| 1 | /* log1pl.c |
| 2 | * |
| 3 | * Relative error logarithm |
| 4 | * Natural logarithm of 1+x, 128-bit long double precision |
| 5 | * |
| 6 | * |
| 7 | * |
| 8 | * SYNOPSIS: |
| 9 | * |
| 10 | * long double x, y, log1pl(); |
| 11 | * |
| 12 | * y = log1pl( x ); |
| 13 | * |
| 14 | * |
| 15 | * |
| 16 | * DESCRIPTION: |
| 17 | * |
| 18 | * Returns the base e (2.718...) logarithm of 1+x. |
| 19 | * |
| 20 | * The argument 1+x is separated into its exponent and fractional |
| 21 | * parts. If the exponent is between -1 and +1, the logarithm |
| 22 | * of the fraction is approximated by |
| 23 | * |
| 24 | * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). |
| 25 | * |
| 26 | * Otherwise, setting z = 2(w-1)/(w+1), |
| 27 | * |
| 28 | * log(w) = z + z^3 P(z)/Q(z). |
| 29 | * |
| 30 | * |
| 31 | * |
| 32 | * ACCURACY: |
| 33 | * |
| 34 | * Relative error: |
| 35 | * arithmetic domain # trials peak rms |
| 36 | * IEEE -1, 8 100000 1.9e-34 4.3e-35 |
| 37 | */ |
| 38 | |
| 39 | /* Copyright 2001 by Stephen L. Moshier |
| 40 | |
| 41 | This library is free software; you can redistribute it and/or |
| 42 | modify it under the terms of the GNU Lesser General Public |
| 43 | License as published by the Free Software Foundation; either |
| 44 | version 2.1 of the License, or (at your option) any later version. |
| 45 | |
| 46 | This library is distributed in the hope that it will be useful, |
| 47 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 48 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 49 | Lesser General Public License for more details. |
| 50 | |
| 51 | You should have received a copy of the GNU Lesser General Public |
| 52 | License along with this library; if not, see |
| 53 | <https://www.gnu.org/licenses/>. */ |
| 54 | |
| 55 | |
| 56 | #include <float.h> |
| 57 | #include <math.h> |
| 58 | #include <math_private.h> |
| 59 | #include <math-underflow.h> |
| 60 | |
| 61 | /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) |
| 62 | * 1/sqrt(2) <= 1+x < sqrt(2) |
| 63 | * Theoretical peak relative error = 5.3e-37, |
| 64 | * relative peak error spread = 2.3e-14 |
| 65 | */ |
| 66 | static const _Float128 |
| 67 | P12 = L(1.538612243596254322971797716843006400388E-6), |
| 68 | P11 = L(4.998469661968096229986658302195402690910E-1), |
| 69 | P10 = L(2.321125933898420063925789532045674660756E1), |
| 70 | P9 = L(4.114517881637811823002128927449878962058E2), |
| 71 | P8 = L(3.824952356185897735160588078446136783779E3), |
| 72 | P7 = L(2.128857716871515081352991964243375186031E4), |
| 73 | P6 = L(7.594356839258970405033155585486712125861E4), |
| 74 | P5 = L(1.797628303815655343403735250238293741397E5), |
| 75 | P4 = L(2.854829159639697837788887080758954924001E5), |
| 76 | P3 = L(3.007007295140399532324943111654767187848E5), |
| 77 | P2 = L(2.014652742082537582487669938141683759923E5), |
| 78 | P1 = L(7.771154681358524243729929227226708890930E4), |
| 79 | P0 = L(1.313572404063446165910279910527789794488E4), |
| 80 | /* Q12 = 1.000000000000000000000000000000000000000E0L, */ |
| 81 | Q11 = L(4.839208193348159620282142911143429644326E1), |
| 82 | Q10 = L(9.104928120962988414618126155557301584078E2), |
| 83 | Q9 = L(9.147150349299596453976674231612674085381E3), |
| 84 | Q8 = L(5.605842085972455027590989944010492125825E4), |
| 85 | Q7 = L(2.248234257620569139969141618556349415120E5), |
| 86 | Q6 = L(6.132189329546557743179177159925690841200E5), |
| 87 | Q5 = L(1.158019977462989115839826904108208787040E6), |
| 88 | Q4 = L(1.514882452993549494932585972882995548426E6), |
| 89 | Q3 = L(1.347518538384329112529391120390701166528E6), |
| 90 | Q2 = L(7.777690340007566932935753241556479363645E5), |
| 91 | Q1 = L(2.626900195321832660448791748036714883242E5), |
| 92 | Q0 = L(3.940717212190338497730839731583397586124E4); |
| 93 | |
| 94 | /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| 95 | * where z = 2(x-1)/(x+1) |
| 96 | * 1/sqrt(2) <= x < sqrt(2) |
| 97 | * Theoretical peak relative error = 1.1e-35, |
| 98 | * relative peak error spread 1.1e-9 |
| 99 | */ |
| 100 | static const _Float128 |
| 101 | R5 = L(-8.828896441624934385266096344596648080902E-1), |
| 102 | R4 = L(8.057002716646055371965756206836056074715E1), |
| 103 | R3 = L(-2.024301798136027039250415126250455056397E3), |
