| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* Modifications and expansions for 128-bit long double are |
| 13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 14 | and are incorporated herein by permission of the author. The author |
| 15 | reserves the right to distribute this material elsewhere under different |
| 16 | copying permissions. These modifications are distributed here under |
| 17 | the following terms: |
| 18 | |
| 19 | This library is free software; you can redistribute it and/or |
| 20 | modify it under the terms of the GNU Lesser General Public |
| 21 | License as published by the Free Software Foundation; either |
| 22 | version 2.1 of the License, or (at your option) any later version. |
| 23 | |
| 24 | This library is distributed in the hope that it will be useful, |
| 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 27 | Lesser General Public License for more details. |
| 28 | |
| 29 | You should have received a copy of the GNU Lesser General Public |
| 30 | License along with this library; if not, see |
| 31 | <https://www.gnu.org/licenses/>. */ |
| 32 | |
| 33 | /* double erf(double x) |
| 34 | * double erfc(double x) |
| 35 | * x |
| 36 | * 2 |\ |
| 37 | * erf(x) = --------- | exp(-t*t)dt |
| 38 | * sqrt(pi) \| |
| 39 | * 0 |
| 40 | * |
| 41 | * erfc(x) = 1-erf(x) |
| 42 | * Note that |
| 43 | * erf(-x) = -erf(x) |
| 44 | * erfc(-x) = 2 - erfc(x) |
| 45 | * |
| 46 | * Method: |
| 47 | * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8] |
| 48 | * Remark. The formula is derived by noting |
| 49 | * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
| 50 | * and that |
| 51 | * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
| 52 | * is close to one. |
| 53 | * |
| 54 | * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0 |
| 55 | * erfc(x) = 1 - erf(x) if |x| < 1/4 |
| 56 | * |
| 57 | * 2. For |x| in [7/8, 1], let s = |x| - 1, and |
| 58 | * c = 0.84506291151 rounded to single (24 bits) |
| 59 | * erf(s + c) = sign(x) * (c + P1(s)/Q1(s)) |
| 60 | * Remark: here we use the taylor series expansion at x=1. |
| 61 | * erf(1+s) = erf(1) + s*Poly(s) |
| 62 | * = 0.845.. + P1(s)/Q1(s) |
| 63 | * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
| 64 | * |
| 65 | * 3. For x in [1/4, 5/4], |
| 66 | * erfc(s + const) = erfc(const) + s P1(s)/Q1(s) |
| 67 | * for const = 1/4, 3/8, ..., 9/8 |
| 68 | * and 0 <= s <= 1/8 . |
| 69 | * |
| 70 | * 4. For x in [5/4, 107], |
| 71 | * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z)) |
| 72 | * z=1/x^2 |
| 73 | * The interval is partitioned into several segments |
| 74 | * of width 1/8 in 1/x. |
| 75 | * |
| 76 | * Note1: |
| 77 | * To compute exp(-x*x-0.5625+R/S), let s be a single |
| 78 | * precision number and s := x; then |
| 79 | * -x*x = -s*s + (s-x)*(s+x) |
| 80 | * exp(-x*x-0.5626+R/S) = |
| 81 | * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
| 82 | * Note2: |
| 83 | * Here 4 and 5 make use of the asymptotic series |
| 84 | * exp(-x*x) |
| 85 | * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
| 86 | * x*sqrt(pi) |
| 87 | * |
| 88 | * 5. For inf > x >= 107 |
| 89 | * erf(x) = sign(x) *(1 - tiny) (raise inexact) |
| 90 | * erfc(x) = tiny*tiny (raise underflow) if x > 0 |
| 91 | * = 2 - tiny if x<0 |
| 92 | * |
| 93 | * 7. Special case: |
| 94 | * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
| 95 | * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
| 96 | * erfc/erf(NaN) is NaN |
| 97 | */ |
| 98 | |
| 99 | #include <errno.h> |
| 100 | #include <float.h> |
| 101 | #include <math.h> |
| 102 | #include <math_private.h> |
| 103 | #include <math-underflow.h> |
| 104 | #include <libm-alias-ldouble.h> |
| 105 | |
| 106 | /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ |
| 107 | |
| 108 | static _Float128 |
| 109 | neval (_Float128 x, const _Float128 *p, int n) |
| 110 | { |
| 111 | _Float128 y; |
| 112 | |
| 113 | p += n; |
| 114 | y = *p--; |
| 115 | do |
| 116 | { |
| 117 | y = y * x + *p--; |
| 118 | } |
| 119 | while (--n > 0); |
| 120 | return y; |
| 121 | } |
| 122 | |
| 123 | |
| 124 | /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ |
| 125 | |
| 126 | static _Float128 |
| 127 | deval (_Float128 x, const _Float128 *p, int n) |
| 128 | { |
| 129 | _Float128 y; |
| 130 | |
| 131 | p += n; |
| 132 | y = x + *p--; |
| 133 | do |
| 134 | { |
| 135 | y = y * x + *p--; |
| 136 | } |
| 137 | while (--n > 0); |
| 138 | return y; |
| 139 | } |
| 140 | |
| 141 | |
| 142 | |
| 143 | static const _Float128 |
| 144 | tiny = L(1e-4931), |
| 145 | one = 1, |
| 146 | two = 2, |
| 147 | /* 2/sqrt(pi) - 1 */ |
| 148 | efx = L(1.2837916709551257389615890312154517168810E-1); |
| 149 | |
| 150 | |
| 151 | /* erf(x) = x + x R(x^2) |
| 152 | 0 <= x <= 7/8 |
| 153 | Peak relative error 1.8e-35 */ |
