| 1 | /* cbrtl.c |
| 2 | * |
| 3 | * Cube root, long double precision |
| 4 | * |
| 5 | * |
| 6 | * |
| 7 | * SYNOPSIS: |
| 8 | * |
| 9 | * long double x, y, cbrtl(); |
| 10 | * |
| 11 | * y = cbrtl( x ); |
| 12 | * |
| 13 | * |
| 14 | * |
| 15 | * DESCRIPTION: |
| 16 | * |
| 17 | * Returns the cube root of the argument, which may be negative. |
| 18 | * |
| 19 | * Range reduction involves determining the power of 2 of |
| 20 | * the argument. A polynomial of degree 2 applied to the |
| 21 | * mantissa, and multiplication by the cube root of 1, 2, or 4 |
| 22 | * approximates the root to within about 0.1%. Then Newton's |
| 23 | * iteration is used three times to converge to an accurate |
| 24 | * result. |
| 25 | * |
| 26 | * |
| 27 | * |
| 28 | * ACCURACY: |
| 29 | * |
| 30 | * Relative error: |
| 31 | * arithmetic domain # trials peak rms |
| 32 | * IEEE -8,8 100000 1.3e-34 3.9e-35 |
| 33 | * IEEE exp(+-707) 100000 1.3e-34 4.3e-35 |
| 34 | * |
| 35 | */ |
| 36 | |
| 37 | /* |
| 38 | Cephes Math Library Release 2.2: January, 1991 |
| 39 | Copyright 1984, 1991 by Stephen L. Moshier |
| 40 | Adapted for glibc October, 2001. |
| 41 | |
| 42 | This library is free software; you can redistribute it and/or |
| 43 | modify it under the terms of the GNU Lesser General Public |
| 44 | License as published by the Free Software Foundation; either |
| 45 | version 2.1 of the License, or (at your option) any later version. |
| 46 | |
| 47 | This library is distributed in the hope that it will be useful, |
| 48 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 49 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 50 | Lesser General Public License for more details. |
| 51 | |
| 52 | You should have received a copy of the GNU Lesser General Public |
| 53 | License along with this library; if not, see |
| 54 | <https://www.gnu.org/licenses/>. */ |
| 55 | |
| 56 | |
| 57 | #include <math.h> |
| 58 | #include <math_private.h> |
| 59 | #include <libm-alias-ldouble.h> |
| 60 | |
| 61 | static const _Float128 CBRT2 = L(1.259921049894873164767210607278228350570251); |
| 62 | static const _Float128 CBRT4 = L(1.587401051968199474751705639272308260391493); |
| 63 | static const _Float128 CBRT2I = L(0.7937005259840997373758528196361541301957467); |
| 64 | static const _Float128 CBRT4I = L(0.6299605249474365823836053036391141752851257); |
| 65 | |
| 66 | |
| 67 | _Float128 |
| 68 | __cbrtl (_Float128 x) |
| 69 | { |
| 70 | int e, rem, sign; |
| 71 | _Float128 z; |
| 72 | |
| 73 | if (!isfinite (x)) |
| 74 | return x + x; |
| 75 | |
| 76 | if (x == 0) |
| 77 | return (x); |
| 78 | |
| 79 | if (x > 0) |
| 80 | sign = 1; |
| 81 | else |
| 82 | { |
| 83 | sign = -1; |
| 84 | x = -x; |
| 85 | } |
| 86 | |
| 87 | z = x; |
| 88 | /* extract power of 2, leaving mantissa between 0.5 and 1 */ |
| 89 | x = __frexpl (x, &e); |
| 90 | |
| 91 | /* Approximate cube root of number between .5 and 1, |
| 92 | peak relative error = 1.2e-6 */ |
| 93 | x = ((((L(1.3584464340920900529734e-1) * x |
| 94 | - L(6.3986917220457538402318e-1)) * x |
| 95 | + L(1.2875551670318751538055e0)) * x |
| 96 | - L(1.4897083391357284957891e0)) * x |
| 97 | + L(1.3304961236013647092521e0)) * x + L(3.7568280825958912391243e-1); |
| 98 | |
| 99 | /* exponent divided by 3 */ |
| 100 | if (e >= 0) |
| 101 | { |
| 102 | rem = e; |
| 103 | e /= 3; |
| 104 | rem -= 3 * e; |
| 105 | if (rem == 1) |
| 106 | x *= CBRT2; |
| 107 | else if (rem == 2) |
| 108 | x *= CBRT4; |
| 109 | } |
| 110 | else |
| 111 | { /* argument less than 1 */ |
| 112 | e = -e; |
| 113 | rem = e; |
| 114 | e /= 3; |
| 115 | rem -= 3 * e; |
| 116 | if (rem == 1) |
| 117 | x *= CBRT2I; |
| 118 | else if (rem == 2) |
| 119 | x *= CBRT4I; |
| 120 | e = -e; |
| 121 | } |
| 122 | |
| 123 | /* multiply by power of 2 */ |
| 124 | x = __ldexpl (x, e); |
| 125 | |
| 126 | /* Newton iteration */ |
| 127 | x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); |
| 128 | x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); |
| 129 | x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); |
| 130 | |
| 131 | if (sign < 0) |
| 132 | x = -x; |
| 133 | return (x); |
| 134 | } |
| 135 | |
| 136 | libm_alias_ldouble (__cbrt, cbrt) |
| 137 | |