| 104 | R2 = L(2.048819892795278657810231591630928516206E4), |
| 105 | R1 = L(-8.977257995689735303686582344659576526998E4), |
| 106 | R0 = L(1.418134209872192732479751274970992665513E5), |
| 107 | /* S6 = 1.000000000000000000000000000000000000000E0L, */ |
| 108 | S5 = L(-1.186359407982897997337150403816839480438E2), |
| 109 | S4 = L(3.998526750980007367835804959888064681098E3), |
| 110 | S3 = L(-5.748542087379434595104154610899551484314E4), |
| 111 | S2 = L(4.001557694070773974936904547424676279307E5), |
| 112 | S1 = L(-1.332535117259762928288745111081235577029E6), |
| 113 | S0 = L(1.701761051846631278975701529965589676574E6); |
| 114 | |
| 115 | /* C1 + C2 = ln 2 */ |
| 116 | static const _Float128 C1 = L(6.93145751953125E-1); |
| 117 | static const _Float128 C2 = L(1.428606820309417232121458176568075500134E-6); |
| 118 | |
| 119 | static const _Float128 sqrth = L(0.7071067811865475244008443621048490392848); |
| 120 | /* ln (2^16384 * (1 - 2^-113)) */ |
| 121 | static const _Float128 zero = 0; |
| 122 | |
| 123 | _Float128 |
| 124 | __log1pl (_Float128 xm1) |
| 125 | { |
| 126 | _Float128 x, y, z, r, s; |
| 127 | ieee854_long_double_shape_type u; |
| 128 | int32_t hx; |
| 129 | int e; |
| 130 | |
| 131 | /* Test for NaN or infinity input. */ |
| 132 | u.value = xm1; |
| 133 | hx = u.parts32.w0; |
| 134 | if ((hx & 0x7fffffff) >= 0x7fff0000) |
| 135 | return xm1 + fabsl (xm1); |
| 136 | |
| 137 | /* log1p(+- 0) = +- 0. */ |
| 138 | if (((hx & 0x7fffffff) == 0) |
| 139 | && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) |
| 140 | return xm1; |
| 141 | |
| 142 | if ((hx & 0x7fffffff) < 0x3f8e0000) |
| 143 | { |
| 144 | math_check_force_underflow (xm1); |
| 145 | if ((int) xm1 == 0) |
| 146 | return xm1; |
| 147 | } |
| 148 | |
| 149 | if (xm1 >= L(0x1p113)) |
| 150 | x = xm1; |
| 151 | else |
| 152 | x = xm1 + 1; |
| 153 | |
| 154 | /* log1p(-1) = -inf */ |
| 155 | if (x <= 0) |
| 156 | { |
| 157 | if (x == 0) |
| 158 | return (-1 / zero); /* log1p(-1) = -inf */ |
| 159 | else |
| 160 | return (zero / (x - x)); |
| 161 | } |
| 162 | |
| 163 | /* Separate mantissa from exponent. */ |
| 164 | |
| 165 | /* Use frexp used so that denormal numbers will be handled properly. */ |
| 166 | x = __frexpl (x, &e); |
| 167 | |
| 168 | /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2), |
| 169 | where z = 2(x-1)/x+1). */ |
| 170 | if ((e > 2) || (e < -2)) |
| 171 | { |
| 172 | if (x < sqrth) |
| 173 | { /* 2( 2x-1 )/( 2x+1 ) */ |
| 174 | e -= 1; |
| 175 | z = x - L(0.5); |
| 176 | y = L(0.5) * z + L(0.5); |
| 177 | } |
| 178 | else |
| 179 | { /* 2 (x-1)/(x+1) */ |
| 180 | z = x - L(0.5); |
| 181 | z -= L(0.5); |
| 182 | y = L(0.5) * x + L(0.5); |
| 183 | } |
| 184 | x = z / y; |
| 185 | z = x * x; |
| 186 | r = ((((R5 * z |
| 187 | + R4) * z |
| 188 | + R3) * z |
| 189 | + R2) * z |
| 190 | + R1) * z |
| 191 | + R0; |
| 192 | s = (((((z |
| 193 | + S5) * z |
| 194 | + S4) * z |
| 195 | + S3) * z |
| 196 | + S2) * z |
| 197 | + S1) * z |
| 198 | + S0; |
| 199 | z = x * (z * r / s); |
| 200 | z = z + e * C2; |
| 201 | z = z + x; |
| 202 | z = z + e * C1; |
| 203 | return (z); |
| 204 | } |
| 205 | |
| 206 | |
| 207 | /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */ |
| 208 | |
| 209 | if (x < sqrth) |
| 210 | { |
| 211 | e -= 1; |
| 212 | if (e != 0) |
| 213 | x = 2 * x - 1; /* 2x - 1 */ |
| 214 | else |
| 215 | x = xm1; |
| 216 | } |
| 217 | else |
| 218 | { |
| 219 | if (e != 0) |
| 220 | x = x - 1; |
| 221 | else |
| 222 | x = xm1; |
| 223 | } |
| 224 | z = x * x; |
| 225 | r = (((((((((((P12 * x |
| 226 | + P11) * x |
| 227 | + P10) * x |
| 228 | + P9) * x |
| 229 | + P8) * x |
| 230 | + P7) * x |
| 231 | + P6) * x |
| 232 | + P5) * x |
| 233 | + P4) * x |
| 234 | + P3) * x |
| 235 | + P2) * x |
| 236 | + P1) * x |
| 237 | + P0; |
| 238 | s = (((((((((((x |
| 239 | + Q11) * x |
| 240 | + Q10) * x |
| 241 | + Q9) * x |
| 242 | + Q8) * x |
| 243 | + Q7) * x |
| 244 | + Q6) * x |
| 245 | + Q5) * x |
| 246 | + Q4) * x |
| 247 | + Q3) * x |
| 248 | + Q2) * x |
| 249 | + Q1) * x |
| 250 | + Q0; |
| 251 | y = x * (z * r / s); |
| 252 | y = y + e * C2; |
| 253 | z = y - L(0.5) * z; |
| 254 | z = z + x; |
| 255 | z = z + e * C1; |
| 256 | return (z); |
| 257 | } |
| 258 | |