| 154 | #define NTN1 8 |
| 155 | static const _Float128 TN1[NTN1 + 1] = |
| 156 | { |
| 157 | L(-3.858252324254637124543172907442106422373E10), |
| 158 | L(9.580319248590464682316366876952214879858E10), |
| 159 | L(1.302170519734879977595901236693040544854E10), |
| 160 | L(2.922956950426397417800321486727032845006E9), |
| 161 | L(1.764317520783319397868923218385468729799E8), |
| 162 | L(1.573436014601118630105796794840834145120E7), |
| 163 | L(4.028077380105721388745632295157816229289E5), |
| 164 | L(1.644056806467289066852135096352853491530E4), |
| 165 | L(3.390868480059991640235675479463287886081E1) |
| 166 | }; |
| 167 | #define NTD1 8 |
| 168 | static const _Float128 TD1[NTD1 + 1] = |
| 169 | { |
| 170 | L(-3.005357030696532927149885530689529032152E11), |
| 171 | L(-1.342602283126282827411658673839982164042E11), |
| 172 | L(-2.777153893355340961288511024443668743399E10), |
| 173 | L(-3.483826391033531996955620074072768276974E9), |
| 174 | L(-2.906321047071299585682722511260895227921E8), |
| 175 | L(-1.653347985722154162439387878512427542691E7), |
| 176 | L(-6.245520581562848778466500301865173123136E5), |
| 177 | L(-1.402124304177498828590239373389110545142E4), |
| 178 | L(-1.209368072473510674493129989468348633579E2) |
| 179 | /* 1.0E0 */ |
| 180 | }; |
| 181 | |
| 182 | |
| 183 | /* erf(z+1) = erf_const + P(z)/Q(z) |
| 184 | -.125 <= z <= 0 |
| 185 | Peak relative error 7.3e-36 */ |
| 186 | static const _Float128 erf_const = L(0.845062911510467529296875); |
| 187 | #define NTN2 8 |
| 188 | static const _Float128 TN2[NTN2 + 1] = |
| 189 | { |
| 190 | L(-4.088889697077485301010486931817357000235E1), |
| 191 | L(7.157046430681808553842307502826960051036E3), |
| 192 | L(-2.191561912574409865550015485451373731780E3), |
| 193 | L(2.180174916555316874988981177654057337219E3), |
| 194 | L(2.848578658049670668231333682379720943455E2), |
| 195 | L(1.630362490952512836762810462174798925274E2), |
| 196 | L(6.317712353961866974143739396865293596895E0), |
| 197 | L(2.450441034183492434655586496522857578066E1), |
| 198 | L(5.127662277706787664956025545897050896203E-1) |
| 199 | }; |
| 200 | #define NTD2 8 |
| 201 | static const _Float128 TD2[NTD2 + 1] = |
| 202 | { |
| 203 | L(1.731026445926834008273768924015161048885E4), |
| 204 | L(1.209682239007990370796112604286048173750E4), |
| 205 | L(1.160950290217993641320602282462976163857E4), |
| 206 | L(5.394294645127126577825507169061355698157E3), |
| 207 | L(2.791239340533632669442158497532521776093E3), |
| 208 | L(8.989365571337319032943005387378993827684E2), |
| 209 | L(2.974016493766349409725385710897298069677E2), |
| 210 | L(6.148192754590376378740261072533527271947E1), |
| 211 | L(1.178502892490738445655468927408440847480E1) |
| 212 | /* 1.0E0 */ |
| 213 | }; |
| 214 | |
| 215 | |
| 216 | /* erfc(x + 0.25) = erfc(0.25) + x R(x) |
| 217 | 0 <= x < 0.125 |
| 218 | Peak relative error 1.4e-35 */ |
| 219 | #define NRNr13 8 |
| 220 | static const _Float128 RNr13[NRNr13 + 1] = |
| 221 | { |
| 222 | L(-2.353707097641280550282633036456457014829E3), |
| 223 | L(3.871159656228743599994116143079870279866E2), |
| 224 | L(-3.888105134258266192210485617504098426679E2), |
| 225 | L(-2.129998539120061668038806696199343094971E1), |
| 226 | L(-8.125462263594034672468446317145384108734E1), |
| 227 | L(8.151549093983505810118308635926270319660E0), |
| 228 | L(-5.033362032729207310462422357772568553670E0), |
| 229 | L(-4.253956621135136090295893547735851168471E-2), |
| 230 | L(-8.098602878463854789780108161581050357814E-2) |
| 231 | }; |
| 232 | #define NRDr13 7 |
| 233 | static const _Float128 RDr13[NRDr13 + 1] = |
| 234 | { |
| 235 | L(2.220448796306693503549505450626652881752E3), |
| 236 | L(1.899133258779578688791041599040951431383E2), |
| 237 | L(1.061906712284961110196427571557149268454E3), |
| 238 | L(7.497086072306967965180978101974566760042E1), |
| 239 | L(2.146796115662672795876463568170441327274E2), |
| 240 | L(1.120156008362573736664338015952284925592E1), |
| 241 | L(2.211014952075052616409845051695042741074E1), |
| 242 | L(6.469655675326150785692908453094054988938E-1) |
| 243 | /* 1.0E0 */ |
| 244 | }; |
| 245 | /* erfc(0.25) = C13a + C13b to extra precision. */ |
| 246 | static const _Float128 C13a = L(0.723663330078125); |
| 247 | static const _Float128 C13b = L(1.0279753638067014931732235184287934646022E-5); |
| 248 | |
| 249 | |
| 250 | /* erfc(x + 0.375) = erfc(0.375) + x R(x) |
| 251 | 0 <= x < 0.125 |
| 252 | Peak relative error 1.2e-35 */ |
| 253 | #define NRNr14 8 |
| 254 | static const _Float128 RNr14[NRNr14 + 1] = |
| 255 | { |
| 256 | L(-2.446164016404426277577283038988918202456E3), |
| 257 | L(6.718753324496563913392217011618096698140E2), |
| 258 | L(-4.581631138049836157425391886957389240794E2), |
| 259 | L(-2.382844088987092233033215402335026078208E1), |
