| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | Long double expansions are |
| 14 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 15 | and are incorporated herein by permission of the author. The author |
| 16 | reserves the right to distribute this material elsewhere under different |
| 17 | copying permissions. These modifications are distributed here under |
| 18 | the following terms: |
| 19 | |
| 20 | This library is free software; you can redistribute it and/or |
| 21 | modify it under the terms of the GNU Lesser General Public |
| 22 | License as published by the Free Software Foundation; either |
| 23 | version 2.1 of the License, or (at your option) any later version. |
| 24 | |
| 25 | This library is distributed in the hope that it will be useful, |
| 26 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 27 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 28 | Lesser General Public License for more details. |
| 29 | |
| 30 | You should have received a copy of the GNU Lesser General Public |
| 31 | License along with this library; if not, see |
| 32 | <https://www.gnu.org/licenses/>. */ |
| 33 | |
| 34 | /* __kernel_tanl( x, y, k ) |
| 35 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| 36 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| 37 | * Input y is the tail of x. |
| 38 | * Input k indicates whether tan (if k=1) or |
| 39 | * -1/tan (if k= -1) is returned. |
| 40 | * |
| 41 | * Algorithm |
| 42 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
| 43 | * 2. if x < 2^-57, return x with inexact if x!=0. |
| 44 | * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) |
| 45 | * on [0,0.67433]. |
| 46 | * |
| 47 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
| 48 | * ~ tan(x) + (1+x*x)*y |
| 49 | * Therefore, for better accuracy in computing tan(x+y), let |
| 50 | * r = x^3 * R(x^2) |
| 51 | * then |
| 52 | * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) |
| 53 | * |
| 54 | * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then |
| 55 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
| 56 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
| 57 | */ |
| 58 | |
| 59 | #include <float.h> |
| 60 | #include <math.h> |
| 61 | #include <math_private.h> |
| 62 | #include <math-underflow.h> |
| 63 | #include <libc-diag.h> |
| 64 | |
| 65 | static const _Float128 |
| 66 | one = 1, |
| 67 | pio4hi = L(7.8539816339744830961566084581987569936977E-1), |
| 68 | pio4lo = L(2.1679525325309452561992610065108379921906E-35), |
| 69 | |
| 70 | /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) |
| 71 | 0 <= x <= 0.6743316650390625 |
| 72 | Peak relative error 8.0e-36 */ |
| 73 | TH = L(3.333333333333333333333333333333333333333E-1), |
| 74 | T0 = L(-1.813014711743583437742363284336855889393E7), |
| 75 | T1 = L(1.320767960008972224312740075083259247618E6), |
| 76 | T2 = L(-2.626775478255838182468651821863299023956E4), |
| 77 | T3 = L(1.764573356488504935415411383687150199315E2), |
| 78 | T4 = L(-3.333267763822178690794678978979803526092E-1), |
| 79 | |
| 80 | U0 = L(-1.359761033807687578306772463253710042010E8), |
| 81 | U1 = L(6.494370630656893175666729313065113194784E7), |
| 82 | U2 = L(-4.180787672237927475505536849168729386782E6), |
| 83 | U3 = L(8.031643765106170040139966622980914621521E4), |
| 84 | U4 = L(-5.323131271912475695157127875560667378597E2); |
| 85 | /* 1.000000000000000000000000000000000000000E0 */ |
| 86 | |
| 87 | |
| 88 | _Float128 |
| 89 | __kernel_tanl (_Float128 x, _Float128 y, int iy) |
| 90 | { |
| 91 | _Float128 z, r, v, w, s; |
| 92 | int32_t ix, sign; |
| 93 | ieee854_long_double_shape_type u, u1; |
| 94 | |
| 95 | u.value = x; |
| 96 | ix = u.parts32.w0 & 0x7fffffff; |
| 97 | if (ix < 0x3fc60000) /* x < 2**-57 */ |
| 98 | { |
| 99 | if ((int) x == 0) |
| 100 | { /* generate inexact */ |
| 101 | if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3 |
| 102 | | (iy + 1)) == 0) |
| 103 | return one / fabsl (x); |
| 104 | else if (iy == 1) |
| 105 | { |
| 106 | math_check_force_underflow (x); |
| 107 | return x; |
| 108 | } |
| 109 | else |
| 110 | return -one / x; |
| 111 | } |
| 112 | } |
| 113 | if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ |
| 114 | { |
| 115 | if ((u.parts32.w0 & 0x80000000) != 0) |
| 116 | { |
| 117 | x = -x; |
| 118 | y = -y; |
| 119 | sign = -1; |
| 120 | } |
| 121 | else |
| 122 | sign = 1; |
| 123 | z = pio4hi - x; |
| 124 | w = pio4lo - y; |
| 125 | x = z + w; |
| 126 | y = 0.0; |
| 127 | } |
| 128 | z = x * x; |
| 129 | r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); |
| 130 | v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); |
| 131 | r = r / v; |
| 132 | |
| 133 | s = z * x; |
| 134 | r = y + z * (s * r + y); |
| 135 | r += TH * s; |
| 136 | w = x + r; |
| 137 | if (ix >= 0x3ffe5942) |
| 138 | { |
| 139 | v = (_Float128) iy; |
| 140 | w = (v - 2.0 * (x - (w * w / (w + v) - r))); |
| 141 | /* SIGN is set for arguments that reach this code, but not |
| 142 | otherwise, resulting in warnings that it may be used |
| 143 | uninitialized although in the cases where it is used it has |
| 144 | always been set. */ |
| 145 | DIAG_PUSH_NEEDS_COMMENT; |
| 146 | DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized" ); |
| 147 | if (sign < 0) |
| 148 | w = -w; |
| 149 | DIAG_POP_NEEDS_COMMENT; |
| 150 | return w; |
| 151 | } |
| 152 | if (iy == 1) |
| 153 | return w; |
| 154 | else |
| 155 | { /* if allow error up to 2 ulp, |
| 156 | simply return -1.0/(x+r) here */ |
| 157 | /* compute -1.0/(x+r) accurately */ |
| 158 | u1.value = w; |
| 159 | u1.parts32.w2 = 0; |
| 160 | u1.parts32.w3 = 0; |
| 161 | v = r - (u1.value - x); /* u1+v = r+x */ |
| 162 | z = -1.0 / w; |
| 163 | u.value = z; |
| 164 | u.parts32.w2 = 0; |
| 165 | u.parts32.w3 = 0; |
| 166 | s = 1.0 + u.value * u1.value; |
| 167 | return u.value + z * (s + u.value * v); |
| 168 | } |
| 169 | } |
| 170 | |