | *cosx = ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+ |
| 127 | z*(COS5+z*(COS6+z*(COS7+z*COS8)))))))); |
| 128 | } |
| 129 | else |
| 130 | { |
| 131 | /* So that we don't have to use too large polynomial, we find |
| 132 | l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 |
| 133 | possible values for h. We look up cosl(h) and sinl(h) in |
| 134 | pre-computed tables, compute cosl(l) and sinl(l) using a |
| 135 | Chebyshev polynomial of degree 10(11) and compute |
| 136 | sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l) and |
| 137 | cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */ |
| 138 | index = 0x3ffe - (tix >> 16); |
| 139 | hix = (tix + (0x200 << index)) & (0xfffffc00 << index); |
| 140 | if (signbit (x)) |
| 141 | { |
| 142 | x = -x; |
| 143 | y = -y; |
| 144 | } |
| 145 | switch (index) |
| 146 | { |
| 147 | case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; |
| 148 | case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; |
| 149 | default: |
| 150 | case 2: index = (hix - 0x3ffc3000) >> 10; break; |
| 151 | } |
| 152 | |
| 153 | SET_LDOUBLE_WORDS64(h, ((uint64_t)hix) << 32, 0); |
| 154 | if (iy) |
| 155 | l = y - (h - x); |
| 156 | else |
| 157 | l = x - h; |
| 158 | z = l * l; |
| 159 | sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); |
| 160 | cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); |
| 161 | z = __sincosl_table [index + SINCOSL_SIN_HI] |
| 162 | + (__sincosl_table [index + SINCOSL_SIN_LO] |
| 163 | + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1) |
| 164 | + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l)); |
| 165 | *sinx = (ix < 0) ? -z : z; |
| 166 | *cosx = __sincosl_table [index + SINCOSL_COS_HI] |
| 167 | + (__sincosl_table [index + SINCOSL_COS_LO] |
| 168 | - (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l |
| 169 | - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1)); |
| 170 | } |
| 171 | } |
| 172 | |