| 260 | L(-7.119237852400600507927038680970936336458E1), |
| 261 | L(1.313609646108420136332418282286454287146E1), |
| 262 | L(-6.188608702082264389155862490056401365834E0), |
| 263 | L(-2.787116601106678287277373011101132659279E-2), |
| 264 | L(-2.230395570574153963203348263549700967918E-2) |
| 265 | }; |
| 266 | #define NRDr14 7 |
| 267 | static const _Float128 RDr14[NRDr14 + 1] = |
| 268 | { |
| 269 | L(2.495187439241869732696223349840963702875E3), |
| 270 | L(2.503549449872925580011284635695738412162E2), |
| 271 | L(1.159033560988895481698051531263861842461E3), |
| 272 | L(9.493751466542304491261487998684383688622E1), |
| 273 | L(2.276214929562354328261422263078480321204E2), |
| 274 | L(1.367697521219069280358984081407807931847E1), |
| 275 | L(2.276988395995528495055594829206582732682E1), |
| 276 | L(7.647745753648996559837591812375456641163E-1) |
| 277 | /* 1.0E0 */ |
| 278 | }; |
| 279 | /* erfc(0.375) = C14a + C14b to extra precision. */ |
| 280 | static const _Float128 C14a = L(0.5958709716796875); |
| 281 | static const _Float128 C14b = L(1.2118885490201676174914080878232469565953E-5); |
| 282 | |
| 283 | /* erfc(x + 0.5) = erfc(0.5) + x R(x) |
| 284 | 0 <= x < 0.125 |
| 285 | Peak relative error 4.7e-36 */ |
| 286 | #define NRNr15 8 |
| 287 | static const _Float128 RNr15[NRNr15 + 1] = |
| 288 | { |
| 289 | L(-2.624212418011181487924855581955853461925E3), |
| 290 | L(8.473828904647825181073831556439301342756E2), |
| 291 | L(-5.286207458628380765099405359607331669027E2), |
| 292 | L(-3.895781234155315729088407259045269652318E1), |
| 293 | L(-6.200857908065163618041240848728398496256E1), |
| 294 | L(1.469324610346924001393137895116129204737E1), |
| 295 | L(-6.961356525370658572800674953305625578903E0), |
| 296 | L(5.145724386641163809595512876629030548495E-3), |
| 297 | L(1.990253655948179713415957791776180406812E-2) |
| 298 | }; |
| 299 | #define NRDr15 7 |
| 300 | static const _Float128 RDr15[NRDr15 + 1] = |
| 301 | { |
| 302 | L(2.986190760847974943034021764693341524962E3), |
| 303 | L(5.288262758961073066335410218650047725985E2), |
| 304 | L(1.363649178071006978355113026427856008978E3), |
| 305 | L(1.921707975649915894241864988942255320833E2), |
| 306 | L(2.588651100651029023069013885900085533226E2), |
| 307 | L(2.628752920321455606558942309396855629459E1), |
| 308 | L(2.455649035885114308978333741080991380610E1), |
| 309 | L(1.378826653595128464383127836412100939126E0) |
| 310 | /* 1.0E0 */ |
| 311 | }; |
| 312 | /* erfc(0.5) = C15a + C15b to extra precision. */ |
| 313 | static const _Float128 C15a = L(0.4794921875); |
| 314 | static const _Float128 C15b = L(7.9346869534623172533461080354712635484242E-6); |
| 315 | |
| 316 | /* erfc(x + 0.625) = erfc(0.625) + x R(x) |
| 317 | 0 <= x < 0.125 |
| 318 | Peak relative error 5.1e-36 */ |
| 319 | #define NRNr16 8 |
| 320 | static const _Float128 RNr16[NRNr16 + 1] = |
| 321 | { |
| 322 | L(-2.347887943200680563784690094002722906820E3), |
| 323 | L(8.008590660692105004780722726421020136482E2), |
| 324 | L(-5.257363310384119728760181252132311447963E2), |
| 325 | L(-4.471737717857801230450290232600243795637E1), |
| 326 | L(-4.849540386452573306708795324759300320304E1), |
| 327 | L(1.140885264677134679275986782978655952843E1), |
| 328 | L(-6.731591085460269447926746876983786152300E0), |
| 329 | L(1.370831653033047440345050025876085121231E-1), |
| 330 | L(2.022958279982138755020825717073966576670E-2), |
| 331 | }; |
| 332 | #define NRDr16 7 |
| 333 | static const _Float128 RDr16[NRDr16 + 1] = |
| 334 | { |
| 335 | L(3.075166170024837215399323264868308087281E3), |
| 336 | L(8.730468942160798031608053127270430036627E2), |
| 337 | L(1.458472799166340479742581949088453244767E3), |
| 338 | L(3.230423687568019709453130785873540386217E2), |
| 339 | L(2.804009872719893612081109617983169474655E2), |
| 340 | L(4.465334221323222943418085830026979293091E1), |
| 341 | L(2.612723259683205928103787842214809134746E1), |
| 342 | L(2.341526751185244109722204018543276124997E0), |
| 343 | /* 1.0E0 */ |
| 344 | }; |
| 345 | /* erfc(0.625) = C16a + C16b to extra precision. */ |
| 346 | static const _Float128 C16a = L(0.3767547607421875); |
| 347 | static const _Float128 C16b = L(4.3570693945275513594941232097252997287766E-6); |
| 348 | |
| 349 | /* erfc(x + 0.75) = erfc(0.75) + x R(x) |
| 350 | 0 <= x < 0.125 |
| 351 | Peak relative error 1.7e-35 */ |
| 352 | #define NRNr17 8 |
| 353 | static const _Float128 RNr17[NRNr17 + 1] = |
| 354 | { |
| 355 | L(-1.767068734220277728233364375724380366826E3), |
| 356 | L(6.693746645665242832426891888805363898707E2), |
| 357 | L(-4.746224241837275958126060307406616817753E2), |
| 358 | L(-2.274160637728782675145666064841883803196E1), |
| 359 | L(-3.541232266140939050094370552538987982637E1), |
| 360 | L(6.988950514747052676394491563585179503865E0), |
| 361 | L(-5.807687216836540830881352383529281215100E0), |
| 362 | L(3.631915988567346438830283503729569443642E-1), |
| 363 | L(-1.488945487149634820537348176770282391202E-2) |
| 364 | }; |
| 365 | #define NRDr17 7 |
| 366 | static const _Float128 RDr17[NRDr17 + 1] = |
| 367 | { |
| 368 | L(2.748457523498150741964464942246913394647E3), |
| 369 | L(1.020213390713477686776037331757871252652E3), |
| 370 | L(1.388857635935432621972601695296561952738E3), |
| 371 | L(3.903363681143817750895999579637315491087E2), |
| 372 | L(2.784568344378139499217928969529219886578E2), |
| 373 | L(5.555800830216764702779238020065345401144E1), |
| 374 | L(2.646215470959050279430447295801291168941E1), |
| 375 | L(2.984905282103517497081766758550112011265E0), |
| 376 | /* 1.0E0 */ |
| 377 | }; |
| 378 | /* erfc(0.75) = C17a + C17b to extra precision. */ |
| 379 | static const _Float128 C17a = L(0.2888336181640625); |
| 380 | static const _Float128 C17b = L(1.0748182422368401062165408589222625794046E-5); |
| 381 | |
| 382 | |
| 383 | /* erfc(x + 0.875) = erfc(0.875) + x R(x) |
| 384 | 0 <= x < 0.125 |
| 385 | Peak relative error 2.2e-35 */ |
| 386 | #define NRNr18 8 |
| 387 | static const _Float128 RNr18[NRNr18 + 1] = |
| 388 | { |
| 389 | L(-1.342044899087593397419622771847219619588E3), |
| 390 | L(6.127221294229172997509252330961641850598E2), |
| 391 | L(-4.519821356522291185621206350470820610727E2), |
| 392 | L(1.223275177825128732497510264197915160235E1), |
| 393 | L(-2.730789571382971355625020710543532867692E1), |
| 394 | L(4.045181204921538886880171727755445395862E0), |
| 395 | L(-4.925146477876592723401384464691452700539E0), |
| 396 | L(5.933878036611279244654299924101068088582E-1), |
| 397 | L(-5.557645435858916025452563379795159124753E-2) |
| 398 | }; |
| 399 | #define NRDr18 7 |
| 400 | static const _Float128 RDr18[NRDr18 + 1] = |
| 401 | { |
| 402 | L(2.557518000661700588758505116291983092951E3), |
| 403 | L(1.070171433382888994954602511991940418588E3), |
| 404 | L(1.344842834423493081054489613250688918709E3), |
| 405 | L(4.161144478449381901208660598266288188426E2), |
| 406 | L(2.763670252219855198052378138756906980422E2), |
| 407 | L(5.998153487868943708236273854747564557632E1), |
| 408 | L(2.657695108438628847733050476209037025318E1), |
| 409 | L(3.252140524394421868923289114410336976512E0), |
| 410 | /* 1.0E0 */ |
| 411 | }; |
| 412 | /* erfc(0.875) = C18a + C18b to extra precision. */ |
| 413 | static const _Float128 C18a = L(0.215911865234375); |
| 414 | static const _Float128 C18b = L(1.3073705765341685464282101150637224028267E-5); |
| 415 | |
| 416 | /* erfc(x + 1.0) = erfc(1.0) + x R(x) |
| 417 | 0 <= x < 0.125 |
| 418 | Peak relative error 1.6e-35 */ |
| 419 | #define NRNr19 8 |
| 420 | static const _Float128 RNr19[NRNr19 + 1] = |
| 421 | { |
| 422 | L(-1.139180936454157193495882956565663294826E3), |
| 423 | L(6.134903129086899737514712477207945973616E2), |
| 424 | L(-4.628909024715329562325555164720732868263E2), |
| 425 | L(4.165702387210732352564932347500364010833E1), |
| 426 | L(-2.286979913515229747204101330405771801610E1), |
| 427 | L(1.870695256449872743066783202326943667722E0), |
| 428 | L(-4.177486601273105752879868187237000032364E0), |
| 429 | L(7.533980372789646140112424811291782526263E-1), |
| 430 | L(-8.629945436917752003058064731308767664446E-2) |
| 431 | }; |
| 432 | #define NRDr19 7 |
| 433 | static const _Float128 RDr19[NRDr19 + 1] = |
| 434 | { |
| 435 | L(2.744303447981132701432716278363418643778E3), |
| 436 | L(1.266396359526187065222528050591302171471E3), |
| 437 | L(1.466739461422073351497972255511919814273E3), |
| 438 | L(4.868710570759693955597496520298058147162E2), |
| 439 | L(2.993694301559756046478189634131722579643E2), |
| 440 | L(6.868976819510254139741559102693828237440E1), |
| 441 | L(2.801505816247677193480190483913753613630E1), |
| 442 | L(3.604439909194350263552750347742663954481E0), |
| 443 | /* 1.0E0 */ |
| 444 | }; |
| 445 | /* erfc(1.0) = C19a + C19b to extra precision. */ |
| 446 | static const _Float128 C19a = L(0.15728759765625); |
| 447 | static const _Float128 C19b = L(1.1609394035130658779364917390740703933002E-5); |
| 448 | |
| 449 | /* erfc(x + 1.125) = erfc(1.125) + x R(x) |
| 450 | 0 <= x < 0.125 |
| 451 | Peak relative error 3.6e-36 */ |
| 452 | #define NRNr20 8 |
| 453 | static const _Float128 RNr20[NRNr20 + 1] = |
| 454 | { |
| 455 | L(-9.652706916457973956366721379612508047640E2), |
| 456 | L(5.577066396050932776683469951773643880634E2), |
| 457 | L(-4.406335508848496713572223098693575485978E2), |
| 458 | L(5.202893466490242733570232680736966655434E1), |
| 459 | L(-1.931311847665757913322495948705563937159E1), |
| 460 | L(-9.364318268748287664267341457164918090611E-2), |
| 461 | L(-3.306390351286352764891355375882586201069E0), |
| 462 | L(7.573806045289044647727613003096916516475E-1), |
| 463 | L(-9.611744011489092894027478899545635991213E-2) |
| 464 | }; |
| 465 | #define NRDr20 7 |
| 466 | static const _Float128 RDr20[NRDr20 + 1] = |
| 467 | { |
| 468 | L(3.032829629520142564106649167182428189014E3), |
| 469 | L(1.659648470721967719961167083684972196891E3), |
| 470 | L(1.703545128657284619402511356932569292535E3), |
| 471 | L(6.393465677731598872500200253155257708763E2), |
| 472 | L(3.489131397281030947405287112726059221934E2), |
| 473 | L(8.848641738570783406484348434387611713070E1), |
| 474 | L(3.132269062552392974833215844236160958502E1), |
| 475 | L(4.430131663290563523933419966185230513168E0) |
| 476 | /* 1.0E0 */ |
| 477 | }; |
| 478 | /* erfc(1.125) = C20a + C20b to extra precision. */ |
| 479 | static const _Float128 C20a = L(0.111602783203125); |
| 480 | static const _Float128 C20b = L(8.9850951672359304215530728365232161564636E-6); |
| 481 | |
| 482 | /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) |
| 483 | 7/8 <= 1/x < 1 |
| 484 | Peak relative error 1.4e-35 */ |
| 485 | #define NRNr8 9 |
| 486 | static const _Float128 RNr8[NRNr8 + 1] = |
| 487 | { |
| 488 | L(3.587451489255356250759834295199296936784E1), |
| 489 | L(5.406249749087340431871378009874875889602E2), |
| 490 | L(2.931301290625250886238822286506381194157E3), |
| 491 | L(7.359254185241795584113047248898753470923E3), |
| 492 | L(9.201031849810636104112101947312492532314E3), |
| 493 | L(5.749697096193191467751650366613289284777E3), |
| 494 | L(1.710415234419860825710780802678697889231E3), |
| 495 | L(2.150753982543378580859546706243022719599E2), |
| 496 | L(8.740953582272147335100537849981160931197E0), |
| 497 | L(4.876422978828717219629814794707963640913E-2) |
| 498 | }; |
| 499 | #define NRDr8 8 |
| 500 | static const _Float128 RDr8[NRDr8 + 1] = |
| 501 | { |
| 502 | L(6.358593134096908350929496535931630140282E1), |
| 503 | L(9.900253816552450073757174323424051765523E2), |
| 504 | L(5.642928777856801020545245437089490805186E3), |
| 505 | L(1.524195375199570868195152698617273739609E4), |
| 506 | L(2.113829644500006749947332935305800887345E4), |
| 507 | L(1.526438562626465706267943737310282977138E4), |
| 508 | L(5.561370922149241457131421914140039411782E3), |
| 509 | L(9.394035530179705051609070428036834496942E2), |
| 510 | L(6.147019596150394577984175188032707343615E1) |
| 511 | /* 1.0E0 */ |
| 512 | }; |
| 513 | |
| 514 | /* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) |
| 515 | 0.75 <= 1/x <= 0.875 |
| 516 | Peak relative error 2.0e-36 */ |
| 517 | #define NRNr7 9 |
| 518 | static const _Float128 RNr7[NRNr7 + 1] = |
| 519 | { |
| 520 | L(1.686222193385987690785945787708644476545E1), |
| 521 | L(1.178224543567604215602418571310612066594E3), |
| 522 | L(1.764550584290149466653899886088166091093E4), |
| 523 | L(1.073758321890334822002849369898232811561E5), |
| 524 | L(3.132840749205943137619839114451290324371E5), |
| 525 | L(4.607864939974100224615527007793867585915E5), |
| 526 | L(3.389781820105852303125270837910972384510E5), |
| 527 | L(1.174042187110565202875011358512564753399E5), |
| 528 | L(1.660013606011167144046604892622504338313E4), |
| 529 | L(6.700393957480661937695573729183733234400E2) |
| 530 | }; |
| 531 | #define NRDr7 9 |
| 532 | static const _Float128 RDr7[NRDr7 + 1] = |
| 533 | { |
| 534 | L(-1.709305024718358874701575813642933561169E3), |
| 535 | L(-3.280033887481333199580464617020514788369E4), |
| 536 | L(-2.345284228022521885093072363418750835214E5), |
| 537 | L(-8.086758123097763971926711729242327554917E5), |
| 538 | L(-1.456900414510108718402423999575992450138E6), |
| 539 | L(-1.391654264881255068392389037292702041855E6), |
| 540 | L(-6.842360801869939983674527468509852583855E5), |
| 541 | L(-1.597430214446573566179675395199807533371E5), |
| 542 | L(-1.488876130609876681421645314851760773480E4), |
| 543 | L(-3.511762950935060301403599443436465645703E2) |
| 544 | /* 1.0E0 */ |
| 545 | }; |
| 546 | |
| 547 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
| 548 | 5/8 <= 1/x < 3/4 |
| 549 | Peak relative error 1.9e-35 */ |
| 550 | #define NRNr6 9 |
| 551 | static const _Float128 RNr6[NRNr6 + 1] = |
| 552 | { |
| 553 | L(1.642076876176834390623842732352935761108E0), |
| 554 | L(1.207150003611117689000664385596211076662E2), |
| 555 | L(2.119260779316389904742873816462800103939E3), |
| 556 | L(1.562942227734663441801452930916044224174E4), |
| 557 | L(5.656779189549710079988084081145693580479E4), |
| 558 | L(1.052166241021481691922831746350942786299E5), |
| 559 | L(9.949798524786000595621602790068349165758E4), |
| 560 | L(4.491790734080265043407035220188849562856E4), |
| 561 | L(8.377074098301530326270432059434791287601E3), |
| 562 | L(4.506934806567986810091824791963991057083E2) |
| 563 | }; |
| 564 | #define NRDr6 9 |
| 565 | static const _Float128 RDr6[NRDr6 + 1] = |
| 566 | { |
| 567 | L(-1.664557643928263091879301304019826629067E2), |
| 568 | L(-3.800035902507656624590531122291160668452E3), |
| 569 | L(-3.277028191591734928360050685359277076056E4), |
| 570 | L(-1.381359471502885446400589109566587443987E5), |
| 571 | L(-3.082204287382581873532528989283748656546E5), |
| 572 | L(-3.691071488256738343008271448234631037095E5), |
| 573 | L(-2.300482443038349815750714219117566715043E5), |
| 574 | L(-6.873955300927636236692803579555752171530E4), |
| 575 | L(-8.262158817978334142081581542749986845399E3), |
| 576 | L(-2.517122254384430859629423488157361983661E2) |
| 577 | /* 1.00 */ |
| 578 | }; |
| 579 | |
| 580 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
| 581 | 1/2 <= 1/x < 5/8 |
| 582 | Peak relative error 4.6e-36 */ |
| 583 | #define NRNr5 10 |
| 584 | static const _Float128 RNr5[NRNr5 + 1] = |
| 585 | { |
| 586 | L(-3.332258927455285458355550878136506961608E-3), |
| 587 | L(-2.697100758900280402659586595884478660721E-1), |
| 588 | L(-6.083328551139621521416618424949137195536E0), |
| 589 | L(-6.119863528983308012970821226810162441263E1), |
| 590 | L(-3.176535282475593173248810678636522589861E2), |
| 591 | L(-8.933395175080560925809992467187963260693E2), |
| 592 | L(-1.360019508488475978060917477620199499560E3), |
| 593 | L(-1.075075579828188621541398761300910213280E3), |
| 594 | L(-4.017346561586014822824459436695197089916E2), |
| 595 | L(-5.857581368145266249509589726077645791341E1), |
| 596 | L(-2.077715925587834606379119585995758954399E0) |
| 597 | }; |
| 598 | #define NRDr5 9 |
| 599 | static const _Float128 RDr5[NRDr5 + 1] = |
| 600 | { |
| 601 | L(3.377879570417399341550710467744693125385E-1), |
| 602 | L(1.021963322742390735430008860602594456187E1), |
| 603 | L(1.200847646592942095192766255154827011939E2), |
| 604 | L(7.118915528142927104078182863387116942836E2), |
| 605 | L(2.318159380062066469386544552429625026238E3), |
| 606 | L(4.238729853534009221025582008928765281620E3), |
| 607 | L(4.279114907284825886266493994833515580782E3), |
| 608 | L(2.257277186663261531053293222591851737504E3), |
| 609 | L(5.570475501285054293371908382916063822957E2), |
| 610 | L(5.142189243856288981145786492585432443560E1) |
| 611 | /* 1.0E0 */ |
| 612 | }; |
| 613 | |
| 614 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
| 615 | 3/8 <= 1/x < 1/2 |
| 616 | Peak relative error 2.0e-36 */ |
| 617 | #define NRNr4 10 |
| 618 | static const _Float128 RNr4[NRNr4 + 1] = |
| 619 | { |
| 620 | L(3.258530712024527835089319075288494524465E-3), |
| 621 | L(2.987056016877277929720231688689431056567E-1), |
| 622 | L(8.738729089340199750734409156830371528862E0), |
| 623 | L(1.207211160148647782396337792426311125923E2), |
| 624 | L(8.997558632489032902250523945248208224445E2), |
| 625 | L(3.798025197699757225978410230530640879762E3), |
| 626 | L(9.113203668683080975637043118209210146846E3), |
| 627 | L(1.203285891339933238608683715194034900149E4), |
| 628 | L(8.100647057919140328536743641735339740855E3), |
| 629 | L(2.383888249907144945837976899822927411769E3), |
| 630 | L(2.127493573166454249221983582495245662319E2) |
| 631 | }; |
| 632 | #define NRDr4 10 |
| 633 | static const _Float128 RDr4[NRDr4 + 1] = |
| 634 | { |
| 635 | L(-3.303141981514540274165450687270180479586E-1), |
| 636 | L(-1.353768629363605300707949368917687066724E1), |
| 637 | L(-2.206127630303621521950193783894598987033E2), |
| 638 | L(-1.861800338758066696514480386180875607204E3), |
| 639 | L(-8.889048775872605708249140016201753255599E3), |
| 640 | L(-2.465888106627948210478692168261494857089E4), |
| 641 | L(-3.934642211710774494879042116768390014289E4), |
| 642 | L(-3.455077258242252974937480623730228841003E4), |
| 643 | L(-1.524083977439690284820586063729912653196E4), |
| 644 | L(-2.810541887397984804237552337349093953857E3), |
| 645 | L(-1.343929553541159933824901621702567066156E2) |
| 646 | /* 1.0E0 */ |
| 647 | }; |
| 648 | |
| 649 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
| 650 | 1/4 <= 1/x < 3/8 |
| 651 | Peak relative error 8.4e-37 */ |
| 652 | #define NRNr3 11 |
| 653 | static const _Float128 RNr3[NRNr3 + 1] = |
| 654 | { |
| 655 | L(-1.952401126551202208698629992497306292987E-6), |
| 656 | L(-2.130881743066372952515162564941682716125E-4), |
| 657 | L(-8.376493958090190943737529486107282224387E-3), |
| 658 | L(-1.650592646560987700661598877522831234791E-1), |
| 659 | L(-1.839290818933317338111364667708678163199E0), |
| 660 | L(-1.216278715570882422410442318517814388470E1), |
| 661 | L(-4.818759344462360427612133632533779091386E1), |
| 662 | L(-1.120994661297476876804405329172164436784E2), |
| 663 | L(-1.452850765662319264191141091859300126931E2), |
| 664 | L(-9.485207851128957108648038238656777241333E1), |
| 665 | L(-2.563663855025796641216191848818620020073E1), |
| 666 | L(-1.787995944187565676837847610706317833247E0) |
| 667 | }; |
| 668 | #define NRDr3 10 |
| 669 | static const _Float128 RDr3[NRDr3 + 1] = |
| 670 | { |
| 671 | L(1.979130686770349481460559711878399476903E-4), |
| 672 | L(1.156941716128488266238105813374635099057E-2), |
| 673 | L(2.752657634309886336431266395637285974292E-1), |
| 674 | L(3.482245457248318787349778336603569327521E0), |
| 675 | L(2.569347069372696358578399521203959253162E1), |
| 676 | L(1.142279000180457419740314694631879921561E2), |
| 677 | L(3.056503977190564294341422623108332700840E2), |
| 678 | L(4.780844020923794821656358157128719184422E2), |
| 679 | L(4.105972727212554277496256802312730410518E2), |
| 680 | L(1.724072188063746970865027817017067646246E2), |
| 681 | L(2.815939183464818198705278118326590370435E1) |
| 682 | /* 1.0E0 */ |
| 683 | }; |
| 684 | |
| 685 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
| 686 | 1/8 <= 1/x < 1/4 |
| 687 | Peak relative error 1.5e-36 */ |
| 688 | #define NRNr2 11 |
| 689 | static const _Float128 RNr2[NRNr2 + 1] = |
| 690 | { |
| 691 | L(-2.638914383420287212401687401284326363787E-8), |
| 692 | L(-3.479198370260633977258201271399116766619E-6), |
| 693 | L(-1.783985295335697686382487087502222519983E-4), |
| 694 | L(-4.777876933122576014266349277217559356276E-3), |
| 695 | L(-7.450634738987325004070761301045014986520E-2), |
| 696 | L(-7.068318854874733315971973707247467326619E-1), |
| 697 | L(-4.113919921935944795764071670806867038732E0), |
| 698 | L(-1.440447573226906222417767283691888875082E1), |
| 699 | L(-2.883484031530718428417168042141288943905E1), |
| 700 | L(-2.990886974328476387277797361464279931446E1), |
| 701 | L(-1.325283914915104866248279787536128997331E1), |
| 702 | L(-1.572436106228070195510230310658206154374E0) |
| 703 | }; |
| 704 | #define NRDr2 10 |
| 705 | static const _Float128 RDr2[NRDr2 + 1] = |
| 706 | { |
| 707 | L(2.675042728136731923554119302571867799673E-6), |
| 708 | L(2.170997868451812708585443282998329996268E-4), |
| 709 | L(7.249969752687540289422684951196241427445E-3), |
| 710 | L(1.302040375859768674620410563307838448508E-1), |
| 711 | L(1.380202483082910888897654537144485285549E0), |
| 712 | L(8.926594113174165352623847870299170069350E0), |
| 713 | L(3.521089584782616472372909095331572607185E1), |
| 714 | L(8.233547427533181375185259050330809105570E1), |
| 715 | L(1.072971579885803033079469639073292840135E2), |
| 716 | L(6.943803113337964469736022094105143158033E1), |
| 717 | L(1.775695341031607738233608307835017282662E1) |
| 718 | /* 1.0E0 */ |
| 719 | }; |
| 720 | |
| 721 | /* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) |
| 722 | 1/128 <= 1/x < 1/8 |
| 723 | Peak relative error 2.2e-36 */ |
| 724 | #define NRNr1 9 |
| 725 | static const _Float128 RNr1[NRNr1 + 1] = |
| 726 | { |
| 727 | L(-4.250780883202361946697751475473042685782E-8), |
| 728 | L(-5.375777053288612282487696975623206383019E-6), |
| 729 | L(-2.573645949220896816208565944117382460452E-4), |
| 730 | L(-6.199032928113542080263152610799113086319E-3), |
| 731 | L(-8.262721198693404060380104048479916247786E-2), |
| 732 | L(-6.242615227257324746371284637695778043982E-1), |
| 733 | L(-2.609874739199595400225113299437099626386E0), |
| 734 | L(-5.581967563336676737146358534602770006970E0), |
| 735 | L(-5.124398923356022609707490956634280573882E0), |
| 736 | L(-1.290865243944292370661544030414667556649E0) |
| 737 | }; |
| 738 | #define NRDr1 8 |
| 739 | static const _Float128 RDr1[NRDr1 + 1] = |
| 740 | { |
| 741 | L(4.308976661749509034845251315983612976224E-6), |
| 742 | L(3.265390126432780184125233455960049294580E-4), |
| 743 | L(9.811328839187040701901866531796570418691E-3), |
| 744 | L(1.511222515036021033410078631914783519649E-1), |
| 745 | L(1.289264341917429958858379585970225092274E0), |
| 746 | L(6.147640356182230769548007536914983522270E0), |
| 747 | L(1.573966871337739784518246317003956180750E1), |
| 748 | L(1.955534123435095067199574045529218238263E1), |
| 749 | L(9.472613121363135472247929109615785855865E0) |
| 750 | /* 1.0E0 */ |
| 751 | }; |
| 752 | |
| 753 | |
| 754 | _Float128 |
| 755 | __erfl (_Float128 x) |
| 756 | { |
| 757 | _Float128 a, y, z; |
| 758 | int32_t i, ix, sign; |
| 759 | ieee854_long_double_shape_type u; |
| 760 | |
| 761 | u.value = x; |
| 762 | sign = u.parts32.w0; |
| 763 | ix = sign & 0x7fffffff; |
| 764 | |
| 765 | if (ix >= 0x7fff0000) |
| 766 | { /* erf(nan)=nan */ |
| 767 | i = ((sign & 0xffff0000) >> 31) << 1; |
| 768 | return (_Float128) (1 - i) + one / x; /* erf(+-inf)=+-1 */ |
| 769 | } |
| 770 | |
| 771 | if (ix >= 0x3fff0000) /* |x| >= 1.0 */ |
| 772 | { |
| 773 | if (ix >= 0x40030000 && sign > 0) |
| 774 | return one; /* x >= 16, avoid spurious underflow from erfc. */ |
| 775 | y = __erfcl (x); |
| 776 | return (one - y); |
| 777 | /* return (one - __erfcl (x)); */ |
| 778 | } |
| 779 | u.parts32.w0 = ix; |
| 780 | a = u.value; |
| 781 | z = x * x; |
| 782 | if (ix < 0x3ffec000) /* a < 0.875 */ |
| 783 | { |
| 784 | if (ix < 0x3fc60000) /* |x|<2**-57 */ |
| 785 | { |
| 786 | if (ix < 0x00080000) |
| 787 | { |
| 788 | /* Avoid spurious underflow. */ |
| 789 | _Float128 ret = 0.0625 * (16.0 * x + (16.0 * efx) * x); |
| 790 | math_check_force_underflow (ret); |
| 791 | return ret; |
| 792 | } |
| 793 | return x + efx * x; |
| 794 | } |
| 795 | y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1); |
| 796 | } |
| 797 | else |
| 798 | { |
| 799 | a = a - one; |
| 800 | y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2); |
| 801 | } |
| 802 | |
| 803 | if (sign & 0x80000000) /* x < 0 */ |
| 804 | y = -y; |
| 805 | return( y ); |
| 806 | } |
| 807 | |
| 808 | libm_alias_ldouble (__erf, erf) |
| 809 | _Float128 |
| 810 | __erfcl (_Float128 x) |
| 811 | { |
| 812 | _Float128 y, z, p, r; |
| 813 | int32_t i, ix, sign; |
| 814 | ieee854_long_double_shape_type u; |
| 815 | |
| 816 | u.value = x; |
| 817 | sign = u.parts32.w0; |
| 818 | ix = sign & 0x7fffffff; |
| 819 | u.parts32.w0 = ix; |
| 820 | |
| 821 | if (ix >= 0x7fff0000) |
| 822 | { /* erfc(nan)=nan */ |
| 823 | /* erfc(+-inf)=0,2 */ |
| 824 | return (_Float128) (((uint32_t) sign >> 31) << 1) + one / x; |
| 825 | } |
| 826 | |
| 827 | if (ix < 0x3ffd0000) /* |x| <1/4 */ |
| 828 | { |
| 829 | if (ix < 0x3f8d0000) /* |x|<2**-114 */ |
| 830 | return one - x; |
| 831 | return one - __erfl (x); |
| 832 | } |
| 833 | if (ix < 0x3fff4000) /* 1.25 */ |
| 834 | { |
| 835 | x = u.value; |
| 836 | i = 8.0 * x; |
| 837 | switch (i) |
| 838 | { |
| 839 | case 2: |
| 840 | z = x - L(0.25); |
| 841 | y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13); |
| 842 | y += C13a; |
| 843 | break; |
| 844 | case 3: |
| 845 | z = x - L(0.375); |
| 846 | y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14); |
| 847 | y += C14a; |
| 848 | break; |
| 849 | case 4: |
| 850 | z = x - L(0.5); |
| 851 | y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15); |
| 852 | y += C15a; |
| 853 | break; |
| 854 | case 5: |
| 855 | z = x - L(0.625); |
| 856 | y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16); |
| 857 | y += C16a; |
| 858 | break; |
| 859 | case 6: |
| 860 | z = x - L(0.75); |
| 861 | y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17); |
| 862 | y += C17a; |
| 863 | break; |
| 864 | case 7: |
| 865 | z = x - L(0.875); |
| 866 | y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18); |
| 867 | y += C18a; |
| 868 | break; |
| 869 | case 8: |
| 870 | z = x - 1; |
| 871 | y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19); |
| 872 | y += C19a; |
| 873 | break; |
| 874 | default: /* i == 9. */ |
| 875 | z = x - L(1.125); |
| 876 | y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20); |
| 877 | y += C20a; |
| 878 | break; |
| 879 | } |
| 880 | if (sign & 0x80000000) |
| 881 | y = 2 - y; |
| 882 | return y; |
| 883 | } |
| 884 | /* 1.25 < |x| < 107 */ |
| 885 | if (ix < 0x4005ac00) |
| 886 | { |
| 887 | /* x < -9 */ |
| 888 | if ((ix >= 0x40022000) && (sign & 0x80000000)) |
| 889 | return two - tiny; |
| 890 | |
| 891 | x = fabsl (x); |
| 892 | z = one / (x * x); |
| 893 | i = 8.0 / x; |
| 894 | switch (i) |
| 895 | { |
| 896 | default: |
| 897 | case 0: |
| 898 | p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1); |
| 899 | break; |
| 900 | case 1: |
| 901 | p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2); |
| 902 | break; |
| 903 | case 2: |
| 904 | p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3); |
| 905 | break; |
| 906 | case 3: |
| 907 | p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4); |
| 908 | break; |
| 909 | case 4: |
| 910 | p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5); |
| 911 | break; |
| 912 | case 5: |
| 913 | p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6); |
| 914 | break; |
| 915 | case 6: |
| 916 | p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7); |
| 917 | break; |
| 918 | case 7: |
| 919 | p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8); |
| 920 | break; |
| 921 | } |
| 922 | u.value = x; |
| 923 | u.parts32.w3 = 0; |
| 924 | u.parts32.w2 &= 0xfe000000; |
| 925 | z = u.value; |
| 926 | r = __ieee754_expl (-z * z - 0.5625) * |
| 927 | __ieee754_expl ((z - x) * (z + x) + p); |
| 928 | if ((sign & 0x80000000) == 0) |
| 929 | { |
| 930 | _Float128 ret = r / x; |
| 931 | if (ret == 0) |
| 932 | __set_errno (ERANGE); |
| 933 | return ret; |
| 934 | } |
| 935 | else |
| 936 | return two - r / x; |
| 937 | } |
| 938 | else |
| 939 | { |
| 940 | if ((sign & 0x80000000) == 0) |
| 941 | { |
| 942 | __set_errno (ERANGE); |
| 943 | return tiny * tiny; |
| 944 | } |
| 945 | else |
| 946 | return two - tiny; |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | libm_alias_ldouble (__erfc, erfc) |
| 951 | |